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Abstract. Border polynomial and discriminant variety are two important notions related to para-
metric polynomial system solving, in particular, for partitioning the parameter values into regions
where the solutions of the system depend continuously on theparameters. In this paper, we study
the relations between those notions in the case of parametric triangular systems. We also investigate
the properties and computation of the non-properness locusof the canonical projection restricted
at a parametric regular chain or at its saturated ideal.

1. Introduction

Many authors have contributed to the study of parametric polynomial systems, and there is a large
collection of references, such as [7, 22, 13, 23, 18, 19, 27, 15, 5, 16], to name a few. Various notions
have been formulated for investigating the properties of parametric polynomial systems from dif-
ferent aspects. Border polynomial [26, 27, 25, 4], discriminant variety [15], discriminant ideal [23],
discriminant set [5] are some of those notions. For (parametric) semi-algebraic systems, methods
based oncylindrical algebraic decomposition(CAD) and its variants [8, 9, 10] are applicable. How-
ever, these methods may compute much more than what is neededfor the purpose of solving.

One central question in the study of parametric polynomial systems is the dependence of the
solutions on the parameter values. There are different waysto express the fact that the zeros of a
parametric system dependscontinuouslyon the parameters in a neighborhood of a given parameter
value. The notions of a border polynomial and a discriminantvariety aim at capturing the parameter
values at which certain dependence is not continuous. This inspires us to unify various notions under
a continuity framework, which will help us understand how different notions are related.

A first objective of the present work is to study the non-properness of the canonical projection
restricted atT or sat(T ) whereT is a regular chain with free variables as parameters. Theorem 1
shows that, within the zero locus of the iterated resultant of the product of the initials ofT , the
number of solutions ofT counted with multiplicities, is either infinite or less thanthe product of
the main degrees ofT . Theorem 2 strengthens this result and states that the iterated resultant of the
product of the initials ofT defines the non-properness locus (of the canonical projection restricted)
atT ; moreover, Theorem 2 states that any parameter value which is in the non-properness locus at
T but not in that atsat(T ) yields either no solutions or infinitely many solutions forT . In addition,
Theorem 3 supplies a formula for computing the non-properness locus atsat(T ).

This work was supported by MITACS, Canada.
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A second objective of the present work is to study the relations between the notions of a bor-
der polynomial and a discriminant variety. To this end, we gather key properties on these objects,
including results from the PhD thesis in Chinese of the thirdauthor [25]. We stress the fact that most
of our results assume that the input parametric system is triangular, since triangular decomposition
methods [24, 14, 12, 21, 6] can help reducing the study of general parametric systems to the tri-
angular case. Theorem 4 implies that the zero locus of the border polynomial ofT is the minimal
discriminant variety of the quasi-component ofV (T ). Other results, more technical, such as Propo-
sition 6 establish fine relations between the minimal discriminant varieties ofV (T ) andV (sat(T )).
This leads us to answer the following question: among all regular chains that have the same saturated
ideal as a given regular chain, the best choice to make the border polynomial set minimal is to choose
a canonical regular chain, see Theorem 5.

With respect to our MACIS 2011 article, the present paper focuses on parametric algebraic
system and enhances our work [17] in two directions. Firstly, we supply proofs for all the relevant
results from [17]. Secondly, we expand the study of non-properness and devote one whole section
(Section 3) to this subject. Extensions of our work on parametric semi-algebraic systems will appear
elsewhere and are partially summarized in the concluding section.

This paper is organized as follows. In Section 2, we revisit the notions of a border polynomial
and a discriminant variety in a unified framework. In the context of triangular parametric systems,
we show that the two notions essentially coincide, see Theorem 4. In Section 3, we show several
properties of the non-properness of polynomial maps for complex varieties. In Section 4, we compare
the minimal discriminant variety of a regular chain and thatof its saturated ideal. In Section 5, we
discuss the possible extensions of the results of Sections 3and 4 to a more general context.

2. Border polynomial and discriminant variety: two notions of discontinuity

In this paper, a parametric polynomial systemS is a system of equations, inequations and/or in-
equalities given by polynomials inQ[U,X ] whereU = u1, u2, . . . , ud are the parameters and
X = x1, x2, . . . , xs are the unknowns. All variables (parameters and unknowns) hold values from
a fixed fieldK, which is either the fieldC of complex numbers or the fieldR of real numbers. In
the former case, we say that the system is algebraic1 and in the latter case, we say that the system is
semi-algebraic.

We denote byZ(S) the solution set ofS, which is a subset ofKd+s. The canonical projection
ΠU to the parameter space restricted atZ(S) is defined as follows:

ΠU : Z(S) ⊂ Kd+s 7→ Kd

ΠU(u1, . . . , ud, x1, . . . , xs) = (u1, . . . , ud)

Let us denote byE (resp.I) the set of the polynomials ofS defining its equations (resp.
inequations and strict inequalities). The ideal〈E〉 : (∏h∈I h)∞ is called theideal associated with
S. For a given polynomial setL ⊂ Q[U,X ], we denote byV (L) the variety ofL in Cd+s.

Definition 1. We say thatS is well-determinateif the setU is an⊆-maximal algebraically indepen-
dent variable set modulo the ideal associated withS, that is, the idealK[U ] ∩ 〈E〉 : (∏h∈I h)∞ is
〈0〉 andU is⊆-maximal with that property.

Note that the notion of “ well-determinate” is more general than the notion of “well-behaved”
used in [15], in the sense that it is less restrictive forE. Indeed, the polynomial setE is not required
to have exactlys elements, nor to generate a radical ideal inQ(U)[X ].

1No inequalities are present in an algebraic system.
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Example 1. Consider a semi-algebraic system

S = {x(x2 + ay + b) = x(y2 + bx+ a) = 0, x > 0}
with parametersa, b. The ideal generated by the polynomials defining the equations ofS equals

〈x〉 ∩ 〈x2 + ay + b, y2 + bx+ a〉.
The polynomial system{x(x2 + ay + b) = x(y2 + bx + a) = 0} with parametersa, b is not
well-determinate, since{a, b} is not a maximal algebraically independent set modulo〈x〉. However,
the ideal associated toS is I := 〈x2 + ay + b, y2 + bx + a〉, and{a, b} is a maximal algebraic
independent variable set moduloI. Therefore,S is a well-determinate parametric semi-algebraic
system.

For a parametric polynomial system, we shall always assume that the parametric space2 is
positive dimensional. Throughout this paper, in order to keep the presentation concise, we assume
thatS is well-determinate. This assumption can be relaxed and theresults discussed hereafter can
be adapted to more general systems.

We rely on triangular decomposition techniques for studying parametric polynomial systems.
We refer to [4] for the standard notions and notations on triangular decomposition, such as: regular
chain, main variable (mvar), main degree (mdeg), initial (init), iterated resultant (ires).

An STAS is a pair[T,H 6=] whereT is a squarefree regular chain ofQ[U,X ] andH 6= is a set of
non-constant polynomials ofQ[U,X ] such that each of those is regular modulosat(T ), the saturated
ideal ofT , which is〈T 〉 : init(T )∞. A point of Kd+s is a zero of[T,H 6=] if it is a zero ofT not
canceling any of the polynomials ofH 6=.

An STSAS is a triple[T,H 6=, P>] such that[T,H 6=] is an STAS andP> is a set of non-constant
polynomials ofQ[U,X ] such that each of those is regular modulosat(T ). A point ofKd+s is a zero
of [T,H 6=, P>] if it is a zero of[T,H 6=] making each polynomial ofP> strictly positive.

In the algebraic case, we shall decomposeZ(S) into zero sets of finitely manysquarefree
triangular algebraic systems(STAS); in the semi-algebraic case, we shall decomposeZ(S) into
zero sets of finitely manysquarefree triangular semi-algebraic systems(STSAS).

Letα ∈ Kd. As mentioned in the introduction, there are different waysto express the fact that
the zeros of the parametric systemS depends continuously on the parameters in a neighborhood of
α in Kd. In this paper, we focus on two of them.

Definition 2. We say thatS is Z-continuousat α if there exists a neighborhoodOα of α such that
for any two parameter valuesα1, α2 ∈ Oα, we have#(Z(S(α1)) = # (Z(S(α2)) < ∞. We
say thatS is ΠU-continuousat α if there exists a neighborhoodOα of α such that there exists a

finite partition{C1, . . . , Ck} of Π−1
U (Oα) ∩ Z(S) such that the restrictionΠU|Cj

: Cj
ΠU−→Oα is a

diffeomorphism, for eachj ∈ {1, . . . , k}.

Example 2. Consider the semi-algebraic system

S := {x2 + ay2 − x = ax2 + y2 − y = 0, x 6= y}
with parametera. When the parameter takes value in the open interval(−1, 13 ), there are two solu-
tions, which are given by:

x =
a+ 1+

√
−3a2 − 2a+ 1

2(a2 − 1)
, y =

−a− 1 +
√
−3a2 − 2a+ 1

2(a2 − 1)
,

and

x =
−a− 1 +

√
−3a2 − 2a+ 1

2(a2 − 1)
, y =

a+ 1 +
√
−3a2 − 2a+ 1

2(a2 − 1)
.

Therefore, the systemS isZ-continuous as well asΠU-continuous at any point in(−1, 13 ).

2Here parametric space refers to the set of all parameter values that does not specify the associate ideal of the system to〈1〉.
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It is obvious thatΠU-continuity impliesZ-continuity. Moreover, these two kinds of continuity
are equivalent in many cases, e.g. for parametric STASes, aswe shall show in Section 4. Another
notion of continuity (or discontinuity) isnon-properness. The canonical projectionΠU is said to
be non-properat the pointα, if for any compact setS ⊆ Kd containingα, the setΠ−1

U (S) is not
compact. In Definition 6, the notion of non-properness is stated for an arbitrary polynomial map.
Non-properness is strongly linked to the followingZ∗-continuity(see Corollary 2).

Definition 3. We sayS is Z∗-continuous atα if there exists a neighborhoodOα of α such that
for any two parameter valuesα1, α2 ∈ Oα, the number of solutions, counted with multiplicities, of
S(α1) is finite and equals that ofS(α2).

The notion of aborder polynomialis based on theZ-continuity and was proposed in [26] for
computing the real root classification of a parametric semi-algebraic system. We reformulate the
definition here, for both parametric algebraic systems and parametric semi-algebraic systems.

Definition 4 (Border polynomial). A non-zero squarefree polynomialb in Q[U ] is called aborder
polynomialof the parametric polynomial systemS if the zero setV (b) of b in Kd contains all the
points at whichS is notZ-continuous.

Example 3. Consider the polynomial systemS := {x2 + bx − 1} with parameterb. RegardingS
as an algebraic system, it is easy to check that the system hastwo solutions forb2 + 4 6= 0 and has
only one solution forb2 + 4 = 0; therefore,b2 + 4 is a border polynomial. In fact, it is a minimal
border polynomial ofS in the sense that it divides any other border polynomials ofS.

ViewingS as a semi-algebraic system, this system always has two real solutions; therefore,
1 is the minimal border polynomial. Indeed, recall that in thesemi-algebraic case, the fieldK of
Definition4 isR.

The notion of adiscriminant varietyis based on theΠU-continuity and was proposed in [15]
for general parametric algebraic systems. We reformulate the definition here, for both parametric
algebraic systems and parametric semi-algebraic systems.

Definition 5 (Discriminant variety). An algebraic setW ( Kd is a discriminant varietyof the
parametric polynomial systemS if W contains all the points at whichS is notΠU-continuous.

Example 4 (Example2 Cont.). Consider again the semi-algebraic system

S := {x2 + ay2 − x = ax2 + y2 − y = 0, x 6= y}
with parametera. It is not hard to show that when eithera < −1 or a > 1

3 holds the system has no
real solutions. So{−1, 13} is a (indeed, the minimal) discriminant variety ofS and(a+ 1)(a− 1

3 )
is a (again, the minimal) border polynomial ofS.

If S is viewed as a parametric algebraic system, then the minimaldiscriminant variety would
be{−1, 13 , 1} and the minimal border polynomial ofS would be(a2 − 1)(a− 1

3 ).

Remark 1. The following facts can be easily deduced from the above definitions.

(i) One can form a discriminant variety ofS by taking the intersection of all discriminant vari-
eties, which is theminimal discriminant varietyof S.

(ii) If the hypersurface of a polynomial contains the minimal discriminant variety, then this poly-
nomial is a border polynomial.

(iii) In general, there is no “minimal border polynomial”. This will typically happen when the
minimal discriminant variety ofS is not the zero set of a single polynomial. However, we call
a border polynomialquasi-minimalif none of its proper factors is a border polynomial.

(iv) In the algebraic case, the set of points where theΠU-continuity ofS does not hold is just the
minimal discriminant variety ofS; in the semi-algebraic case, the points at which theΠU-
continuity ofS does not hold form a semi-algebraic set, which is not algebraic in general.
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For both theZ-continuity and theΠU-continuity, there are essentially two steps in solving the
parametric systemS:

(1) describe the parameter values where the continuity does nothold,
(2) describe the (groups of) regions where the continuity is maintained.

Step(1) is achieved by computing a border polynomial or a discriminant variety, depending on the
continuity notion. It is not hard to show that the computation of a border polynomial or a discriminant
variety ofS in the semi-algebraic case can be reduced to the computationof a discriminant variety
in the algebraic case. Based on this observation, we devote Sections 3 and 4 to the algebraic case.

For simplicity with Step(2), let us assume that a border polynomial ofS is a polynomial
whose hypersurface is also a discriminant variety ofS. In the algebraic case, the complement of an
algebraic set inCd has only one connected component, thus Step(2) is rather simple. However, in
the semi-algebraic case, there are usually more than one connected components in the complement
of an algebraic set inRd and the description of those connected components is more challenging.
The notion of a finger polynomial set (see [3]) and an effective boundary (see [4]) are dedicated to
this. Here we use a simple example to illustrate the difficulty.

Example 5. Consider the polynomial systemS := {x4+bx2+c = 0} with parametersb, c. Viewing
S as an algebraic system:c(b2−4c) is a border polynomial, which defines the minimal discriminant
variety as well; whenc(b2 − 4c) 6= 0, the system isZ-continuous and has4 simple solutions.

RegardingS as a semi-algebraic system,c(b2 − 4c) is a border polynomial and defining the
minimal discriminant variety. However, there are4 regions (see Figure1) whereS isZ-continuous,
namely:

(I) b2 − 4c < 0, above whichS has no real solutions;
(II) b2 − 4c > 0 ∧ c > 0 ∧ b > 0, above whichS has no real solutions;

(III) b2 − 4c > 0 ∧ c > 0 ∧ b < 0, above whichS has4 real solutions;
(IV ) c < 0, above whichS has2 real solutions.

One can see that, in addition to the factors of the border polynomial, at least one polynomial (here
b) is required to describe all the regions.

3. Non properness locus of a polynomial map

In this section, we shall discuss the properties and computation of the non-properness of a polyno-
mial map, in particular, the canonical projection restricted atT or sat(T ) whereT is a regular chain
with its free variables regarded as parameters. To this end,we recall a more intuitive concept, the
finiteness (see Definition 7) of a continuous map, which, in the case of polynomial maps between
complex varieties, is equivalent to that of non-properness(see [20]).

3.1. General properties

Throughout this section, letV andW be two complex varieties; letf : V → W be a polynomial
map such that we havef(V ) = W . Note that for a complex varietyV , the Zariski closure off(V )
coincides with the closure off(V ) in the usual topology.3 The following definition of properness of
a polynomial map is more general than others, see for instance [11]. Indeed, following [15], we do
not require that the target varietyW is irreducible.

Definition 6 (Properness of a map).We say thatf is properat a pointα ∈ W , if there exists a
compact neighborhoodCα (which has the same local dimension atα asW does) ofα such that
f−1(Cα) is compact inV . We denote byO∞(f) the set of all points wheref is not proper. We call
O∞(f) thenon-properness locusof f .

3By usual topology ofCn, we mean the topology induced by the identification betweenCn andR2n, this latter being
equipped with the Euclidean topology.
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FIGURE 1. The4 regions

Notation 1. Consider a parametric polynomial systemS in Q[U,X ] (as defined in Section2) and
I its associated ideal. We denote byO∞(S) or O∞(V (I)) the setO∞(ΠU|V (I)), whereΠU|V (I) is
the restriction ofΠU at V (I).

One key geometric property of non-properness is stated in the following lemma, from [11].

Lemma 1 ([11]). Given two irreducible varietiesV andW , let f : V → W be a polynomial map.
If f(V ) = W anddim(V ) = dim(W ) both hold, thenO∞(f) is either empty or is a hypersurface
in W .

Lemma 1 implies that, for a well-determinate parametric polynomial system, the non-properness
locus of its standard projection on the parameter space is always a variety, which is either empty or
has a dimension strictly less than that of the parameter space. Next, we recall from [15] an algorith-
mic description of the non-properness locus of a general parametric polynomial system by means of
Gröbner basis computations.

Lemma 2 ([15]). Given a parametric idealI with parametersU = u1, u2, . . . , ud and variables
X = x1, x2, . . . , xs, let G be a reduced Gr̈obner basis ofI w.r.t a block ordering≺U,X where≺X

is a degree reverse lexicographic ordering. Fori = 1, . . . , s, define

Ξ∞
i = {lc≺X

(g) | g ∈ G, lm≺X
(g) = xm

i for somem ≥ 0}.
Then we haveO∞(I) = ∪s

i=1V (Ξ∞
i ).
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For polynomial maps between complex varieties, the definition of non-properness coincides
with the following notion of non-finiteness. In Definition 7,the norm is the Euclidean norm.

Definition 7 (Finiteness of a map).We say thatf is not finiteat a pointα ∈ W , if there exists a
sequence of points

{y1,y2, . . .yn, . . .} ∈ V,

such that we have
lim
n→∞

‖yn‖ = ∞ and lim
n→∞

f(yn) = α.

From the above characterization of non-properness, we easily deduce the following facts.

1. If f : V → W is a polynomial map andV is the union of two varietiesV1 andV2, thenO∞(f)
is the union ofO∞(f |V1) andO∞(f |V2).

2. If α ∈ W satisfiesdim(f−1(α)) > 0, then we haveα ∈ O∞(f).

We shall use Definition 7 as a definition of non-properness in the proof of the results in this section.
Lemma 3, taken from [25], could be known in a more general setting but we have not found a
reference for it. And Corollary is a direct application of Lemma 3 to parametric algebraic systems.

Lemma 3. LetV,W be complex varieties andf : V → W be a polynomial map. Assume thatW is
of positive dimension and thatf(V ) = W holds. ThenW \ f(V ) is contained inO∞(f).

Proof. Let α ∈ W \ f(V ). Sincedim(W ) > 0 andW = f(V ) hold, there exists a sequence of
points{βi}i=1,2,...,∞ in f(V ) such thatlimi→∞ βi = α, sinceW = f(V ) holds. For eachβi, let
yi be a point inf−1(βi). Then we obtain a sequence of pointsyi ∈ V , for i = 1, 2, . . . ,∞. We
claim thatlimi→∞ ‖yi‖ = ∞ holds. Otherwise, the sequence(yi ∈ V, i ∈ N) admits a bounded
sub-sequence, from which we can extract a convergent sub-sequence; sinceV is closed, the limity∗

of this latter sub-sequence belongs toV . Therefore, we havey∗ ∈ V andf(y∗) = α holds, which
contradicts the assumptionα ∈ W \ f(V ). Therefore, the claimlimi→∞ ‖yi‖ = ∞ holds, which
implies thatα ∈ O∞(f) holds. �

Corollary 1. Consider a parametric algebraic systemS in Q[U,X ] with no inequations. Then the
non-properness locus ofΠU contains the parameter values at whichS is inconsistent.

The following Lemma from [25] shows that the set of non-properness is well adapted to the
composition of polynomial maps.

Proposition 1. Consider3 varietiesV1, V2, V3 and3 polynomial mapsf1,3 : V1 → V3, f1,2 : V1 →
V2, f2,3 : V2 → V3 satisfyingf1,3 = f2,3 ◦ f1,2, V2 = f1,2(V1) andV3 = f2,3(V2). Then we have

O∞(f1,3) = O∞(f2,3) ∪ f2,3(O∞(f1,2)).

Proof. Let us first show thatO∞(f1,3) ⊆ O∞(f2,3) ∪ f2,3(O∞(f1,2) holds. Letα ∈ O∞(f1,3).
Then there exists an unbounded point sequence{xi}i=1,2,3,...,∞ in V1 such thatlimi→∞ f1,3(xi) =
α holds. If there exists a sub-sequence off1,2(xi) (i = 1, 2, . . . ,∞) which converges to a pointy in
V2, theny ∈ O∞(f1,2) holds by definition and we haveα = f2,3(y) ∈ f2,3(O∞(f1,2)). Otherwise,
the sequencef1,2(xi) (i = 1, 2, . . . ,∞) is contained inV2 and is unbounded, which implies that
α ∈ O∞(f2,3) holds.

Now we show thatO∞(f1,3) ⊇ O∞(f2,3) ∪ f2,3(O∞(f1,2)) holds. Letα ∈ O∞(f2,3) ∪
f2,3(O∞(f1,2)). If f−1

2,3 (α) ∩ V2 = ∅ holds, then we haveα ∈ (V3 \ f1,3(V1)), which implies that
α ∈ O∞(f1,3) holds. Now we consider only the casef−1

2,3 (α) ∩ V2 6= ∅.
We first assumeα = f2,3(z) for somez in O∞(f1,2). Then there exists an unbounded point

sequence{xi}i=1,2,3,...,∞ such thatlimi→∞ f1,2(xi) = z holds. Therefore,limi→∞ f1,3(xi) = α
holds, which implies thatα ∈ O∞(f1,3) holds.
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Next, we assume thatα ∈ O∞(f2,3) \ f2,3(O∞(f1,2)) holds. Then there exists an unbounded
point sequencezj=1,2,...,∞ in f1,2(V1), sincef1,2(V1) is dense inV2, such thatlimj→∞ f2,3(zj) = α

holds. For eachzj , we can choose oneyj in f−1
1,2 (zj) and obtain an unbounded point sequenceyj in

V1 such that we havelimj→∞ f1,3(yj) = limj→∞ f2,3(zj) = α, which implies thatα ∈ O∞(f1,3)
holds as well. �

Consider a parametric polynomialp ∈ Q[U, x], with U = u1, . . . , ud as parameters. One
can expect that the zero locus of its leading coefficient equals O∞(V (p)), see Lemma 2. In fact,
Proposition 2 is a more general result, taken from [25]. Two notations are needed: for a polynomial
setF ⊂ Q[U ] we writeVU (F ) the zero set ofF in Cd; in the lemma below, the norm is the modulus
(or absolute value) of a complex number.

Lemma 4. Let p := a0x
m + a1x

m−1 + · · ·+ am be a univariate polynomial inC[x] andx be the

root ofp in C with the maximum norm. Then, for eachj = 1, . . . ,m, we have‖x‖ ≥
(

‖aj‖

‖a0‖(mj )

)
1
j

.

Proof. Let x1,x2, . . . ,xm be them roots ofp. Then we have

(−1)j−1 aj
a0

=
∑

{i1,i2,...,ij}⊆{1,2,...,m}

xi1xi2 · · ·xij .

Hence, we have‖(−1)j
aj

a0
‖ ≤

(

m

j

)

‖x‖j, which implies the conclusion. �

Proposition 2. LetP be a prime ideal inQ[U ] andp ∈ Q[U, x] be a polynomial with positive degree
in x. We regardU as parameters. LetI := 〈p, P 〉 be the polynomial ideal inQ[U, x] generated by
P andp. Assume that the leading coefficientlc(p, x) of p w.r.t. x is regular moduloP and assume
thatdim(P ) > 0 holds. Then, we haveO∞(V (I)) = VU (lc(p, x) + P ).

Proof. According to the continuity of the roots of univariate polynomials [2], we have

O∞(V (p)) ⊆ VU (lc(p, x)).

Therefore, we deduce thatO∞(V (I)) ⊆ VU (lc(p, x)) holds, since we haveV (I) ⊆ V (p). Hence,
with O∞(V (I)) ⊆ VU (P ), we obtain,

O∞(V (I)) ⊆ VU (lc(p, x) + P ).

Next, we show thatO∞(V (I)) ⊇ O∞(V (p)) holds. This is trivially true ifVU (lc(p, x) + P ) = ∅
holds, thus we assume that we haveVU (lc(p, x)+P ) 6= ∅. Letα ∈ VU (lc(p, x)+P ). If α specializes
p to the zero polynomial, thendim(Π−1

U (α)) = 1, which implies thatα is in O∞(V (I)). Let us
assume thatα does not specializep to the zero polynomial. Thusα cancels(lc(p, x) but does not
cancel all the other coefficients ofp w.r.t.x. SinceVU (P ) is a variety of positive dimension, we can
choose a point sequence{zi} (i = 1, 2, . . . ,∞) in VU (P ) \ VU (lc(p, x)) such thatlimi→∞ zi = α.
For eachzi, we haveΠ−1

U (zi) 6= ∅. Let xi be a point ofΠ−1
U (zi) such that its last coordinate

(that is, itsx-coordinate) has maximum norm. Then, according to Lemma 4, the sequence{xi}
(i = 1, 2, . . . ,∞) must be unbounded, which implies thatα ∈ O∞(V (I)) holds. This completes the
proof. �

3.2. Non-properness locus of parametric algebraic systemsin triangular shape

In this section, we focus on the non-properness locus ofΠU restricted at the variety of a parametric
regular chain or the variety of the saturated ideal of a regular chain. LetR := [T,H ] be an STAS
as defined in Section 2. We viewR as a parametric algebraic system with the free variables ofT as
parameters, that is,u1, . . . , ud. The following notations are related to the triangular structure ofR.
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Notation 2. We denote byBsep(T ), Bini(T ), Bie([T,H ]) the set of the irreducible factors of
∏

t∈T

ires(discrim(t,mvar(t)), T ),
∏

t∈T

ires(init(t), T ), and
∏

f∈H

ires(f, T ),

respectively. The setBsep(T ) ∪ Bini(T ) ∪ Bie([T,H ]) is called theborder polynomial setof R,
denoted byBPS(R).

With Proposition 3 we will establish thatBPS(R) is the set of factors of the minimal border
polynomial ofR: this will justify the above terminology. The following lemma is a basic property of
the iterated resultant of a polynomial w.r.t. a regular chain, see for instance [6].

Lemma 5. LetG ∈ Q[X ] be a zero-dimensional regular chain and letf ∈ Q[X ] be a polynomial.
Thenires(f,G) = 0 holds if and only if there exists a pointα ∈ V (G) satisfyingf(α) = 0.

Recall that the regular chainT is viewed as a parametric algebraic system with its free variables
U = u1, . . . , ud as parameters and with its main variablesX = x1, . . . , xs as unknowns.

Notation 3. Denote byN the number
∏

f∈T mdeg(f). For each parameter valueα ∈ Cd, denote
byNα the number of solutions ofT (α), counted with multiplicities.

Theorem 1. Let b =
∏

f∈Bini(T ) f and letα ∈ Cd. Then the following statements hold:

(i) if b(α) 6= 0, thenNα = N holds;
(ii) if b(α) = 0, thenNα is either infinite or less thanN .

Proof. We prove this by induction ons, the number of polynomials inT . Whens = 1, the result is
trivially true according to the Fundamental Theorem of Algebra. Assume that, fori = 1, 2, . . . , s−1,
the conclusion holds. We writeT = T<s ∪ {ts}, wherets has the largest main variable, namelyxs.
Defineb1 :=

∏

f∈Bini(T<s)
f .

Assume first thatb(α) 6= 0 holds. Then, we haveb1(α) 6= 0 andires(init(ts)(α), T<s(α)) 6=
0. Thus, by induction hypothesis, the number of solutions of the specialized regular chainT<s(α),
counted with multiplicities, is

∏

f∈T<s
mdeg(f). And for each solutionβ of T<s(α), we have

init(ts)(β) 6= 0, by Lemma 5. Therefore,β can be extended tomdeg(ts) solutions ofts count-
ing multiplicities. Therefore,N(α) = N holds wheneverb(α) 6= 0 holds.

Assume from now on thatb(α) = 0 holds. Then, there are two scenarios:

1. eitherb1(α) = 0 holds,
2. or ires(init(ts)(α), T<s(α)) = 0 andb1(α) 6= 0 both hold.

Consider first the case whereb1(α) = 0 holds. By induction hypothesis, the number of solutions
of T<s(α) is either infinite, or less than

∏

f∈T<s
mdeg(f). If the number of solutions ofT<s(α)

is infinite, thenT (α) is either inconsistent or has infinitely many solutions and the claim holds.
(Consider whether or not finitely many of those solutions cancel init(ts).) Assume now that the
number of solutions ofT<s(α) is less than

∏

f∈T<s
mdeg(f). If one solution ofT<s(α) can be

extended to infinitely many solution ofts, then the claim is clearly true. Otherwise, each solution of
T<s(α) can be extended to at mostmdeg(ts) solutions ofts, we haveNα < N holds and the claim
is true again.

Consider now the second scenario, that is,ires(init(ts)(α), T<s(α)) = 0 and b1(α) 6= 0
both hold. There must exist one solutionβ of T<s(α) such thatinit(ts)(β) = 0. For each of such
solutionβ, if β specializests to a zero polynomial, then the conclusion is clearly true; otherwise,
β specializesinit(ts) to zero andβ can only be extended to at mostmdeg(ts) − 1 solutions ofts,
which implies thatNα < N holds. �

Consider again a regular chainT that we regard as a polynomial system, parametric in its free
variables. Theorem 2 shows that the non-properness locus ofT depends essentially on the initials of
T . The first claim of this appeared in [25], with a different proof.
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Observe that, from Lemma 1, the non-properness locusO∞(sat(T )) is the zero set of a poly-
nomial (which is1 in case this set is empty) inCd.

Theorem 2. Letb :=
∏

f∈Bini(T ) f . Then we haveO∞(T ) = VU (b). Letbsat be a polynomial such
thatO∞(sat(T )) = VU (bsat). Observe thatbsat dividesb since we haveO∞(T ) ⊇ O∞(sat(T )).
Then for eachα satisfying b

bsat
(α) = 0, the number of solutionsNα is either0 or infinite.

Proof. We prove all the claims by induction ons, the number of polynomials inT . Whens = 1,
let T := {t}. The first part of the claim is true according to Proposition 2. If b

bsat
is a constant, the

second part is clear. If b
bsat

is not constant, thenb
bsat

must be the content oft; in this case, for each

α satisfying b
bsat

(α) = 0, the parameter valueα specializest to the zero polynomial, and again the
conclusion is true.

From now on we assumes > 1. We also assume that fork = 1, 2, . . . , s − 1, the conclusion
holds. Whenk > 1, writeT asT := T<k ∪{tk}, wheretk has the largest main variable, namelyxk.

Denote byb<s the polynomial
∏

f∈Bini(T<s)
f . We claim that

VU (b<s) ⊆ O∞(T ) (1)

holds. Letb<s,sat be a polynomial such thatO∞(sat(T<s)) = VU (b<s,sat) holds. By induction
hypothesis, for each pointα ∈ VU (

b<s

b<s,sat
), eitherT<s(α) is inconsistent or it has infinitely many

solutions; therefore,T (α) is either inconsistent or has infinitely many solutions. Therefore, we have

VU (
b<s

b<s,sat

) ⊆ O∞(T ). (2)

Define

Π1···s−1 :
Cd+s → Cd+s−1

(u1, . . . , ud, x1, . . . , xs)) 7→ (u1, . . . , ud, x1, x2, . . . , xs−1)

and

ΠU,s−1 :
Cd+s−1 → Cd

(u1, . . . , ud, x1, x2, . . . , xs−1)) 7→ (u1, . . . , ud)

Then we haveΠU = ΠU,s−1 ◦Π1···s−1. It follows from the results of [1] that we have

sat(T ) ∩ Q[U, x1, . . . , xs−1] = sat(T<s).

Thus, we also have

Π1···s−1(V (sat(T ))) = V(U,x1,x2,...,xs−1)(sat(T<s)), (3)

which implies
VU (b<s,sat) = O∞(sat(T<s)) ⊆ O∞(sat(T )) (4)

by applying Proposition 1 to the compositionΠU = ΠU,s−1 ◦ Π1···s−1 restricted atV (sat(T )).
Therefore, combining Relations (2) and (4) we obtain

VU (b<s) = VU (b<s,sat) ∪ VU (
b<s

b<s,sat

) ⊆ O∞(T ),

which completes the proof of Relation (1).
Consider now the compositionΠU = ΠU,s−1 ◦Π1···s−1 restricted atV (ts+sat(T<s)). Denote

byO the set
ΠU,s−1

(

O∞

(

Π1···s−1|V (ts+sat(T<s))

))

\ VU (b<s).

Next we show that both
VU (b) \ VU (b<s) ⊆ O ⊆ VU (b) (5)

and
O ∪ VU (b<s) = O∞(T ) (6)



On solving parametric polynomial systems 11

hold. From there, Relations (5) and (6) combined with the fact that VU (b<s) ⊆ VU (b) holds by
definition ofb andb<s, we can conclude thatVU (b) = O∞(T ) holds.

We will first show that Relation (5) holds. By Proposition 2, we have

O = ΠU,s−1

(

V(U,x1,...,xs−1)(init(ts) + sat(T<s))
)

\ VU (b<s).

On one hand, clearly, we haveb ∈ init(ts)+ sat(T<s); therefore, we haveO ⊂ VU (b). On the other
hand, for each pointα ∈ VU (b) \ VU (b<s), we have

V(x1,x2,...,xs−1)(sat(T<s)(α)) = V(x1,x2,...,xs−1)(T<s(α)) 6= ∅.
Indeed,α specializesT<s well to a regular chain, andires(init(ts), T<s)(α) = 0 holds if and only if
b(α) = 0 holds. Therefore, eachα can be lifted to a solution ofV(U,x1,...,xs−1)(init(ts)+sat(T<s)),
which impliesVU (b) \ VU (b<s) ⊆ O. The above two arguments complete the proof of Relation (5).

Now the only thing remaining to show is Equation (6). It follows from (3) that we have

Π1···s−1(V (ts + sat(T<s))) = V(U,x1,x2,...,xs−1)(sat(T<s)), (7)

sinceΠ1···s−1(V (ts + sat(T<s))) ⊇ Π1···s−1(V (sat(T ))) holds. We apply Proposition 1 to the
compositionΠU = ΠU,s−1 ◦ Π1···s−1 restricted atV (ts + sat(T<s), thanks to Relation (7), we
deduce

O∞(V (ts + sat(T<s))) = O∞(ΠU,s−1|V (sat(T<s))) ∪ ΠU,s−1

(

O∞

(

Π1···s−1|V (ts+sat(T<s))

))

.
(8)

On one hand, from Equation (8) and the inclusion

O∞(ΠU,s−1|V (sat(T<s))) ⊆ O∞(ΠU,s−1|V (T<s)) = VU (b<s),

we deduce that the inclusion

O = O∞(V (ts + sat(T<s))) \ VU (b<s). (9)

On the other hand, we observe that

V (T ) \ V (b<s) = V (ts + sat(T<s)) \ V (b<s)

holds, thus we have

O∞(T ) \ VU (b<s) = O∞(V (ts + sat(T<s))) \ VU (b<s). (10)

Combining Equations (9) and (10), with Relation (1), we deduce that Equation (6) holds. This com-
pletes the proof of the first claim of the conclusion.

Next, let us prove the second claim of the theorem, To this end, we observe that it is sufficient
to establish the following statement: if forα ∈ VU (b) the polynomial systemT (α) has at least one
but finitely many solutions, thenα ∈ O∞(sat(T )) holds.

If α ∈ VU (b<s), the claim is clearly true by induction. Now we assume thatb<s(α) 6= 0
holds. Then there must exists one solutionβ of T<s(α) such thatβ specializesinit(ts) to 0 and
specializests to be a polynomial of degree greater or equal than1. We can find a sequence of points
α1, . . . , αn, . . . in Cd \ VU (b), such thatlimi→∞ αi = α holds. Then, by the continuity of the roots
of a univariate polynomial (see [2]), for eachαi, we can find one solution ofT<s(αi), sayβi, such
that,limi→∞ βi = β. For eachβi, letas,i be the root ofts(βi) with the maximum norm. We observe,
for eachi, (βi, as,i) is in V (sat(T )) since eachαi is chosen to satisfyb(αi) 6= 0. Also, we deduce
thatlimi→∞ ‖(βi, as,i)‖ = ∞, according to Lemma 4. Therefore,α is inO∞(sat(T )). This proves
the above statement and thus completes the proof of the theorem. �

The above two results, Theorem 1 and Theorem 2, show that for aregular chain regarded as a
parametric algebraic system,Z∗-continuity is equivalent to the properness of theΠU map. We state
this equivalence formally in the following corollary.
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Corollary 2. Consider a regular chainT , regarded as a parametric system with its free variables as
parameters. Letα be any parameter value. ThenT isZ∗-continuous atα if and only ifΠU restricted
at V (T ) is proper atα.

An algorithm for computing the non-properness locus of a general polynomial map can be
found in [20]. With the next proposition, we show a nicer construction ofO∞(sat(T )), which can
be exploited to design new algorithms to compute theO∞ set of a parametric polynomial system.

Recall thatT is a squarefree regular chain withU = u1, . . . , ud andX = x1, x2, . . . , xs as
free variables and algebraic variables respectively; letI = sat(T ).

Lemma 6. For eachi = 1 · · · s, the idealI∩Q[U, xi] is a principal ideal generated by a polynomial
gi ∈ Q[U, xi] whose content w.r.t.xi belongs toQ.

Proof. Let {Pj | j = 1, 2, . . . , e} be the set of the associated primes ofI. Then for eachj, the set
U is a variable set which is algebraically independent moduloPj and⊆-maximal with that property.
For eachi = 1, 2, . . . , s andj = 1, 2, . . . , e, we denote byQj,i the idealPj ∩Q[U, xi]. Clearly, the
idealQj,i is prime andU is a⊆-maximal algebraically independent moduloQj,i.

Consider two distinct polynomialsf, g ∈ Qj,i. Since their resultant lies inQj,i and has degree
zero inxi, this latter polynomial must be null. Thush := gcd(f, g) has a positive degree w.r.t.xi.
SinceQj,i is prime, eitherh or f/h must belong toQj,i. From there, it is routine (proceeding by
contradiction) to show thatQj,i is a principal ideal. Moreover, the fact thatQj,i is prime implies that
Qj,i is generated by an irreducible polynomial, saygj,i.

Denote bygi the polynomial
∏e

j=1 gj,i. Note thatI ∩Q[U, xi] =
⋂e

j=1 Qj,i holds. Therefore,
I ∩Q[U, xi] = 〈gi〉. And it is obvious thatgi is content free. �

Theorem 3. For eachi = 1, . . . , s, let gi be a polynomial generating the principal idealsat(T ) ∩
Q[U, xi]. Then, we have

O∞(sat(T )) = ∪s
i=1 VU (init(gi)).

Proof. Let I = 〈g1, g2, . . . , gs〉. We observe thatI is a regular chain and Theorem 2 applies. There-
fore, we have

O∞(I) = ∪s
i=1 VU (init(gi)).

We define
Πi : C

d+s → Cd+1,Πi((U, x1, . . . , xs)) = (U, xi)

and
Πi+ : Cd+1 → Cd,Πi((U, xi)) = (U).

We haveΠU = Πi+ ◦Πi. For eachi = 1, . . . , s, we have

Πi(V (sat(T ))) = V(U,xi)(gi)

and
O∞(Πi+|V(U,xi)

(gi) = VU (init(gi).

Therefore, by Proposition 1, for eachi = 1, . . . , s, we have

VU (init(gi)) ⊆ O∞(sat(T )),

which implies
∪s
i=1 VU (init(gi)) ⊆ O∞(sat(T )).

SinceV (sat(T )) ⊆ V (I) holds, we haveO∞(sat(T )) ⊆ O∞(I). Finally, we have

∪s
i=1 VU (init(gi)) ⊆ O∞(sat(T )) ⊆ O∞(I) = ∪s

i=1 VU (init(gi)),

which yields the conclusion. �

We conclude this section with a simple example illustratingTheorem 2 and Theorem 3.
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Example 6. LetT := {ax+ b, by + a} be a regular chain with variable orderinga < b < x < y.
We regardT as a parametric polynomial system witha, b as parameters. Observe thatsat(T ) ∩
Q[a, b, x] = 〈ax + b〉 holds. Indeed the irreducible polynomialax + b lies in sat(T ) ∩ Q[a, b, x],
which is a principal ideal, thanks to Lemma6. Similarlysat(T ) ∩Q[a, b, y] = 〈by + a〉 holds. Now
applying Theorem3, we deduceO∞(sat(T )) = V(a,b)(ab).

This latter fact can also be justified by combining the two following observations.

(1) We haveO∞(T ) = V(a,b)(ab) by applying Theorem2. Indeed, we haveBini(T ) = {a, b}.
Thus, sinceO∞(sat(T )) is a hypersurface contained inO∞(T ), we haveO∞(sat(T )) ⊆
V(a,b)(ab).

(2) On one hand, for all parameter valueα satisfying eithera = 0, b 6= 0 or b = 0, a 6= 0, we have
V(x,y)(sat(T )(α)) ⊆ V(x,y)(T (α)) = ∅ which impliesα ∈ O∞(sat(T )) by Lemma3. One
the other hand, the Zariski closure ofV(a,b)(a) \V(a,b)(b) ∪ V(a,b)(b) \V(a,b)(a) is V(a,b)(ab).
Thus, we deduceV(a,b)(ab) ⊆ O∞(sat(T )).

4. Z-continuity and ΠU-continuity of Parametric Algebraic Triangular
Systems

In this section, we study the minimal discriminant variety of an STAS, regarded as a parametric
system in the free variables of its regular chain. We show that for this type of parametric systems the
notions ofZ-continuity andΠU-continuity coincide. Then, we compare the minimal discriminant
variety of a regular chainT and that of its saturated ideal, both regarded as a parametric system in
the free variables ofT . Finally, we show that among all regular chains having the same saturated
ideal asT , the canonical regular chain associated withT has a⊆-minimal border polynomial set.

4.1. The minimal discriminant variety of a parametric STAS

In this subsection, we focus on the characterization of the minimal discriminant variety of an STAS
R := [T,H ], as defined in Section 2. We view an STAS as a parametric algebraic system with the
free variables ofT as parameters.

Proposition 3 and Theorem 4 imply that the notions ofZ-continuity andΠU-continuity coin-
cide for STASes. In particular, Theorem 4 shows that the minimal discriminant variety ofR can be
characterized byBPS(R) (see Notation 2).

Lemma 7. Let b :=
∏

f∈Bini(T ) f andα be any parameter value satisfyingb(α) 6= 0. Then, we
haveires(f, T )(α) = 0 if and only ifires(f(α), T (α)) = 0 holds.

Proof. This follows from Theorem 8 and Proposition 11 in [6]. �

Proposition 3. Let b =
∏

f∈BPS(R) f ; let N :=
∏

f∈T mdeg(f). Then for each parameter value

α ∈ Cd:

(a) if b(α) 6= 0, then#Z(R(α)) = N holds;
(b) if b(α) = 0, then#Z(R(α)) is either infinite or less thanN .

Proof. Let bi :=
∏

f∈Bini(T ) f ; bs :=
∏

f∈Bsep(T ) f ; bf :=
∏

f∈Bie(R) f . Let α ∈ Cd be a
parameter value. Assume first thatb(α) 6= 0 holds. Then, by Lemma 7, the following facts hold:

(i) bi(α) 6= 0,
(ii) for eachi ∈ {1, 2, . . . , s}, we haveires(discrim(ti(α), xi), T ) 6= 0,
(iii) ires(h(α), T (α)) 6= 0.

From Fact(i), we deduce by Theorem 1 thatT (α) hasN zeros, counted with multiplicities. Thanks
to Lemma 5, Fact(ii) implies thatT does not have multiple zeros. Fact(iii) means that, for each
polynomialh ∈ H and each zerox of T (α), we haveh(x) 6= 0. Therefore, Claim(a) holds.

From now on, we assume thatb(α) = 0 holds. Three cases can occur:
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(i) bi(α) = 0 holds, thenT (α) either has infinitely many solutions or has less thanN solutions,
counted with multiplicities;

(ii) bi(α) 6= 0 andbs(α) = 0 hold, thenT (α) is a regular chain with multiple zeros; and it hasN
zeros, counted with multiplicities;

(iii) bi(α) 6= 0, bs(α) 6= 0 andbf (α) = 0 hold, thenT (α) hasN simple zeros, and at least one of
them vanishes some polynomials inH .

In any case, Claim(b) holds. This completes the proof. �

The following Theorem appeared in [25]. Here we supply a new proof, which relies directly
on the concept ofΠU-continuity.

Theorem 4. Let b =
∏

f∈BPS(R) f . Then, the hypersurfaceVU (b) of Cd is the minimal discrimi-
nant variety ofR.

Proof. By Proposition 3, we know thatZ(b = 0) contains the minimal discriminant variety. Next,
we shall show that,R isΠU-continuous at eachα whereb(α) 6= 0 holds.

Let (α,y1), (α,y2), . . . , (α,yN ) be theN simple solutions ofR(α). Then by the Implicit
Function Theorem, there exists a neighborhoodCα of α in Cd such that for each point(α,yi), there
exist a diffeomorphic functionφi such that

Si := {(U, φi(U))|U ∈ Cα} ⊂ Z(R)

andφi(α) = yi hold. Moreover, we can chooseCα such thatSi ∩ Sj = ∅ wheni 6= j. It is obvious
that eachSi is diffeomorphic toCα. By Proposition 3, it is easy to deduce thatΠ−1

U (Cα) = ·∪Si

holds. This shows thatR isΠU-continuous atα. �

Corollary 3. LetR := [T,H ] be an STAS, regarded as a parametric system with the free variables
of T as parameters. Letα be any parameter value. ThenR is Z-continuous atα if and only ifR is
ΠU-continuous atα.

4.2. The minimal discriminant variety of a saturated ideal

As before, let us denote byU = u1, u2, . . . , ud andX = x1, x2, . . . , xs the set of free and algebraic
variables of our regular chainT . Sincesat(T ) is a strongly equidimensional ideal,4 it is natural to
view it as a parametric system withU as parameters and compare its minimal discriminant variety
with that ofT , also regarded as a parametric system inU .

In this section, we perform this comparison, see the resultsof Proposition 4 and 5. We shall
also show, with Theorem 4 and Theorem 5, that among all regular chains havingsat(T ) as saturated
ideal, thecanonical regular chainassociated withT has a discriminant variety of is⊆-minimal.

We denote byDVT (resp.DVsat(T )) the minimal discriminant variety ofT (resp.sat(T )).

Proposition 4. LetR := [sat(T ), Bini(T )6=]
5 and denote byDVR the minimal discriminant ofR.

ThenDVR = DVT holds. In particular, we have

DVT = VU (
∏

f∈Bini(T )∪Bsep(T )

f) = DVsat(T ) ∪ VU (
∏

f∈Bini(T )

f).

Proof. It is obvious thatVU (
∏

f∈Bini(T ) f) is contained inDVR, since they are not in the image of
ΠU(Z(R)). By Theorem 4, we know thatVU (

∏

f∈Bini(T ) f) ⊆ DVT holds.
Now we consider any pointα /∈ VU (

∏

f∈Bini(T ) f). It is easy to deduce thatZ(sat(T )(α) =

Z(T (α)) holds, which implies that:R is ΠU-continuous atα if and only if T is. That is,DVR \
4More precisely,sat(T ) is an equidimensional ideal of dimensionald such thatU a⊆-maximal algebraically independent
set modulo each associated prime ofsat(T ).
5Here,[sat(T ), Bini(T )6=] is regarded as the parametric algebraic system with equations defined by any basis ofsat(T )

and with inequations defined byBini(T )6=.
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VU (
∏

f∈Bini(T ) f) = DVT \ VU (
∏

f∈Bini(T ) f) holds. This completes the proof of the fact
DVR = DVT . The latter statement holds sinceDVsat(T ) ⊆ DVR holds, which can be checked
by the definition ofΠU-continuity. �

The following proposition gives an upper bound on the set theoretic differenceDVT \DVsat(T ).

Proposition 5. We have

DVT \DVsat(T ) ⊆ VU (
∏

f∈Bini(T )

f) \ O∞(sat(T )).

Proof. SinceDVT = DVsat(T ) ∪ VU (
∏

f∈Bini(T ) f) holds (see Proposition 4), we have

DVT \DVsat(T ) ⊆ VU (
∏

f∈Bini(T )

f) \DVsat(T ),

hence,

DVT \DVsat(T ) ⊆ VU (
∏

f∈Bini(T )

f) \ O∞(sat(T ))

holds, since we haveO∞(sat(T )) ⊆ DVsat(T ) holds. �

The following proposition shows that the difference ofDVT \DVsat(T ) is actually dominated
by the difference of the non-properness locus ofT and that ofsat(T ), respectively denoted by
O∞(T ) andO∞(sat(T )).

Since different regular chains may have the same saturated ideal, a natural question to ask is:
which regular chain(s) will be the best choice in the sense that the set theoretic difference ofDVT

andDVsat(T ) is minimal. This question is answered by Proposition 5 and Theorem 5.
Let us recall the notion of a canonical regular chain [21, 25,4], which is used in Theorem 5.

Definition 8 (canonical regular chain). LetT be a regular chain ofQ[U,X ]. If each polynomialt
of T satisfies:

1. the initial oft involves only the free variables ofT ,
2. for any polynomialf ∈ T with mvar(f) < mvar(t), we havedeg(t,mvar(f)) < mdeg(f),
3. t is primitive overQ, w.r.t. its main variable,

then we say thatT is canonical.

Remark 2. Let T = {t1, . . . , tm} be a regular chain; letdk = mdeg(tk), for k = 1 . . .m. One
constructs a canonical regular chainT ∗ = {t∗1, t∗2, . . . , t∗m} such thatsat(T ) = sat(T ∗) in the
following way:

1. sett∗1 to be the primitive part oft1 w.r.t. y1;
2. fork = 2, . . . ,m, let rk be the iterated resultant

ires(init(tk), {t1, . . . , tk−1}). Writerk = ak init(tk)+
∑k−1

i=1 citi, for some appropriate poly-

nomialsak, c1, . . . , ck−1. Computet as the pseudo-reminder ofaktk + (
∑k−1

i=1 citi)y
dk

k by
{t∗1, . . . , t∗k−1}. Sett∗k to be the primitive part oft w.r.t. yk.

Proposition 6. Let T1 andT2 be two regular chains satisfyingsat(T1) = sat(T2). If Bini(T1) ⊆
Bini(T2) holds, thenBPS(T1) ⊆ BPS(T2) holds.

Proof. The conclusion is a consequence of Proposition 4 and Theorem4. �

Theorem 5. Given a squarefree regular chainsT ofQ[U,X ], there exists a unique canonical regular
chainT ∗ such thatsat(T ) = sat(T ∗) holds. Moreover, we haveBPS(T ∗) ⊆ BPS(T ).
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Proof. By Remark 2, we can always construct a canonical regular chain T ∗ such thatsat(T ) =
sat(T ∗). Moreover, for eacht ∈ T , init(t∗) dividesires(init(t), T ). Therefore,Bini(T

∗) ⊆ Bini(T )
holds, which impliesBPS(T ∗) ⊆ BPS(T ) by Proposition 6.

SupposeT ⋄ is any given canonical regular chain such thatsat(T ⋄) = sat(T ) holds. It is
sufficient to show thatT ∗ = T ⋄ holds to complete the proof.

Note thatT ⋄, T ∗ andT have the same set of free and algebraic variables, denoted respectively
byU andX . GivenI an ideal inQ[U,X ], denote byIext the extension ofI in Q(U)[X ]. Sincepext =
〈1〉 holds for any prime idealp in Q[U,X ] with U algebraically dependent, we have〈T ∗〉ext =

〈T ⋄〉ext = sat(T )ext holds. Therefore, the polynomials inT ∗ (or T ⋄) form a Gröbner basis of
sat(T )ext (w.r.t. the lexicographical ordering onX) since their leading power products are pairwise
coprime. Dividing each polynomial inT ∗ (orT ⋄) by its initial, we obtain the unique reduced Gröbner
basis ofsat(T )ext. This impliesT ∗ = T ⋄. �

5. Conclusion and discussion

As we mentioned in Section 2, there are essentially two stepsin solving a parametric systemS:

(1) describe the parameter values where the continuity does nothold,
(2) describe the (groups of) regions where the continuity is maintained.

The present paper was dedicated to Step(1). As mentioned also previously, in the semi-
algebraic case, Step(1) can be reduced to the algebraic case. Thus, this paper has mainly focused on
Step(1) for parametric algebraic systems.

We have shown that for parametric polynomial triangular systems the notion of theZ-continuity
is equivalent to that ofΠU-continuity. We are currently working on a generalization of this equiv-
alence to a broader context, e.g. when the ideal associated to the parametric system is equidimen-
sional. Thus, we would like to prove the following statement. Given a well-determinate parametric
algebraic systemS such that its associated ideal is equidimensional, for any parametric valueα, the
systemS isZ-continuous atα if and only if S isΠU-continuous atα.

We are also working on generalizing the results of Theorem 1 and Theorem 2. In this case, we
would like to establish the following result. Given a well-determinate parametric algebraic system
S, such that its associated idealI is equidimensional, for any parametric valueα, the systemS is
Z∗-continuous atα if and only if ΠU (restricted atV (I) ) is proper atα.
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[18] A. Montes. A new algorithm for discussing Gröbner bases with parameters.Journal of Symbolic Compu-
tation, 33(2):183 – 208, 2002.
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