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Contributions

1. Devised an algorithm to calculate the Intersection Multiplicity in

(generically) all cases, and also (out of necessity)

2. Produced an algorithm to efficiently calculate the Tangent Cone of a

curve at a point.



For a parabola (degree 2) and a line (degree 1) we expect the Bézout

summand to be two for all possible intersections.

Example



Intersection Multiplicity

The intersection multiplicity is an invariant of algebraic geometry which

weighs points of algebraic varieties according to their importance (measured

by the dimension of their corresponding tangent spaces). It is a useful

invariant whose definition is tailored to satisfy

∑

p∈V(h)

im(p; h) =
∏

h∈h

deg(h),

which implies that the number of solutions of a system of polynomials h is

equal to the product of the total degrees among h.



Related Works.

Fulton’s Algebraic Curves (more to come).

Cheng and Gao in 2014 wrote “Multiplicity Preserving Triangular Set

Decomposition of Two Polynomials” where they give an algorithm which

works only in the two-polynomial case.

Li, Xia, and Zhang in 2010 wrote “Zero Decomposition with Multiplicity of

Zero-Dimensional Polynomial Systems” only works at zero-dimensional

ideals.

Mora (in 1982) gave an algorithm for calculating standard bases using

normal forms which can be used to calculate the intersection multiplicity via

its classical definition.

This method manipulates the ideal generated by the input system while the

others consider its zero set.



Related Works (in CAS)

Magma provides IntersectionNumber and Singular has iMult.

In both cases only the sum of the intersection multiplicities are counted and

in fact some tangent lines may be counted twice, leading to over-counting.



Tangent Cone

The tangent cone of the fish: y2 − x2(x+ 1) at the origin is (x+ y)(x− y).











Why we need tangent cones.

In order to reduce the calculation of the intersection multiplicity in ℓ+ 1

variables to ℓ we (sometimes) need to check tranversality at singular points.

Related Works

Actually, Mora’s original goal was to compute equations of tangent cones.

Recall that he does that through “Gröbner basis like” calculations. — these

methods are not practical.



Definition (Polynomial Ring)

Let Q[x] be the ring of polynomials with rational coefficients and variables

x = x0, . . . , xℓ.

Definition (Variety)

Let f be a finite collection of polynomials {f0, . . . , fs} and V(f0, . . . , fs) be

the set of their common zeros:

V(f) = V(f0, . . . , fs) := {p ∈ Q× · · · ×Q : f0(p) = · · · = fs(p) = 0}.

Definition (Ideal Brackets)

Let 〈 f 〉 be the ideal defined by f given by

〈 f 〉 :=
{

∑

f∈f

cff : cf ∈ Q[x]
}

.



(This technical definition is really only necessary for proofs because there is

a constructive definition given by Fulton.)

Definition (Bézout’s Intersection Multiplicity)

The intersection multiplicity of f ⊆ Q[x] at p ∈ V(f ) is

im(p; f) := dim
vec

(

OAℓ+1(Q), p/〈 f 〉
)

,

where

OAℓ+1(Q), p :=

{

f

g
: f, g ∈ R[x], g(p) 6= 0

}

= Q[[x]]/〈 f 〉.



Theorem (Fulton’s Properties)

(In practice, only for planar case and rational points.)

Let two plane curves be given by h0, h1 ∈ Q[x, y] and let p ∈ A2
(

Q
)

.

(2-1) im(p; h0, h1) = ∞ ⇐⇒ p ∈ V(gcd(h0, h1)),

(2-2) im(p; h0, h1) = 0 ⇐⇒ p /∈ V(h0) ∩V(h1),

(2-3) im(p; h0, h1) is invariant to affine change of coordinates on A2(Q),

(2-4) im(p; h0, h1) = im(p; h1, h0),

(2-5) πp(h0) ⋔ πp(h1) =⇒ im(p; h0, h1) = mp(h0) ·mp(h1),

(2-6) ∀ g ∈ Q[x]; im(p; h0, h1) = im(p; h0, h1g)− im(p; h0, g), and

(2-7) ∀ g ∈ Q[x]; im(p; h0, h1) = im(p; h0, h1 + h0g).



What we did.

1. Extended Fulton’s algorithm to work at points in the rational closure.

2. Extended Fulton’s properties to arbitrary dimension.



D5 Principle

Loosely speaking, any algorithm that works over a field can be made to

work over a product of fields defined by special zero-dimensional triangular

sets called regular chains.

Definition (Triangularize)

The triangularization of h ⊆ Q[x] is a mapping from polynomial sets of Q[x]

into sets of regular chains — this process is called triangular decomposition.

△ : Q[x] → P(Treg(Q[x]))

h 7→ {f△, 0, . . . , f△, r} : V(h) = W(f△, 0) ∪ · · · ∪W(f△, r)

where r ∈ N and

W(f△) := V(f△)−V
(
∏

lcoeffmvar(f)(f) : f ∈ f△
)

(i.e. removing points where leading terms vanish).



Example

Let h =
{

x2 + y + z − 1, x+ y2 + z − 1, x+ y + z2 − 1
}

⊆ Q[x]. A

triangular decomposition of 〈h 〉 is given by

△(h) =
{























x− z

y − z

z2 + 2z − 1

,























x

y

z − 1

,























x

y − 1

z

,























x− 1

y

z

}

.



A description of h is a set of tuples

D(h) = {(m0, f△, 0), . . . , (mr, f△, r)}

where each (mi, f△, i) satisfies ∀ p ∈ V(f△, i); im(p; h) = mi and

△(h) = {f△, 0, . . . , f△, r}.

We proved that there is a triangular decomposition of h such that the

regular chains f△, 0 through f△, r partition the intersection multiplicities as

above.

Those regular chains need not to be irreducible and the whole process does

not require to use polynomial factorization.



Example



Example

The circle and ellipse given by

h =

{

(x− 1)2 + y2 − 1,

(

4x

5
− 1

)2

+ 2y2 − 1

}

⊆ Q[x, y]

corresponding to the collection of regular chains

f△, 1 =











x

y
, f△, 2 =











17x− 30

289y2 − 120
,

has description D(h) = {(2, f△, 1), (1, f△, 2)}.



> with(RegularChains):

> with(RegularChains:-AlgebraicGeometryTools):

> h :=
[ (

x2 + y2
)2

+ 3x2y − y3,
(

x2 + y2
)3 − 4x2y2

]

:

> plots[implicitplot](h, x = −2..2, y = −2..2);

> R := PolynomialRing( [x, y], 101 ):

> TriangularizeWithMultiplicity(h, R ):
[

[

1,
{

x− 1
y + 14

]

,
[

1,
{

x+ 1
y + 14

]

,
[

1,
{

x− 47
y − 14

]

,
[

1,
{

x+ 47
y − 14

]

,
[

14,
{

x
y

]

]



Experimentation

We investigate random homogeneous bivariate polynomials from Q[x, y] of

the form

c0x
a0yb0 + c0x

a1yb1 + c0x
a2yb2 + c0x

a3yb3 + xa4yb4

where a0 + b0, . . . , a4 + b4 = d for varying d ∈ N>1 and c0, . . . , c4 ∈ Q



In Q101[x, y]



In Q962 592 769[x, y]



In Q[x, y]



What we did.

1. Extended Fulton’s algorithm to work at points in the rational closure.

2. Extended Fulton’s properties to arbitrary dimension.



Theorem (Extended Fulton’s Properties — New stuff!)

Let h ⊆ Q[x] of ℓ+ 1 polynomials so that 〈h 〉 is zero dimensional,

p := (p0, . . . , pℓ) ∈ Aℓ+1
(

F
)

, and let h = {hℓ} ∪ h ↓.

(n-1) im(p; h) ∈ N,

(n-2) im(p; h) = 0 ⇐⇒ p 6∈ V(h),

(n-3) im(p; h) is invariant to affine change of coordinates on Aℓ+1(Q),

(n-4) im(p; h) = im(p; σ(h)) for any permutation σ(h) of the elements of h,

(n-5) im(p; (x0 − p0)
m0 , . . . , (xℓ − pℓ)

mℓ) = m0 · · ·mℓ,

(n-6) provided h ↓, gh is a regular sequence (and thus dim 〈h ↓, gh 〉 = 0)

im(p; h ↓, gh) = im(p; h ↓, g) + im(p; h ↓, h),

(n-7) ∀ g ∈ 〈h ↓ 〉; im(p; h ↓, h) = im(p; h ↓, h+ g).



Caveat

The Extended Fulton’s Properties, unlike the planar case, do not

immediately yield an algorithm.

Because, in general, an arbitrary Q[x] is not a principal ideal domain, we are

not guaranteed (unlike in the bivariate case) a “Euclid like” step from (n-6)

and (n-7).

In order to reduce the bivariate case an additional criterion for reducing the

ℓ+ 1-variate case to the ℓ-variate one is required.



Proposition

Let h0, . . . , hℓ−1, hℓ ∈ Q[x] such that p ∈ Aℓ+1(Q) is an isolated point of

V(h) and let h ↓ := {h0, . . . , hℓ−1}. Suppose hℓ at p is non-singular and

transverse to the tangent cone of V(h ↓). Finally, let π be the tangent

hyperplane to V(hℓ) at p. In this setting, the intersection multiplicities of

{h ↓, hℓ} and {h0, . . . , hℓ−1, π} at p coincide:

π ⋔ κp(h
↓) =⇒ imℓ+1( p; h

↓, hℓ) = imℓ+1( p; h
↓, π).

Caveat

Tangent Cones are sometimes prohibitively expensive to compute.



Tangent Cone

One can compute a graded Gröbner basis G of H (the homogenization of h)

such that the dehomogenization of G is 〈 g0, . . . , gs 〉 and

κ0(h) = 〈hc0(g0; min), . . . , hc0(gs; min) 〉.

However Gröbner Basis can be expensive (in our case, prohibitively so).



Theorem (Cox, Little, O’Shea)

Let h ⊆ Q[x]. A line L through p ∈ V(h) lies in the tangent cone κp(h) if

and only if there is a sequence of points qk from V(h)− {p} converging to p

where the secant lines Lk containing p and qk become L in the limit.



L ∈ κp(h) ⇐⇒

∃{qk : k ∈ N} ⊆ V(h)− {p} : lim
k→∞

qk = p and lim
k→∞

Lk = L.



We calculate a vector of the instantaneous slope
(

∂x

∂x′
: x ∈ x

)

for fixed x′ ∈ x which reduces transversality checking to a dot product

(modulo a regular chain), once the slopes have been calculated.



Proposition (Tangent Cone)

Let x, y, and m be sets of variables ordered

mℓ ≻ · · · ≻ m0 ≻ xℓ ≻ · · · ≻ x1 ≻ yℓ ≻ · · · ≻ y0 ≻ x0.

The tangent cone of {h0, . . . , hℓ−1} at p ∈ V(h0, . . . , hℓ−1) can be

recovered by triangularizing (the slope system):

M =



















































(xℓ − yℓ)m0 = x0 − y0
...

(xℓ − yℓ)mℓ = xℓ − yℓ

h0 ∩ · · · ∩ hℓ−1

y = f△

.

using Puiseux-series expansions to account for the fact each xℓ − yℓ = 0.



Example

Consider secants along the the curve

h = {x2 + y2 + z2 − 1, x2 − y2 − z} ⊆ Q[x, y, z]

limiting to

V
(

x+ y, 2y2 − 1, z
)

.

(Note there are algebraic points encoded here!)









We solve M and get the slopes






















m1 − 1

m2

m3

∪























2x2 − 1

2y2 − 1

z

corresponding to the equations
{

z ± 4x√
2
+ 2, y − x± 2√

2

}

.

Notice the slope for four points are encoded here. In particular the points
{(

1

±
√
2
,

1

±
√
2
, 0

)

,

(

− 1

±
√
2
,

1

∓
√
2
, 0

)}

have slope ( 1, 0, 0 ).



Example

Consider secants along the curve

h = {x2 + y2 + z2 − 1, x2 − y2 − z(z − 1)} ⊆ Q[x, y, z]

limiting to (0, 0, 1).









We solve M and get the slopes






















m1 +m2

2m2
2 − 6m2 + 3

m3

∪























x

y

z − 1

corresponding to the equations

{

z − 1, y2 − 3x2
}

.

Notice the values of the slopes here are in the algebraic closure of the

coefficient ring. In particular, they are
{(

3
2 +

√
6, 3

2 +
√
6, 0

)

,
(

3
2 −

√
6, 3

2 −
√
6, 0

)}

.



Cylindrification

It is simple to devise a degenerate system which does not satisfy

transversality. Take, for instance Ojika2:

{

x2 + y + z − 1, x+ y2 + z − 1, x+ y + z2 − 1
}

⊆ Q[x, y, z]

at any of the coordinates (1, 0, 0), (0, 1, 0), or (0, 0, 1).

Notice though, that if one uses x2 + y + z − 1 to eliminate z we obtain:

h′
0 = x+ y2 − x2 − y and h′

1 = x− y + x4 + 2x2y − 2x2 + y2

independent of z. Consequently, the curve given by V(h′
0, h

′
1) does not

depend on z as well — in other words, it is a cylinder with base V(h′
0, h

′
1).



Ojika Cylindrified Ojika



> with(RegularChains):

> with(RegularChains:-AlgebraicGeometryTools):

> h :=
[

x2 + y + z − 1, x+ y2 + z − 1, x+ y + z2 − 1
]

:

> R := PolynomialRing( [x, y, z], 101 ):

> TriangularizeWithMultiplicity(h, R ):










[

1,

{ x− z

y − z

z2 + 2z − 1

]

,

[

2,

{ x

y

z − 1

]

,

[

1,

{ x

y − 1

z

]

,

[

2,

{ x− 1

y

z

]













Experimentation

The Jacobean trick

There is a (very good) trick which can be applied:

Jac(h,x) at p is invertible ⇐⇒ im(p; h) = 1.

We report timings using both optimized and unoptimized versions as the

intersection multiplicity is typically one.



h = ojika2 p = 962 592 769.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

2 1 2 0.796 1.460 1.360

2 1 2 0.408 0.636 1.300

1 1 1 0.208 0.264 0.024

1 1 1 0.212 0.348 0.028

2 1 2 0.792 1.180 1.264

8 2.416 3.888 3.976



h = eco5 p = 962 592 769.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 3 3 5.728 8.730 0.928

1 3 3 5.929 8.910 0.956

1 1 1 1.464 2.710 0.352

1 1 1 1.996 2.970 0.352

8 15.117 23.321 2.588



h = Arnborg-Lazard-rev p = 962 592 769.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 6 6 25.310 26.000 0.296

1 6 6 27.302 28.100 0.372

1 6 6 16.861 17.700 0.332

1 2 2 7.876 8.480 0.308

20 77.349 80.321 1.308



Summary of Work (Last Slide)

1. Extended Fulton’s algorithm to work about

1.1 an irreducible zero-dimensional regular chain (no splitting), and

1.2 arbitrary zero-dimensional regular chains (with splitting)

thus generalizing the planar algorithm to the algebraic closure.

2. Extended Fulton’s seven properties from two variables to ℓ+ 1 variables

and provided an algorithmic criterion which allows for recursing the

calculation of the intersection multiplicity in ℓ+ 1 variables to ℓ

variables.

3. Gave a standard-basis free method (i.e. practically efficient method) for

calculating tangent cones at points on curves. This, in itself, is an

important contribution as there was no efficient method for calculating

tangent cones before.


