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Abstract. Border polynomial and discriminant variety are two impattaotions related to para-
metric polynomial system solving, in particular, for ptidning the parameter values into regions
where the solutions of the system depend continuously opahemeters. In this paper, we study
the relations between those notions in the case of paramwamgular systems. We also investigate
the properties and computation of the non-properness lofctie canonical projection restricted
at a parametric regular chain or at its saturated ideal.

1. Introduction

Many authors have contributed to the study of parametrigraohial systems, and there is a large
collection of references, such as [7, 22, 13, 23, 18, 19, 2,/5,116], to name a few. Various notions
have been formulated for investigating the properties ofipetric polynomial systems from dif-
ferent aspects. Border polynomial [26, 27, 25, 4], disanamit variety [15], discriminant ideal [23],
discriminant set [5] are some of those notions. For (parao)etemi-algebraic systems, methods
based oreylindrical algebraic decompositiofCAD) and its variants [8, 9, 10] are applicable. How-
ever, these methods may compute much more than what is néedhd purpose of solving.

One central question in the study of parametric polynonyisiesns is the dependence of the
solutions on the parameter values. There are different wagspress the fact that the zeros of a
parametric system dependsntinuouslyon the parameters in a neighborhood of a given parameter
value. The notions of a border polynomial and a discriminaniety aim at capturing the parameter
values at which certain dependence is not continuous. figEries us to unify various notions under
a continuity framework, which will help us understand hoffetent notions are related.

A first objective of the present work is to study the non-progss of the canonical projection
restricted afl” or sat(7") whereT is a regular chain with free variables as parameters. Thedre
shows that, within the zero locus of the iterated resultdrthe product of the initials of’, the
number of solutions of" counted with multiplicities, is either infinite or less thére product of
the main degrees df. Theorem 2 strengthens this result and states that théeiterasultant of the
product of the initials off” defines the non-properness locus (of the canonical projeodistricted)
atT’; moreover, Theorem 2 states that any parameter value whichthe non-properness locus at
T but not in that akat(7") yields either no solutions or infinitely many solutions forIn addition,
Theorem 3 supplies a formula for computing the non-propestaeus asat(7).

This work was supported by MITACS, Canada.
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A second objective of the present work is to study the retatioetween the notions of a bor-
der polynomial and a discriminant variety. To this end, wéhgakey properties on these objects,
including results from the PhD thesis in Chinese of the thirthor [25]. We stress the fact that most
of our results assume that the input parametric systemaisgtilar, since triangular decomposition
methods [24, 14, 12, 21, 6] can help reducing the study of gémparametric systems to the tri-
angular case. Theorem 4 implies that the zero locus of theéebqrolynomial ofI" is the minimal
discriminant variety of the quasi-componentiofZ’). Other results, more technical, such as Propo-
sition 6 establish fine relations between the minimal dstrant varieties o¥/ (7") andV (sat(T")).
This leads us to answer the following question: among alll@ghains that have the same saturated
ideal as a given regular chain, the best choice to make tlteebpolynomial set minimal is to choose
a canonical regular chain, see Theorem 5.

With respect to our MACIS 2011 article, the present papeu$es on parametric algebraic
system and enhances our work [17] in two directions. Firstly supply proofs for all the relevant
results from [17]. Secondly, we expand the study of non-progess and devote one whole section
(Section 3) to this subject. Extensions of our work on pataimeemi-algebraic systems will appear
elsewhere and are partially summarized in the concludiotics®e

This paper is organized as follows. In Section 2, we revigtriotions of a border polynomial
and a discriminant variety in a unified framework. In the extof triangular parametric systems,
we show that the two notions essentially coincide, see Tmat. In Section 3, we show several
properties of the non-properness of polynomial maps fordervarieties. In Section 4, we compare
the minimal discriminant variety of a regular chain and tbits saturated ideal. In Section 5, we
discuss the possible extensions of the results of Sectiansl 3 to a more general context.

2. Border polynomial and discriminant variety: two notions of discontinuity

In this paper, a parametric polynomial systéris a system of equations, inequations and/or in-
equalities given by polynomials iQ[U, X| whereU = wuj,us,...,uq are the parameters and
X = x1,x9,...,xs are the unknowns. All variables (parameters and unknowais) Values from
a fixed fieldKK, which is either the fieldC of complex numbers or the fiel of real numbers. In
the former case, we say that the system is algebeaid in the latter case, we say that the system is
semi-algebraic.

We denote byZ(.S) the solution set of, which is a subset dk?**. The canonical projection
I1y to the parameter space restricted/df) is defined as follows:

Iy : Z(S) € K4*s — K4
My (ut, ... ug, @1y, xs) = (u1,...,uq4)

Let us denote by (resp.l) the set of the polynomials of defining its equations (resp.
inequations and strict inequalities). The idéal : (]],., »)*> is called thedeal associated with
S. For a given polynomial set ¢ Q[U, X], we denote by/ (L) the variety ofL in C4+2.

Definition 1. We say thafs is well-determinatéf the setl is anC-maximal algebraically indepen-
dent variable set modulo the ideal associated Witlthat is, the ideaK[U] N (E) : ([[,c; h)™ is
(0) andU is C-maximal with that property.

Note that the notion of “ well-determinate” is more genehalr the notion of “well-behaved”
used in [15], in the sense that it is less restrictivefoindeed, the polynomial sét is not required
to have exactly elements, nor to generate a radical ideaDifV/) [ X].

INo inequalities are present in an algebraic system.
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Example 1. Consider a semi-algebraic system
S={x(x*+ay+b) =2(*+br+a)=0z>0}
with parameters:, b. The ideal generated by the polynomials defining the equnatidS equals
(x) N (x? + ay + b,y* + bz + a).
The polynomial systeffiw(2? + ay + b) = z(y* + bz + a) = 0} with parametersz, b is not
well-determinate, sincga, b} is not a maximal algebraically independent set modulo However,
the ideal associated t6 is Z := (2% + ay + b, y? + bz + a), and{a, b} is a maximal algebraic

independent variable set modulo Therefore,S is a well-determinate parametric semi-algebraic
system.

For a parametric polynomial system, we shall always assinaethe parametric spacés
positive dimensional. Throughout this paper, in order tegkéhe presentation concise, we assume
that S is well-determinate. This assumption can be relaxed andehlts discussed hereafter can
be adapted to more general systems.

We rely on triangular decomposition techniques for stugyarametric polynomial systems.
We refer to [4] for the standard notions and notations om¢nidar decomposition, such as: regular
chain, main variablenivar), main degreerfideg), initial (init), iterated resultantifes).

An STAS is a paifT, H.] whereT is a squarefree regular chain@fU, X] andH is a set of
non-constant polynomials @[U, X | such that each of those is regular modkde(T"), the saturated
ideal of 7', which is (T") : init(7)*. A point of K¢** is a zero of[T, H,] if it is a zero of " not
canceling any of the polynomials éf_..

An STSAS is atripldT’, H., P> ] such thafT’, H.] is an STAS and. is a set of non-constant
polynomials ofQ[U, X] such that each of those is regular modiso(7"). A point of K%+ is a zero
of [T, Hx, P-] ifitis a zero of[T, H.] making each polynomial aP-, strictly positive.

In the algebraic case, we shall decompdgeS) into zero sets of finitely mangquarefree
triangular algebraic systemgéSTAS); in the semi-algebraic case, we shall decompdsg) into
zero sets of finitely mangquarefree triangular semi-algebraic systef83 SAS).

Leta € K9. As mentioned in the introduction, there are different wayexpress the fact that
the zeros of the parametric syst&imdepends continuously on the parameters in a neighborhood of
a in K9, In this paper, we focus on two of them.

Definition 2. We say thatS is Z-continuousat « if there exists a neighborhoad,, of « such that
for any two parameter values;,as € O,, we have# (Z(S(a1)) = # (Z(S(a2)) < oo. We
say that$ is Ily-continuousat « if there exists a neighborhoa@,, of « such that there exists a

finite partition {C1, ..., Ci,} of IIg" (O4) N Z(S) such that the restrictiofily|c, : C; 10, isa
diffeomorphism, for each e {1, ..., k}.

Example 2. Consider the semi-algebraic system
S:={a?+tay’* —z=ar’+1y*  —y=0,2 #y}

with parameter. When the parameter takes value in the open intefl, %), there are two solu-
tions, which are given by:

a+1++v—-3a2—2a+1 —a—14++v—-3a?—-2a+1

- 2(a2 — 1) v 2(a2 — 1) :

and
_—a—14++v-3a>—-2a+1  a+1++v-3a>—-2a+1
2(a2 — 1) v 2(a2 — 1) '

Therefore, the systefiis Z-continuous as well aHy-continuous at any point if—1, %).

2Here parametric space refers to the set of all parameteewéhat does not specify the associate ideal of the systgir) to
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It is obvious thaflly-continuity impliesZ-continuity. Moreover, these two kinds of continuity
are equivalent in many cases, e.g. for parametric STASeseahall show in Section 4. Another
notion of continuity (or discontinuity) imon-propernessThe canonical projectiofly is said to
be non-properat the pointo, if for any compact ses C K¢ containinga, the setHGl(S) is not
compact. In Definition 6, the notion of non-properness isestdor an arbitrary polynomial map.
Non-properness is strongly linked to the followigg-continuity(see Corollary 2).

Definition 3. We sayS is Z*-continuous atv if there exists a neighborhoo@,, of o such that
for any two parameter values;, as € O, the number of solutions, counted with multiplicities, of
S(a) is finite and equals that & (o).

The notion of aborder polynomials based on the/-continuity and was proposed in [26] for
computing the real root classification of a parametric salgébraic system. We reformulate the
definition here, for both parametric algebraic systems amdrpetric semi-algebraic systems.

Definition 4 (Border polynomial). A non-zero squarefree polynomiain Q[U] is called aborder
polynomialof the parametric polynomial systefif the zero set/ (b) of b in K¢ contains all the
points at whichS is notZ-continuous.

Example 3. Consider the polynomial systesh:= {22 + bx — 1} with parameten. RegardingS
as an algebraic system, it is easy to check that the systerwasolutions fon? + 4 # 0 and has
only one solution fob? + 4 = 0; therefore,b? + 4 is a border polynomial. In fact, it is a minimal
border polynomial of5 in the sense that it divides any other border polynomialS.of

Viewing S as a semi-algebraic system, this system always has two o&aians; therefore,
1 is the minimal border polynomial. Indeed, recall that in themi-algebraic case, the field of
Definition4 is R.

The notion of adiscriminant varietyis based on th&ly-continuity and was proposed in [15]
for general parametric algebraic systems. We reformukeedefinition here, for both parametric
algebraic systems and parametric semi-algebraic systems.

Definition 5 (Discriminant variety). An algebraic setV C K? is a discriminant varietyof the
parametric polynomial systesif YV contains all the points at which is notIly-continuous.

Example 4 (Example2 Cont.). Consider again the semi-algebraic system

S:={2*+ay  —z=ar’ +y* —y=0,2#y}
with parametem. It is not hard to show that when either< —1 or a > % holds the system has no
real solutions. Sqd—1,1} is a (indeed, the minimal) discriminant variety $fand (a + 1)(a — $)
is a (again, the minimal) border polynomial 6t

If S is viewed as a parametric algebraic system, then the mindtisafiminant variety would

be{—1, %, 1} and the minimal border polynomial &f would be(a? — 1)(a — %).
3 3

Remark 1. The following facts can be easily deduced from the aboveitiefis.

(i) One can form a discriminant variety of by taking the intersection of all discriminant vari-

eties, which is theninimal discriminant varietpf S.

(ii) If the hypersurface of a polynomial contains the minimigscriminant variety, then this poly-
nomial is a border polynomial.

(iii) In general, there is no “minimal border polynomial”. Ais will typically happen when the
minimal discriminant variety of is not the zero set of a single polynomial. However, we call
a border polynomiatjuasi-minimaif none of its proper factors is a border polynomial.

(iv) In the algebraic case, the set of points where Ehe-continuity ofS does not hold is just the
minimal discriminant variety of; in the semi-algebraic case, the points at which ilie-
continuity ofS does not hold form a semi-algebraic set, which is not algietirageneral.
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For both theZ-continuity and thdIy-continuity, there are essentially two steps in solving the
parametric systems’:
(1) describe the parameter values where the continuity dodsahdt
(2) describe the (groups of) regions where the continuity iswadied.

Step(1) is achieved by computing a border polynomial or a discriminariety, depending on the
continuity notion. Itis not hard to show that the computatida border polynomial or a discriminant
variety of S in the semi-algebraic case can be reduced to the computdtediscriminant variety
in the algebraic case. Based on this observation, we deeat#o8s 3 and 4 to the algebraic case.
For simplicity with Step(2), let us assume that a border polynomial%fs a polynomial
whose hypersurface is also a discriminant variety ofn the algebraic case, the complement of an
algebraic set irC? has only one connected component, thus $2eps rather simple. However, in
the semi-algebraic case, there are usually more than omeectad components in the complement
of an algebraic set iiR? and the description of those connected components is maiteoging.
The notion of a finger polynomial set (see [3]) and an effechieundary (see [4]) are dedicated to
this. Here we use a simple example to illustrate the diffycult

Example 5. Consider the polynomial systeshn= {z*+bx2+c = 0} with parameters, c. Viewing
S as an algebraic system(b? — 4c) is a border polynomial, which defines the minimal discrinmina
variety as well; wher(b? — 4c) # 0, the system i€ -continuous and has simple solutions.
RegardingS as a semi-algebraic system(h*> — 4c) is a border polynomial and defining the
minimal discriminant variety. However, there ateegions (see Figurd) whereS is Z-continuous,
namely:
(I) b* — 4c < 0, above whichs has no real solutions;

(II) b> —4c>0Ac>0Ab> 0, above whichS has no real solutions;

(III) b* —4c>0Ac>0Ab<0,above whichs has4 real solutions;

(IV) ¢ < 0, above whicht has2 real solutions.

One can see that, in addition to the factors of the border patgial, at least one polynomial (here
b) is required to describe all the regions.

3. Non properness locus of a polynomial map

In this section, we shall discuss the properties and cortipataf the non-properness of a polyno-
mial map, in particular, the canonical projection restttat? or sat(7') whereT is a regular chain
with its free variables regarded as parameters. To thiswadgecall a more intuitive concept, the
finiteness (see Definition 7) of a continuous map, which, endhse of polynomial maps between
complex varieties, is equivalent to that of non-properiigss [20]).

3.1. General properties
Throughout this section, I8t andW be two complex varieties; lef : V' — W be a polynomial

map such that we hav&V') = W. Note that for a complex varietly, the Zariski closure of (V)
coincides with the closure ¢f(V/) in the usual topology.The following definition of properness of
a polynomial map is more general than others, see for instdrid. Indeed, following [15], we do

not require that the target variely/ is irreducible.

Definition 6 (Properness of a map).We say thalf is properat a pointa € W, if there exists a
compact neighborhood', (which has the same local dimensioneatis W does) ofa such that
f~Y(C,) is compact inl’. We denote by (f) the set of all points wher¢ is not proper. We call
O (f) thenon-properness locus f.

3By usual topology ofC™, we mean the topology induced by the identification betw&&nand R2", this latter being
equipped with the Euclidean topology.
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FIGURE 1. The4 regions

Notation 1. Consider a parametric polynomial syste$rin Q[U, X| (as defined in Sectio?) and
I its associated ideal. We denote 0, (S) or O (V (1)) the setO.. (ITy |y (1)), Wherelly |y (1) is
the restriction oflly at V (I).

One key geometric property of non-properness is stateceifoffowing lemma, from [11].

Lemma 1 [11]). Given two irreducible varietie¥ andW, let f : V' — W be a polynomial map.

If f(V) =W anddim(V) = dim(W) both hold, therO (f) is either empty or is a hypersurface
in W.

Lemma 1 implies that, for a well-determinate parametrigpommial system, the non-properness
locus of its standard projection on the parameter spac&myala variety, which is either empty or
has a dimension strictly less than that of the parameteespsext, we recall from [15] an algorith-
mic description of the non-properness locus of a generalmpatric polynomial system by means of
Grodbner basis computations.

Lemma 2 ([15]). Given a parametric ideal with parameterd/ = uj,us,...,uq and variables
X = z1,x9,...,2s, letG be a reduced Gibner basis of w.r.t a block ordering<y, x where<x
is a degree reverse lexicographic ordering. kot 1, . .., s, define

=22 = {lc<(9) | g € G, Im . (g) = =" for somem > 0}.
Then we hav® . (I) = Us_, V(E%°).
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For polynomial maps between complex varieties, the dedimiGf non-properness coincides
with the following notion of non-finiteness. In Definition fhe norm is the Euclidean norm.

Definition 7 (Finiteness of a map).We say thatf is not finiteat a pointa: € W, if there exists a
sequence of points

{yi,y2,--¥n, .-} €V,
such that we have

lim |ly,|| =occand lim f(y,)=a.
n— 00 n—oo

From the above characterization of non-properness, wiyekesluce the following facts.
1. If f: V — W is apolynomial map an¥f is the union of two varietie®; andVs, thenO..(f)
is the union 00 (fv;, ) andOs (f]vs)-
2. If o € W satisfiesdim(f~!(a)) > 0, then we havex € O (f).
We shall use Definition 7 as a definition of non-properneskérproof of the results in this section.
Lemma 3, taken from [25], could be known in a more generalrgetbut we have not found a
reference for it. And Corollary is a direct application ofrhma 3 to parametric algebraic systems.

Lemma 3. LetV, W be complex varieties anfl: V' — W be a polynomial map. Assume thétis

of positive dimension and thg(V') = W holds. Therd? \ f(V) is contained inD (f).

Proof. Leta € W\ f(V). Sincedim(W) > 0 andW = f(V) hold, there exists a sequence of
points{3;}i=12,....c iN f(V) such thafim;_, -, 8; = a, sinceW = f(V) holds. For eacls;, let

y; be a point inf~%(3;). Then we obtain a sequence of poigtsc V, fori = 1,2,...,00. We
claim thatlim;_, ., ||y;|| = oo holds. Otherwise, the sequenge € V,: € N) admits a bounded
sub-sequence, from which we can extract a convergent syuesee; sinc®’ is closed, the limjg*

of this latter sub-sequence belongdtoTherefore, we havg* € V and f(y*) = « holds, which
contradicts the assumptiane W \ f(V). Therefore, the clainim;_,~ ||y;|| = oo holds, which
implies thato: € O (f) holds. O

Corollary 1. Consider a parametric algebraic systethin Q[U, X] with no inequations. Then the
non-properness locus ofy contains the parameter values at whighis inconsistent.

The following Lemma from [25] shows that the set of non-proyess is well adapted to the
composition of polynomial maps.

Proposition 1. Consider3 varietiesVi, Vs, V3 and3 polynomial mapgi s : Vi — Vs, fi2 : Vi —
Va, fa,3: Vo — Vg satisfyingfi s = fa30 fi,2, Vo = f1,2(V1) andVs = fo 3(V2). Then we have

O (f1,3) = O (f2,3) U f2,3(0Occ(f1,2))-
Proof. Let us first show tha®..(f1.3) € Owo(f2.3) U f2.3(Ouxo(f1.2) holds. Leta € Ouo(f1.3)-

Then there exists an unbounded point sequéBee—1 2 3.« IN V4 such thalim,_, » f1 3(x;) =

o holds. If there exists a sub-sequencgpf(x;) (: = 1,2, ..., 00) which converges to a poitin
Vs, theny € O (f1,2) holds by definition and we have= f; 3(y) € f2,3(Ox(f1,2)). Otherwise,
the sequenc¢ »(x;) (i = 1,2,...,00) is contained inl; and is unbounded, which implies that
a € Ox(f2,3) holds.

Now we show thatl.(f13) 2 Ou(f2.3) U f2,3(Ox(f1,2)) holds. Leta € Ox(fa2,3) U
f2,3(00(f1,2)). If f{)é(a) NV, = ( holds, then we have € (V3 \ f1,3(V1)), which implies that
a € Ox(f1,3) holds. Now we consider only the caﬁggl(a) NVa # 0.

We first assumer = f5 3(z) for somez in O (f1,2). Then there exists an unbounded point
sequencex;ti—1.23.....0o SUch thatim; .. f1 2(x;) = z holds. Thereforelim;_, f13(xi) = «
holds, which implies that: € O (f1,3) holds.
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Next, we assume that € O (f2.3) \ f2.3(O(f1,2)) holds. Then there exists an unbounded
pointsequence;—1 ... iN f12(V1), sincefi 2 (V1) is dense i, such thalim;_, o f2,3(z;) = «
holds. For eacl;, we can choose ong; in f,; (z;) and obtain an unbounded point sequepg@

V1 such that we havBm,_, o f13(y;) = 1imj;>oo f2,3(z;) = o, which implies thaty € O (f1,3)
holds as well. O

Consider a parametric polynomial € Q[U, z], with U = wy,...,us as parameters. One
can expect that the zero locus of its leading coefficient isqa, (V' (p)), see Lemma 2. In fact,
Proposition 2 is a more general result, taken from [25]. Twtations are needed: for a polynomial
setF C Q[U] we write Vi (F) the zero set of” in C%; in the lemma below, the norm is the modulus
(or absolute value) of a complex number.

Lemma 4. Letp := apz™ + a;2™ ! + --- + a,, be a univariate polynomial ifC[x] andx be the

1

]
root of p in C with the maximum norm. Then, for eagk= 1,...,m, we havd|x|| > <a”‘|‘|j(m)> .
ol
Proof. Letx;,xo,...,X,, be them roots ofp. Then we have
4 Qg
(-1pet = > X Xio X,

{’il,’i2,...,ij}§{1,2,...,m}

Hence, we havg(—1)/ 22 || < ("7)[|x||, which implies the conclusion. O

Proposition 2. Let P be a prime ideal ifQ[U] andp € Q[U, «] be a polynomial with positive degree
in 2. We regardU as parameters. Let := (p, P) be the polynomial ideal iQ[U, =] generated by
P andp. Assume that the leading coefficiéa(p, «) of p w.r.t. x is regular moduloP and assume
thatdim(P) > 0 holds. Then, we hav®@..(V (1)) = Vy (Ie(p, z) + P).

Proof. According to the continuity of the roots of univariate patynials [2], we have

Therefore, we deduce thél, (V (1)) C Vi (le(p, x)) holds, since we havE (I) C V(p). Hence,
with O (V(I)) € Vi (P), we obtain,

Os(V(1)) € Vu(le(p, ) + P).

Next, we show tha® .. (V(I)) 2 O (V(p)) holds. This is trivially true ifVy (Ie(p, z) + P) = 0
holds, thus we assume that we h&yglc(p, z)+ P) # 0. Leta € Viy(le(p, z)+ P). If a specializes
p to the zero polynomial, thedim(TI;" (o)) = 1, which implies that is in O (V(I)). Let us
assume that does not specializg to the zero polynomial. Thus cancels(lc(p, «) but does not
cancel all the other coefficients pfw.r.t. z. SinceVy, (P) is a variety of positive dimension, we can
choose a point sequenée;} (i = 1,2,...,00) in Vi (P) \ Vu(Ie(p, x)) such thatim;_, . z; = a.
For eachz;, we haveHGl(zi) #+ (. Let x; be a point OfHGl(zi) such that its last coordinate
(that is, itsz-coordinate) has maximum norm. Then, according to Lemméa&el sequencéx; }
(t=1,2,...,00) must be unbounded, which implies that O, (V (1)) holds. This completes the
proof. O

3.2. Non-properness locus of parametric algebraic systeniis triangular shape

In this section, we focus on the non-properness locu$pfestricted at the variety of a parametric
regular chain or the variety of the saturated ideal of a megethain. LetR := [T, H] be an STAS
as defined in Section 2. We vielt as a parametric algebraic system with the free variabl&@sax
parameters, thatis,y, ..., u4. The following notations are related to the triangular ctinve of R.
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Notation 2. We denote b, (T'), Bini(T'), Bie([T, H]) the set of the irreducible factors of
H ires(discrim(¢, mvar(t)), T), H ires(init(¢),7"), and H ires(f,T),

teT teT feH
respectively. The sdBs., (1) U B;n:(T) U B ([T, H]) is called theborder polynomial setf R,
denoted byBPS(R).

With Proposition 3 we will establish th8PS(R) is the set of factors of the minimal border
polynomial of R: this will justify the above terminology. The following leme is a basic property of
the iterated resultant of a polynomial w.r.t. a regular nhaee for instance [6].

Lemma 5. LetG € Q[X] be a zero-dimensional regular chain and Jee Q[X] be a polynomial.
Thenires(f, G) = 0 holds if and only if there exists a poiate V(G) satisfyingf(«) = 0.

Recall that the regular chaihis viewed as a parametric algebraic system with its freabas
U = us,...,uq as parameters and with its main variahls= z1, ..., x5 as unknowns.

Notation 3. Denote byN the numbel] ;.- mdeg(f). For each parameter value € C9, denote
by N,, the number of solutions @f(«), counted with multiplicities.

Theorem 1. Letb = [[;cp, (1) [ andleta € C?. Then the following statements hold:

(2) if b(aw) # 0, thenN, = N holds;
(it) if b(a) = 0, thenN, is either infinite or less thaiV.

Proof. We prove this by induction os, the number of polynomials ifi. Whens = 1, the result is
trivially true according to the Fundamental Theorem of Age Assume that, for=1,2,...,s—1,
the conclusion holds. We wrif€ = T, U {t, }, wheret, has the largest main variable, namely
Defineb; := erBm(TQ) /-

Assume first thab(a) # 0 holds. Then, we havie («) # 0 andires(init(ts)(a), T<s(«)) #
0. Thus, by induction hypothesis, the number of solutions efdpecialized regular chaifi. ;(«),
counted with multiplicities, is[[ ;... mdeg(f). And for each solution3 of 7' (), we have
init(¢5)(8) # 0, by Lemma 5. Therefore3 can be extended tmdeg(t,) solutions oft, count-
ing multiplicities. Therefore]N («) = N holds wheneveb(a) # 0 holds.

Assume from now on thdi{«/) = 0 holds. Then, there are two scenarios:

1. eitherb (a)) = 0 holds,

2. orires(init(ts)(a), T<s(a)) = 0 andb; (o) # 0 both hold.
Consider first the case whebg(«) = 0 holds. By induction hypothesis, the number of solutions
of T<s(a) is either infinite, or less thaf[ ., mdeg(f). If the number of solutions of'(«)
is infinite, thenT'(«) is either inconsistent or has infinitely many solutions amel ¢laim holds.
(Consider whether or not finitely many of those solutionscehinit(¢s).) Assume now that the
number of solutions of < («) is less than[[ ., mdeg(f). If one solution of7'c;(a) can be
extended to infinitely many solution of, then the claim is clearly true. Otherwise, each solution of
T-s(a) can be extended to at mastleg(t,) solutions oft,, we haveN,, < N holds and the claim
is true again.

Consider now the second scenario, thatiiss(init(¢s)(a), T<s(«)) = 0 andbi(a) # 0
both hold. There must exist one solutiérof T« («) such thatnit(¢s)(5) = 0. For each of such
solution g, if B specializeg, to a zero polynomial, then the conclusion is clearly trubgolvise,

B specializesnit(t,) to zero and3 can only be extended to at mastleg(t;) — 1 solutions oft,,
which implies thatV,, < N holds. O

Consider again a regular chaihthat we regard as a polynomial system, parametric in its free
variables. Theorem 2 shows that the non-properness loclisiepends essentially on the initials of
T'. The first claim of this appeared in [25], with a different pfo
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Observe that, from Lemma 1, the non-properness I6tugsat(T)) is the zero set of a poly-
nomial (which isl in case this set is empty) i@i®.

Theorem 2. Letb := erBm(T) f.Thenwe havé® . (T) = V7 (b). Letbs,: be a polynomial such
that O (sat(T)) = Viy(bsat). Observe thab,,, dividesb since we hav® . (T) 2 O (sat(T)).
Then for eaclw satisfyingbsbat (o) = 0, the number of solutiond, is either0 or infinite.

Proof. We prove all the claims by induction on the number of polynomials ifi’. Whens = 1,
let T := {t¢}. The first part of the claim is true according to Propositiorh‘Z’bL is a constant, the
second part is clear. H— is not constant, the@— must be the content df in this case, for each
« satisfying 2 B () = 0 the parameter value specializes to the zero polynomial, and again the
conclusion is true.

From now on we assume> 1. We also assume that fér=1,2,...,s — 1, the conclusion
holds. Wherk > 1, write T asT := T« U {tx}, wheret;, has the largest main variable, nameljy

Denote byb; the polynomiaﬂfeBm,(Tq) f. We claim that

holds. Letb.; s, be a polynomial such tha o, (sat(T<s)) = Vi (b<s,sat) holds. By induction

hypothesis, for each point € VU( ) eitherT;(«) is inconsistent or it has infinitely many
solutions; thereforel'(«) is either |nc0n5|stent or has infinitely many solutions. rEfiere, we have

b

Vi (7——) € O (T). 2)
<s,sat
Define
Cd+s N Cd+s—1
Hl---s—l :

(U1, s Ud, T,y Ts)) = (UL, UG, BT, T2y ooy Tg—1)

and
Cd+s—1 N (Cd
(U1, UG, T1, T2y, Ts—1)) = (Uty.. o, Ug)
Then we havély = Iy s_; o II;...,_;. It follows from the results of [1] that we have

sat(T) N Q[U, x1,...,xs—1] = sat(T<s).

My g1 :

Thus, we also have

I..s1(V(sat(T))) = Viv,z, 0,0 1) (588(T<s)), 3
which implies
Vi (bes,sat) = Oso(sat(T<s)) € O (sat(T)) 4)
by applying Proposition 1 to the compositidhy = Iy s—1 o II;...,_; restricted atl (sat(T)).
Therefore, combining Relations (2) and (4) we obtain

bes
VU(b<s) = VU(b<s,sat) U VU(;) - OOO(T)v

b<s,sat N
which completes the proof of Relation (1).
Consider now the compositidiiy = ITy ;1 oIl;...,_1 restricted aV/ (¢, +sat(T<s)). Denote
by O the set
Hys—1 (Oco (Miees—1|v (o tsat(r=.)))) \ VU (bes).
Next we show that both
Vu(b) \ Vu(bes) €O C Vi (b) (5)
and
OUVy(bes) = Oo(T) (6)
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hold. From there, Relations (5) and (6) combined with the faatV; (b<s) C Vi (b) holds by
definition ofb andb. s, we can conclude thaf; (b) = O (T") holds.
We will first show that Relation (5) holds. By Proposition 2 Wave

0= HU73_1 (‘/(U,gcl.,...,rs,l)(init(ts) + Sat(T<3))) \ VU(b<S).

On one hand, clearly, we ha¥ec init(t,) + sat(T<,); therefore, we hav® C Vi (b). On the other
hand, for each point € V7 (b) \ Vi (b<s), we have

‘/(zlsr2~~~~,fs—1)(Sa't(T<S)(a)) = ‘/(Ilsr2n~~~,rs—1)(T<5(a)) # 0.

Indeedy specialized s well to a regular chain, anides(init(¢;), T<s)(«) = 0 holds if and only if

b(cr) = 0 holds. Therefore, eaalcan be lifted to a solution 6f ., ... ,. ) (init(ts) +sat(T<,)),

which impliesVy; (b) \ Vi (b<s) € O. The above two arguments complete the proof of Relation (5).
Now the only thing remaining to show is Equation (6). It fell®from (3) that we have

Iy..s—1(V(ts +sat(T<s))) = Vivzr 2o, w0 ) (586(T<s)), )

sincell;..s—1 (V(ts +sat(T<s))) 2 Ih...s—1(V(sat(T"))) holds. We apply Proposition 1 to the
compositionlly = Iy 1 o II;...,_ restricted atV (¢, + sat(7<;), thanks to Relation (7), we
deduce

Ouo(V (ts +52t(T<s))) = Ooo (Murs—1 v (sat(r-0))) U Ms—1 (Ooo (Mies—1|v (s, rsat(r-.))) -
(8)

On one hand, from Equation (8) and the inclusion
Ooo(HU.,s—1|V(sat(T<3))) C OOO(HU,S—1|V(T<S)) = VU(b<s)a
we deduce that the inclusion
O = O (V(ts +sat(T<s))) \ Vo (bes). 9)
On the other hand, we observe that
V(T)\ V(bes) = V(ts +sat(T<s)) \ V(b<s)

holds, thus we have

O (T)\ Vu(bes) = Occ(V (ts +sat(T<s))) \ Vi (bes)- (20)

Combining Equations (9) and (10), with Relation (1), we d=slthat Equation (6) holds. This com-
pletes the proof of the first claim of the conclusion.

Next, let us prove the second claim of the theorem, To this erdbserve that it is sufficient
to establish the following statement: if far € Vi, (b) the polynomial systerfi’(«) has at least one
but finitely many solutions, then € O (sat(T")) holds.

If a € Viy(bes), the claim is clearly true by induction. Now we assume that(«) # 0
holds. Then there must exists one solutipf 7'« (a) such thats specializednit(t,) to 0 and
specializes, to be a polynomial of degree greater or equal thaWe can find a sequence of points
Qi,...,Qp,...inC%\ Vi (b), such thatim;_, ., a; = « holds. Then, by the continuity of the roots
of a univariate polynomial (see [2]), for eaah, we can find one solution &f-;(«;), sayg;, such
that,lim; .~ 8; = 5. For eactp;, leta, ; be the root of ;(5;) with the maximum norm. We observe,
for eachi, (8;, as,;) is in V(sat(T')) since eachy; is chosen to satisfy(«;) # 0. Also, we deduce
thatlim;_, ||(5;, as,s)|| = oo, according to Lemma 4. Therefokejs in O (sat(T')). This proves
the above statement and thus completes the proof of theetmeor O

The above two results, Theorem 1 and Theorem 2, show thatrégpuidar chain regarded as a
parametric algebraic systerf;-continuity is equivalent to the properness of tlig map. We state
this equivalence formally in the following corollary.
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Corollary 2. Consider a regular chaiff’, regarded as a parametric system with its free variables as
parameters. Letv be any parameter value. Th&his Z*-continuous aty if and only ifITy restricted
atV(T) is proper ata.

An algorithm for computing the non-properness locus of aegainpolynomial map can be
found in [20]. With the next proposition, we show a nicer donstion of O, (sat(7')), which can
be exploited to design new algorithms to computedheg set of a parametric polynomial system.

Recall thatT" is a squarefree regular chain with = w4, ...,uq andX = xy,29,...,2, as
free variables and algebraic variables respectivelyf, letsat(T).

Lemma6. Foreachi = 1--- s, theideall NQI[U, ;] is a principal ideal generated by a polynomial
gi € Q[U, ;] whose content w.r.tz; belongs taQ.

Proof. Let{P; | j =1,2,...,e} be the set of the associated primed oThen for eacly, the set
U is avariable set which is algebraically independent modijlandC-maximal with that property.
Foreach =1,2,...,sandj = 1,2,..., e, we denote by), ; the idealP; N Q[U, z;]. Clearly, the
ideal@; ; is prime andJ is aC-maximal algebraically independent moddlg ;.

Consider two distinct polynomialg g € Q;,;. Since their resultant lies i) ; ; and has degree
zero inz;, this latter polynomial must be null. This:= ged(f, g) has a positive degree w.rat;.
SinceQ);,; is prime, eitherh or f/h must belong tay; ;. From there, it is routine (proceeding by
contradiction) to show tha@; ; is a principal ideal. Moreover, the fact th@j ; is prime implies that
Q;,: Is generated by an irreducible polynomial, gay.

Denote byg; the polynomial];_, g;,:. Note that/ N Q[U, =;] = (;_, Q;,; holds. Therefore,
INnQU,x;] = {g;). And it is obvious thay; is content free. O
Theorem 3. For each: = 1,..., s, let g; be a polynomial generating the principal idealt(7") N
Q[U, z;]. Then, we have

Ooo(sat(T)) = Ui, Vy(init(gs)).
Proof. LetZ = (g1, g2, - - ., gs). We observe tha is a regular chain and Theorem 2 applies. There-
fore, we have
Ouo(Z) = Uiy Vi (imit (g:)).
We define
H'L' : (Cd+5 — Cd+1a HZ((Ua Ty,... ,IS)) = (U7 IZ)
and
Iy : C* = C4 TL (U, 24) = (U).
We havelly =11, oIl;. Foreach =1, ..., s, we have
IL;(V(sat(T))) = Viv,z.)(9i)
and
OOO(Hi+|V(U,mi)(gi) = VU(init(gi).
Therefore, by Proposition 1, for ea¢h- 1, ..., s, we have
Vi (init(g;)) C O (sat(T)),
which implies
U;_; Vu(init(g;)) € Oco(sat(T)).
SinceV (sat(T")) C V(Z) holds, we havé), (sat(1")) C O (Z). Finally, we have
Uiy Vi (init(g:)) € Onc(sat(T) € One(Z) = Uiy Vi (init(g:),
which yields the conclusion. O

We conclude this section with a simple example illustrafiihgorem 2 and Theorem 3.
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Example 6. LetT := {ax + b, by + a} be a regular chain with variable ordering < b < z < y.
We regardl” as a parametric polynomial system withb as parameters. Observe thatt(7") N
Ql[a, b, xz] = (ax + b) holds. Indeed the irreducible polynomiat + b lies insat(T") N Q[a, b, x],
which is a principal ideal, thanks to Lemn@aSimilarlysat(7T") N Q[a, b, y] = (by + a) holds. Now
applying Theoren3, we deduc® . (sat(T")) = V{4, (ab).

This latter fact can also be justified by combining the twinfeing observations.

(1) We haveO(T') = V(,(ab) by applying Theorer. Indeed, we havés;,,;(T') = {a,b}.
Thus, sinceD(sat(7T')) is a hypersurface contained i@ (1"), we haveO (sat(T)) C
Va,b (ab)

(2) O(n o)ne hand, for all parameter valuesatisfying eithen, = 0,6 £ 0 orb = 0, a # 0, we have
Viw,y) (sat(T)()) € V(g (T(a)) = 0 which impliesae € Ou(sat(T)) by Lemma3. One
the other hand, the Zariski closure &, ;) (a) \ Via,5)(0) U Via,p)(b) \ Viapy(a) is Viap)(abd).
Thus, we deduck, ) (ab) C Ou(sat(T)).

4. Z-continuity and IIy-continuity of Parametric Algebraic Triangular
Systems

In this section, we study the minimal discriminant variefyam STAS, regarded as a parametric
system in the free variables of its regular chain. We showfthahis type of parametric systems the
notions of Z-continuity andIly-continuity coincide. Then, we compare the minimal disgniamt
variety of a regular chaifi’ and that of its saturated ideal, both regarded as a paransgiiem in
the free variables of". Finally, we show that among all regular chains having threesaaturated
ideal asT’, the canonical regular chain associated Withas aC-minimal border polynomial set.

4.1. The minimal discriminant variety of a parametric STAS
In this subsection, we focus on the characterization of thémal discriminant variety of an STAS
R := [T, H], as defined in Section 2. We view an STAS as a parametric agedystem with the
free variables of” as parameters.

Proposition 3 and Theorem 4 imply that the notionsZe€ontinuity andlly-continuity coin-
cide for STASes. In particular, Theorem 4 shows that the méhidiscriminant variety o2 can be
characterized bBPS(R) (see Notation 2).

Lemma 7. Letd := erBm(T) f and« be any parameter value satisfyingn) # 0. Then, we
haveires(f,T)(«) = 0 if and only ifires(f(«), T(«)) = 0 holds.

Proof. This follows from Theorem 8 and Proposition 11 in [6]. O

Proposition 3. Letb = erBPS(R) filet N := er:r mdeg(f). Then for each parameter value
aeCh

(a) if b(a) # 0, then# Z(R(a))) = N holds;

(b) if b(a) = 0, then# Z(R(«)) is either infinite or less thaiV.

Proof. Let b; := [[;cp, ) [i bs = Iljen..,(m) [ bf == Iljep.(r) f- Lot € C? be a
parameter value. Assume first tlétv) # 0 holds. Then, by Lemma 7, the following facts hold:

() bi(e) # 0,

(73) foreachi € {1,2,...,s}, we haveres(discrim(¢;(«), z;),T) # 0,
(#i7) ires(h(a), T(a)) # 0.
From Fact(i), we deduce by Theorem 1 thB{«) hasN zeros, counted with multiplicities. Thanks
to Lemma 5, Facti:) implies thatT” does not have multiple zeros. Fg¢ti) means that, for each
polynomialh € H and each zera of T'(«), we haveh(x) # 0. Therefore, Clain{a) holds.

From now on, we assume thigty) = 0 holds. Three cases can occur:
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(i) bi(«) = 0 holds, therl'(«) either has infinitely many solutions or has less tiasolutions,
counted with multiplicities;
(i) b;() # 0 andbs(c) = 0 hold, thenl'(«) is a regular chain with multiple zeros; and it hls
zeros, counted with multiplicities;
(ii)) bi(a) # 0, bs(a) # 0 andby(a) = 0 hold, thenT'(«) hasN simple zeros, and at least one of
them vanishes some polynomialsfih
In any case, Clainfb) holds. This completes the proof. O

The following Theorem appeared in [25]. Here we supply a nevof) which relies directly
on the concept ofly-continuity.

Theorem 4. Letb = [[;cpps(r) /- Then, the hypersurfadé; (b) of C? is the minimal discrimi-
nant variety ofR.

Proof. By Propaosition 3, we know thaf (b = 0) contains the minimal discriminant variety. Next,
we shall show thatR is ITy-continuous at each whereb(a) # 0 holds.

Let (a,¥y1), (@, ¥2),...,(a,yn) be theN simple solutions ofR(«). Then by the Implicit
Function Theorem, there exists a neighborh6adf o in C? such that for each poirtty, y;), there
exist a diffeomorphic functiog; such that

S; ={(U,:(U)|U € Co} C Z(R)

and¢;(«) = y; hold. Moreover, we can choogg, such thatS; N S; = 0 wheni # j. It is obvious
that eachS; is diffeomorphic toC,,. By Proposition 3, it is easy to deduce tthgl(Oa) = uUs;
holds. This shows thak is IIy-continuous atv. (I

Corollary 3. LetR := [T, H] be an STAS, regarded as a parametric system with the freablas
of T' as parameters. Let be any parameter value. Theéhis Z-continuous atv if and only if R is
IIy-continuous atv.

4.2. The minimal discriminant variety of a saturated ideal

As before, let us denote By = uy, us, ..., uqg andX = x1, zo, .. ., x5 the set of free and algebraic
variables of our regular chaifi. Sincesat(T') is a strongly equidimensional idedljt is natural to
view it as a parametric system with as parameters and compare its minimal discriminant variety
with that of 7', also regarded as a parametric systerfiin

In this section, we perform this comparison, see the resdilRroposition 4 and 5. We shall
also show, with Theorem 4 and Theorem 5, that among all regh&ins havingat(7T) as saturated
ideal, thecanonical regular chairassociated witfl" has a discriminant variety of iS-minimal.

We denote byDVr (resp.D V(1)) the minimal discriminant variety of (resp.sat(7)).

Proposition 4. Let R := [sat(T"), Bini(T) ] ® and denote by) V5 the minimal discriminant of2.
ThenDVyk = DVr holds. In particular, we have

DV = Viy( 1T ) =DV UVu( I] 1.
FE€ Bini(T)UBsep(T) FE€Bini(T)
Proof. Itis obvious that/; (I ;. Bins (T) f) is contained inDVp, since they are not in the image of
Ty (Z(R)). By Theorem 4, we know thaty ([ ] ;. Bini(r) ) € DVr holds.
Now we consider any point ¢ Vi ([1;c 5,,,(r) f)- Itis easy to deduce that(sat(T') (o) =
Z(T(«)) holds, which implies thatR is IIy-continuous at if and only if T"is. That is,DVg \

“More preciselysat(T) is an equidimensional ideal of dimensiorésuch thatl/ a C-maximal algebraically independent
set modulo each associated primeaf(T).

SHere, [sat(T'), Bini(T)] is regarded as the parametric algebraic system with eqsatiefined by any basis eft(T")
and with inequations defined b9;,,; (T) .
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VuolIlse p,yry f) = DVr \ Vulle p,,.(r) f) holds. This completes the proof of the fact
DVgr = DVr. The latter statement holds siné&V;,;ry € DVg holds, which can be checked
by the definition ofilIy-continuity. O

The following proposition gives an upper bound on the saittiic differenceDVr\ DV (1)

Proposition 5. We have
DVr \ DVayr) € Vi ( H I\ Ox(sat(T)).
FEBini(T)

Proof. SinceDVr = DVu(1) U VU(HjeB () /) holds (see Proposition 4), we have

ini

DVr \ DViay(ry € Vi ( H )\ DViar(ry,

fE€Bini(T)
hence,
DVe\ DViarry SV [ £)\ Osc(sat(T))
f€Bini(T)
holds, since we hav® (sat(T')) € DV, (1) holds. O

The following proposition shows that the differencel@Vr \ DV, (r) is actually dominated
by the difference of the non-properness locusZoand that ofsat(7), respectively denoted by
Ooo(T) andO (sat(T)).

Since different regular chains may have the same saturd¢ad] ia natural question to ask is:
which regular chain(s) will be the best choice in the senaéttie set theoretic difference ofV
and DV, (1) is minimal. This question is answered by Proposition 5 anecfém 5.

Let us recall the notion of a canonical regular chain [21,85which is used in Theorem 5.

Definition 8 (canonical regular chain). LetT be a regular chain ofQ[U, X]. If each polynomiat
of T satisfies:

1. theinitial oft involves only the free variables @f
2. for any polynomiaf € T with mvar(f) < mvar(¢), we haveleg(t, mvar(f)) < mdeg(f),
3. tis primitive overQ, w.r.t. its main variable,

then we say that’ is canonical

Remark 2. LetT = {ti,...,t,} be a regular chain; letl, = mdeg(tx), fork = 1...m. One
constructs a canonical regular chailfi* = {¢},t5,...,t* } such thatsat(T) = sat(T*) in the
following way:
1. sett] to be the primitive part of; w.r.t. y1;
2. fork =2,...,m, letr; be the iterated resultant
ires(init (¢ ), {t1, ..., tk—1}). Writery = ay, mlt(tk)+2Z 1 ! ¢.t;, for some appropriate poly-
nomialsag, c1,...,cx_1. Computet as the pseudo-reminder af.t; + (Zf;ll citi)y,‘j’“ by
{t1,...,t;_1}. Sett; to be the primitive part of w.r.t. y;.

Proposition 6. Let73 andT» be two regular chains satisfyingut(71) = sat(7%). If Bini(Th) C
Bini(T2) holds, therBPS(T7) € BPS(7%) holds.

Proof. The conclusion is a consequence of Proposition 4 and Theérem O

Theorem 5. Given a squarefree regular chaiffsof Q[U, X], there exists a unique canonical regular
chainT™ such thatat(T") = sat(T*) holds. Moreover, we halBPS(7*) C BPS(T).
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Proof. By Remark 2, we can always construct a canonical regulanchaisuch thatsat(T) =
sat(T™*). Moreover, for each € T, init(t*) dividesires(init(t), T'). Therefore B,; (T*) C Bini(T')
holds, which implieBBPS(7*) C BPS(T") by Proposition 6.

Supposel™ is any given canonical regular chain such tkat(7°) = sat(7") holds. It is
sufficient to show thal™ = 7 holds to complete the proof.

Note thatl™*, T* andT have the same set of free and algebraic variables, dencteeatd/ely
by U andX. GivenlI anideal inQ[U, X], denote byl*** the extension of in Q(U)[X]. Sincepe*t =
(1) holds for any prime ideap in Q[U, X] with U algebraically dependent, we hayg*)“*" =
(T°)*"" = sat(T)°"* holds. Therefore, the polynomials ii* (or 7°°) form a Grobner basis of
sat(T)e** (w.r.t. the lexicographical ordering oX) since their leading power products are pairwise
coprime. Dividing each polynomial il* (or 7°°) by its initial, we obtain the unique reduced Grobner
basis ofsat(7")°*t. This impliesT™* = T°. O

5. Conclusion and discussion

As we mentioned in Section 2, there are essentially two stepslving a parametric systest

(1) describe the parameter values where the continuity dodsahadt
(2) describe the (groups of) regions where the continuity istadied.

The present paper was dedicated to Step As mentioned also previously, in the semi-
algebraic case, Step) can be reduced to the algebraic case. Thus, this paper haly fiegused on
Step(1) for parametric algebraic systems.

We have shown that for parametric polynomial triangulateays the notion of th&-continuity
is equivalent to that ofly-continuity. We are currently working on a generalizatidritos equiv-
alence to a broader context, e.g. when the ideal associatibe pparametric system is equidimen-
sional. Thus, we would like to prove the following stateméaitven a well-determinate parametric
algebraic systens such that its associated ideal is equidimensional, for angrpetric valuey, the
systemsS is Z-continuous aty if and only if S is IIy-continuous atv.

We are also working on generalizing the results of TheoremdlTdeorem 2. In this case, we
would like to establish the following result. Given a weltdrminate parametric algebraic system
S, such that its associated ideals equidimensional, for any parametric valugethe systens is
Z*-continuous atv if and only if Iy (restricted al/ (1) ) is proper atv.
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