Plain Polynomial Arithmetic on GPU

Sardar Anisul Haque, Marc Moreno Maza

University of Western Ontario, Canada

E-mail: shaque4@uwo.ca, moreno@csd.uwo.ca

Abstract. As for serial code on CPUs, parallel code on GPUs for dense polynomial arithmetic
relies on a combination of asymptotically fast and plain algorithms. Those are employed for
data of large and small size, respectively. Parallelizing both types of algorithms is required in
order to achieve peak performances. In this paper, we show that the plain dense polynomial
multiplication can be efficiently parallelized on GPUs. Remarkably, it outperforms (highly
optimized) FFT-based multiplication up to degree 2'? while on CPU the same threshold is
usually at 2°. We also report on a GPU implementation of the Euclidean Algorithm which is
both work-efficient and runs in linear time for input polynomials up to degree 2'8, thus showing
the performance of the GCD algorithm based on systolic arrays.

1. Introduction
Until the advent of multicore architectures, algorithms subject to effective implementation
on personal computers were often designed with algebraic complezxity as the main complexity
measure and with sequential running time as the main performance counter [15, 16, 17, 4, 10].
Nevertheless, during the past 40 years, the increasing gap between memory access time and CPU
cycle time, in favor of the latter, brought another important and practical efficiency measure:
cache complexity [14, 8]. In addition, with parallel processing becoming available on every
desktop or laptop, the work and span of an algorithm expressed in the fork-join multithreaded
model [9, 4] have become the natural quantities to compute in order to estimate parallelism.

These complexity measures (algebraic complexity, cache complexity, parallelism) are defined
for computation models that largely simplify reality. On multicore architectures, several
phenomena (memory wall, true/false sharing, scheduling costs, etc.) limit the performances
of applications which, theoretically, have a lot of opportunities for concurrent execution. One
infamous example are Fast Fourier Transforms (FFTs). For this type of calculation, not only the
memory access pattern, but also the for-loop parallelization overheads, restrict linear speedup
to input vectors of very large sizes, say 2%, according to [21, 22]. In contrast, serial FFT
code provide high-performance even for input vectors of relatively small sizes, say 2'°. This is
the case with the standard libraries FFTW [7], NTL [25] and Spiral [24]. As a consequence,
higher level algorithms, that heavily rely on FFTs in their serial implementation, require
additional supporting routines for small/average size problems, when targeting implementation
on multicore architectures. Examples of such higher level algorithms are fast evaluation and fast
interpolation based on sub-product tree techniques, see Chapter 10 in [10].

Graphics processing units (GPUs) offer a higher level of concurrent memory access than
multicore architectures. Moreover, thread scheduling is done by the hardware, which reduces
for-loop parallelization overheads significantly. Despite of these attractive features, and as

reported in [19], highly optimized FFT implementation on GPUs are not sufficient to support
the parallelization of higher level algorithms, such as dense univariate polynomial arithmetic. To
give a figure, for vectors of size 2'® and 220, speedup factors (w.r.t. a C serial implementation)
are 9 and 37 respectively on a NVIDIA Geforce GTX 285 running CUDA 2.2, as reported in [19].

Consider now the fundamental application of polynomial arithmetic: solving systems of non-
linear equations. Many polynomial systems encountered in practice have finitely many solutions.
Moreover, those systems that can be solved symbolically by computer algebra software, such as
MAPLE or MATHEMATICA, have rarely more than 10,000 solutions, see for instance [6]. For this
reason, the degrees of univariate polynomials that arise in practice rarely exceed 10,000.

It follows from the above discussion that implementation a polynomial system solver on
multicores or GPUs require efficient parallel polynomial arithmetic in relative low degrees, that
is, within degree ranges where FFT-based methods do not apply. The study conducted in [3]
show that univariate arithmetic based on parallel versions of the Algorithm of Karatsuba and its
variants are not effective either in the desired degree ranges. This leads us to consider quadratic
(or plain) algorithms for dense univariate multiplication, division and GCD computation. That
is, algorithms which run within O(d?) coefficient operations for polynomials of degree less than
d, meanwhile FFT-based algorithms amount to O(dlog(d)log(log(d))) coefficient operations, see
the landmark textbook [10] for details.

In the present paper, we show that a GPU implementation (with CUDA) of the
plain univariate multiplication can outperform for fairly large degrees an optimized GPU
implementation (with CUDA also) of an FFT-based univariate multiplication. We also report on
a GPU implementation of the plain univariate division. Section 3 and 4 are dedicated to these
multiplication and division CUDA codes, respectively: both contain implementation details,
theoretical analysis and experimental results.

We focus on dense polynomial arithmetic over finite fields, since the so-called modular
methods, such as that presented in [6], allows us to reduce the solving of polynomial systems with
rational number coefficients to the solving of polynomial systems over finite fields. To this end,
we have realized a preliminary implementation GPU-supported solver for polynomial systems
over finite fields. In [19], we report experimental results showing speedup factors of 7,5 (w.r.t. a
highly optimized serial implementation in C) for bivariate systems with 14,400 solutions. This
limited speedup is due to the fact that one essential operation of this solver is performed on the
host (and thus is not parallelized yet): univariate polynomial GCD computation.

For this reason, in a third part of the present paper, we turn our attention to one of the most
challenging parallelization problem in polynomial arithmetic: the Euclidean Algorithm. Indeed,
there is no parallel version of this algorithm which would be both sublinear and work-efficient’.
The best parallel version of the Euclidean Algorithm which is work-efficient, is that for systolic
arrays, a model of computation formalized by H. T. Kung and C. E. Leiserson [18], for which the
span is linear [2]. Multiprocessors based on systolic arrays are not so common (as they are quite
specialized to certain operations and difficult to build). However, the recent development of
hardware acceleration technologies (GPUs, field-programmable gate arrays, etc.) has revitalized
researchers interest in systolic algorithms and more generally in optimizing the use of computer
resources for low-level algorithms [1, 11, 13].

We report on a GPU implementation of the Euclidean Algorithm which is work-efficient and
which runs in linear time for input polynomials up to degree 2'®. As mentioned above, such
sizes are sufficient for many applications. Moreover, our GPU code outperforms algorithms for
polynomial GCD computations that are asymptotically faster (such as the Half-GCD algorithm,
see [26]) but available only as serial CPU code, due to the same parallelization challenges as the
Euclidean Algorithm.

! Here work-efficient refers to a parallel algorithm in the PRAM model for which the maximum number of
processors in use times the span is in the same order as the work of the best serial counterpart algorithm.

2. A manycore machine model

We describe the computation model that we use for analyzing the algorithms that we implement
on GPUs. We follow the CUDA execution model with a few natural simplifications. First, we
assume that the number of streaming multiprocessors is unlimited. Moreover, we assume that
the global memory is unlimited and support concurrent reads and concurrent writes. However,
the shared memory and the number of registers of each streaming multiprocessor remain finite
and both regarded as small. In addition, moving data between streaming multiprocessors and
the global memory remains a penalty, similarly to what happens on a GPU.

On this ideal machine, programs are similar to CUDA programs. They interleave serial
code consisting of C-like code and kernel calls consisting of SIMD code (single instruction
multiple data) organized into thread blocks. However, all thread blocks of a given kernel start
simultaneously and run concurrently. In addition, data transfer between global memory and
shared memories occur only at the beginning or at the end of the execution of a thread block.

This latter two restrictions make algorithms analysis simpler. Given, an algorithm and an
input data of size n, running our ideal manycore machine, we are interested in the work (that
is, the total number of arithmetic operations performed by the streaming multiprocessors) the
span (that is, the running time of the program ignoring the serial code and host-device data
transfer) and the number of kernel calls. For these three measures, the lower the better.

3. Plain Multiplication on the GPU
Consider two univariate polynomials over a finite field

a=apx" +---+ajx+ag and b=>b,, "+ - +bix+ by, with n>m. (1)

We start from the so-called long multiplication?, which computes the product a x b in the way
we all learned integer multiplication in primary school. To parallelize it we proceed as follows.

e Multiplication phase: The set of terms {aibjx”j | 0<i<mn0<j < m} formsa
parallelogram that we decompose into small rectangles and triangles such that each of
them can be computed by a thread block. Within a thread block, a thread computes all
the terms of a given degree range and adds them up into a vector, where this vector is
associated to the thread block.

e Addition phase: All the thread block vectors are added together by means of a parallel
reduction.

Note that in this process, every coefficient of one polynomial is multiplied with every
coefficient of the other polynomial. These products of coefficients are independent of each
other and, thus, can be done in parallel essentially in O(1) time (if we have sufficiently many
processors and enough space to store mn coefficients). These coefficient products can be added
in log(m) parallel steps. So the overall complexity of this parallel algorithm is dominated by
that of the addition phase. Though the algorithm that we just described seems not realistic due
to the limited computing resources of today’s computers, still we can adapt its principle in such
a way that we make the best use of streaming multiprocessors of GPUs.

3.1. Implementation

In order to assign each thread block with the products aibjx”j that this thread block performs,
we view aibjx”j as the point of coordinates (7, j) in an orthogonal Cartesian coordinate system,
where the quadrant of positive coordinates is the “south-west region”. Therefore, on Figure 1
the origin of this coordinate system is the right-top-most corner of the parallelogram, where this
parallelogram is defined as the points of coordinates (i, j) satisfying 0 < i <n and 0 < j <m.

2 http://en.wikipedia.org/wiki/Multiplication_algorithm#Long_multiplication

0000
0000

QO 000 C

00000

Figure 1. Dividing the work of coefficient multiplication among threadblocks.

Let r,t be two positive integers greater than 1. For simplicity let us assume that m > r and
n >t hold. Moreover, we assume that r divides m + 1 and t divides n + 1.
The mapping between the parallelogram and the thread blocks is precisely defined as follows.

(i) We partition the parallelogram horizontally into (m + 1)/r parallelograms of height r
(and basis n + 1) that we call long parallelograms. Moreover, we attach to the ¢-th long
parallelogram a vector V; of length n + r, that we call the ¢-th long vector.

(ii) We partition each long parallelogram vertically into (n+1)/t equally spaced small trapezoids.
More precisely, within a long parallelogram, the left-most and right-most trapezoids are
triangles while all other trapezoids are rectangles. Observe that for each small trapezoid,
all points with the same i-coordinate, say k, correspond to terms of degree k.

On Figure 1, we have n = m = 11. The original parallelogram is horizontally decomposed into
r = 3 long parallelograms and each of those is decomposed into ¢ = 4 rectangles/triangles.

Each thread block is in charge of computing all products within a given small trapezoid
(rectangle or triangle). Let us assume for simplicity that ¢ is a multiple of the number T' of
threads within a thread block. Define s :=t/T.

Within a thread block of the ¢-th long parallelogram, a thread is in charge of computing
all terms of degrees k,k + 1,...,k + s — 1, for some k, and adding the terms of degree
de{kk+1,....,k+s—1} in V;[d].

We now proceed with the addition phase. The vectors Vpy, V1, ..., V,,, with w = (m+1)/r, are
added such that terms of the same degree are added together. This is done through a parallel
reduction in ©(log(w)) parallel steps.

3.2. Parallelism

We analyze the work and span of this algorithm. We start with the multiplication phase. We have
mtlntl thread blocks. Each thread block has a work of ¢(2r — 1) and a span of s(2r —1). Thus
the work is ©(n?) while the parallelism is ©(n?/sr). For our GPU card, we choose 7 =t = 29
and s € {4,6}. Next, we proceed with the addition phase. The work is essentially is 2nw, with

w = (m + 1)/r and the span is in ©(log(w)). Thus, the overall parallelism is O(n?/log(m)).

3.3. Experimental Results

We have experimented the CUDA implementation of the plain univariate multiplication
described in the previous section. We use both balanced and unbalanced pairs of polynomials, see
Table 1 and 2 respectively. By balanced, following [21], we mean a pair of univariate polynomials
of equal degree, which is a favorable case for optimized FFT-based polynomial multiplication.

degree | GPU Plain multiplication | GPU FFT-based multiplication
210 0.00049 0.0044136
211 0.0009 0.004642912
212 0.0032 0.00543696
213 0.01 0.00543696
214 0.045 0.00709072

Table 1. Comparison between plain and FFT-based polynomial multiplications for balanced
pairs (n = m) on CUDA.

n | m | GPU Plain multiplication
210 1 28 0.00041
21T | 28 0.0005
21T 1 210 0.00073
212 1 98 0.00057
212 1 210 0.0011
213 1 28 0.00074
213 1 210 0.0018
213 1 212 0.0061
214 | 28 0.0010
214 1 210 0.0031
o4 1 ol2 0.011
214 1 913 0.02

Table 2. Computation time for plain multiplication on CUDA for unbalance pairs (n # m).

In Table 1, we compare the computation time of our CUDA based implementation of parallel
plain multiplication with the highly optimized FFT-based multiplication in CUDA reported
in [19]. Our implementation outperforms that of FFT-based multiplication until the degree 2'2.

FFT-based multiplication may not perform well for unbalanced pairs, see [21] for details. In
plain multiplication, this is not true. Computation times for plain multiplication on CUDA of
unbalanced pairs are reported in Table 2.

4. Plain Division on the GPU
Consider again two univariate polynomials over a finite field

a=apz" 4+ ---+ax+ay and b=bypz™ +---+bx+by, with n>m. (2)

The only opportunity for concurrent execution is within each division step. With the above
notations, the first division step computes

a «—a-— a—n:ﬂnfmb, (3)
bm
which can be viewed as a Gaussian elimination step. Assuming that this is done by several thread
blocks, the next division step requires to broadcast the leading coefficient of the intermediate
remainder a’ to all thread blocks, which is a severe performance bottleneck.

Our solution consists of letting each thread block compute the leading coefficients of s
consecutive intermediate remainders, for a well chosen integer s. In this way, each thread block
computes a coefficient segment (of size 2s) of s consecutive intermediate remainders without
synchronization. Though this increases the total work by (at most) a % factor, this improves
performances significantly.

Two Division Steps

00000000 OOOO0O0000 O
0000 000000 0000000000

° 00000000 O OO0 OO0 O
000 0000 0000000000000
ThreadBlock 0 ThreadBlock 1
000000 00000000
323338333333 6 6000000
° 00 000000 ° O 0000000
00000000000 o OOOOOO(&O

Figure 2. Each threadblock will work with a™ (resp. b") along with a segment of coefficients
of length 2s.

4.1. Implementation

Recall that s is a fixed positive integer. Let a™ (resp. b1) be the sequence of the s most significant
terms (that is, non-zero terms of largest degrees) of both polynomials @ and b. Each thread block
loads a™ and b" in shared memory such that it can compute s consecutive coefficients of the
quotient in the division of a by b, without synchronizing with other thread blocks.

The other coefficients of the polynomial a are divided into (n — s)/(2s) segments (of
consecutive, zero or non-zero, coefficients). For simplicity, let assume that 2s divides n — s.

Each thread block reads a segment of 2s coefficients of a and is responsible for updating these
coefficients after each division step during the execution of the thread block. As each thread
block can perform s division steps independently, it will also require a segment of 3s coefficients
from the polynomial b. This is, indeed, 3s (and not 2s) which is required from b since after
division step the degree of the current remainder, namely a, reduces at least by 1. Overall, each
thread block loads 7s coefficients in the shared memory.

With today’s GPU cards, the maximum number of threads in a thread block is roughly one
of order of magnitude away from the number of machine words that can be stored in shared
memory. So we keep s in the order of the maximum number of threads in a thread block
supported by a typical GPU card. As a consequence, each thread is responsible for updating
O(1) number of coefficients of a.

On Figure 2, s = 4. ThreadBlock0 is responsible for updating the a™ part along with other 8
consecutive coefficients. In the same way, ThreadBlock1 is responsible for updating the a™ part
along with other 8 consecutive coefficients.

4.2. Parallelism
In the worst case, we need n —m + 1 division steps. Since one kernel call will reduce the degree
of the current remainder at least by s, we have (n —m + 1)/s kernel calls at most. During one

kernel call, one thread is doing O(s) operations. So the span of the whole procedure can be
bounded by O(n—m) or O(n). The work is O(m(n—m)) or O(nm). So the parallelism is O(m).

4.3. Ezxperimental Results

We have compared the running time of our CUDA implementation of the plain division with the
serial C implementation of the fast division (see Chapter 9 in [10]) from the NTL [25] library.
The latter algorithm is based on FFT techniques and its work fits within O(dlog(d)log(log(d)))
coefficient operations, with d = max(m,n). The input polynomials used in our experimentation
are dense random (univariate) polynomials with coefficients in a finite field whose characteristic

0.06

cupA o
NTL [

0.05

0.04

0.03

0.02

Computing time for Division with prime: 469762049

0.01

[0}

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Degrees of polynomials with Large Gap

Figure 3. Comparison between parallel plain division on CUDA and fast division in NTL for
univariate polynomials with large degree gap.

is a machine word prime. We use the following primes: 7, 9001 and 469762049. Our GPU code
does not depend on the prime while NTL uses different algorithms depending on the prime. For
a given degree pattern, the NTL running time varies at most by a factor of 2 from one of our
primes to another. The degrees of our input polynomials satisfy n = 2m. The running time of
our CUDA code outperforms that of NTL by a factor from 3 to 5, for 1,000 < n < 10,000, see
Figure 3.

5. The Euclidean Algorithm on the GPU

Recall that a and b designate two univariate polynomials over a finite field, such that either b
is zero or the degree of b is not greater than that of a. The Euclidean Algorithm computes the
GCD of (a,b) in the following way.

(i) if b =0, then return a,
(i) if b # 0, then return the GCD of (b,) where r is the remainder in the division of a by b.

As for the plain division, we have no other choices than parallelizing each division step.
Moreover, in order to minimize data transfer we will again let each thread block work on several
consecutive division steps without synchronizing. For this to be possible, each thread block
within a kernel computes the most significant terms of the current pair dividend-divisor.

5.1. Implementation
Let s > 1 be an integer. Each kernel call replaces the polynomial pair (a,b) by a GCD preserving
pair (a’,b') (that is, a a pair of polynomials with the same GCD as (a, b)) such that we have

max(deg(a), deg(b)) — max(deg(a’), deg(d')) > s.

Moreover, each kernel call performs at most s division steps.

e If initially | deg(a) — deg(b) | > s holds, we simply use our kernel for s division steps with
a fixed divisor.

e If initially | deg(a) — deg(b) | < s holds, we modify our division kernel as follows: each
thread block reads the s most significant terms for both a and b and; in addition, it reads
a segment of 3s coefficients for both a and b. Indeed, during such a kernel call, the roles of
a and b, as dividend or divisor, can be exchanged.

5.2. Parallelism

We first consider the work of the algorithm sketched above. Since n > m, the number of kernel
calls is at most [2]. The number of thread blocks per kernel call is at most [5-]. The number of
arithmetic operations per thread block is at most 6s2. Thus the work is in O(n?), as expected.
However, there is an increase of work w.r.t. a serial GCD computation by a constant factor
in order to reduce the amount of synchronization. Moreover, there is an increase of memory
consumption w.r.t. the GPU division computation by a constant factor due to the case where
the degree gap between a and b is less than s. Now, we consider the span. Since the number of
kernel calls is at most [%], and since the number of division steps per kernel call is at most s,
the span is in O(n), which as good as in the case of systolic arrays [2].

0.3

cubA o
NTL = .

0.25

0.2 :

0.15

0.1]

Computing time for GCD with prime:469762049

0.05

o)

0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
Degree of polynomial

Figure 4. Comparison between parallel GCD on CUDA and FFT-based GCD in NTL for
univariate polynomials, with the same degree (n = m).

5.3. Experimental Results

We have compared the running time of our CUDA implementation of the Euclidean Algorithm
with the serial C implementation of the Half-GCD algorithm (see Chapter 11 in [10]) from the
NTL [25] library. The latter algorithm is based on FFT techniques and its work fits within
O(dlog(d)log(log(d))) coefficient operations, whale that of the former algorithm amounts to
O(d?) coefficient operations, for input polynomials of degree d.

As for the experimentation with the plain division, the input polynomials used in our
experimentation are dense random (univariate) polynomials with coefficients in a finite field
whose characteristic is a machine word prime. Here again, we use the primes 7, 9001, 469762049
and we observe that our GPU code does not depend on the prime while NTL uses different
algorithms depending on the prime. For a given degree pattern, the NTL running time varies
at most by a factor of 2 from one of our primes to another.

n m GCD on CUDA with s = 512 | GCD on CUDA withs =0
1000 | 500 0.010 0.024
2000 | 1500 0.024 0.058
3000 | 2500 0.039 0.108
4000 | 3500 0.053 0.158
5000 | 4500 0.069 0.203
6000 | 5000 0.056 0.235
7000 | 6000 0.066 0.282
8000 | 7000 0.076 0.324
9000 | 8000 0.087 0.367
10000 | 9000 0.097 0.411

Table 3. GCD implementation on CUDA with two different values of s.

Figure 4 correspond to 469762049. Indeed, we are interested in large primes since they
support modular methods for polynomial system solving [6].

As reported by Figure 4, our implementation is almost three times faster than that of NTL
for polynomials whose degrees range between 1,000 and 10,000. Recall that this degree range is
also what is of interest for the same purpose of polynomial system solving.

The technique of computing s leading coefficients in every thread block, implemented in both
division and GCD algorithm, has two major advantages. First, it reduces the number of kernel
calls by a factor of s. Second, it reduces the amount of memory transfer between the global and
shared memory by a factor of s.

In Table 3, we compare the computation time between two versions of our CUDA
implementation of the Fuclidean Algorithm. The first one sets s = 512 and the other one
does not use at all this technique of computing s leading coefficients in every thread block. In
this latter implementation, leading coefficients are kept up-to-date in the global memory such
that they can be accessed by every thread block. Thus, in this scheme, every thread block works
on a single division step between two updates of the leading coefficient in the global memory.

As mentioned above, the former implementation increases the work but reduces parallelization
overheads in a significant manner. Table 3, shows that the former method outperforms the latter
by a speedup factor varying from 2 to 4.

6. Conclusion
Motivated by the implementation of polynomial system solvers over finite fields, we were lead
to parallelize plain univariate polynomial arithmetic on GPUs. For the degree range that we
are targeting, namely from 2!° up to 2'2, our GPU code for plain multiplication outperforms
our GPU code for FFT-based multiplication. For the degree range 29 ---2!8 our GPU code for
computing polynomial GCDs via the Euclidean Algorithm runs in linear time w.r.t the maximum
degree of the input polynomials. Such sizes are sufficient for many applications.

We observed that controling parallelization overheads (synchronization on data via global
memory, number of kernel calls, etc.) was essential for reaching peak performance in our
implementation.

References
[1] R. A. Arce-Nazario, E. Orozco and D. Bollman. Reconfigurable hardware implementation of a multivariate
polynomial interpolation algorithm. Int. J. Reconfig. Comput., vol. 2010, pages 2:1-2:14, 2010.
[2] R.P.Brent, H. T. Kung, and F. T. Luk. Some Linear-time Algorithms for Systolic Arrays. In IFIP Congress,
pages 865-876, 1983.

[3] M. F. I Chowdhury, M. Moreno Maza, W. Pan, and E. Schost. Complexity and Performance Results for non
FFT-based Univariate Polynomial Multiplication. In Proc. of Advances in mathematical and computational
methods: addressing modern of science, technology, and society, AIP conference proceedings, volume 1368,
pp. 259-262, 2011.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest and Clifford Stein, Introduction to Algorithms (3. ed.) MIT
Press, 2009.

[5] T.H. Cormen, C. E. Leiserson, R. L. Rivest and Clifford Stein, Introduction to Algorithms, Second Edition.
The MIT Press and McGraw-Hill Book Company, 2001.

[6] X.Dahan, M. Moreno Maza, E. Schost, W. Wu, and Y. Xie. Lifting techniques for triangular decompositions.
In ISSAC’05, pages 108-115. ACM Press, 2005.

[7] M. Frigo and S. G. Johnson. The Design and Implementation of FFTW3. In Proceedings of the IEEE
Special issue on Program Generation, Optimization, and Platform Adaptation, volume 93, number 2,
pages 216—231, 2005.

[8] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious Algorithms. In Proceedings of
the 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, pages 285—297, New York,
USA, October 1999.

[9] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation of the Cilk-5 Multithreaded Language.
In ACM SIGPLAN, 1998.

[10] J. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 1999.

[11] J. von zur Gathen and J. Shokrollahi. Efficient FPGA-based karatsuba multipliers for polynomials over
F>. In Proceedings of the 12th international conference on Selected Areas in Cryptography, SAC’05, pages
359-369, Springer-Verlag, 2006.

[12] S. A. Haque and M. Moreno Maza. Determinant Computation on the GPU using the Condensation Method
, volume 341. J. of Physics: Conference Series, 2012.

[13] M. A. Hasan and V. K. Bhargava. Bit-Serial Systolic Divider and Multiplier for Finite Fields GF(2™). IEEE
Trans. Comput., vol. 41, num. 8, pages 972-980, IEEE Computer Society, 1992.

[14] J. Hong and H. T. Kung. I/O Complexity: The Red-blue Pebble Game. In STOC, pages 326-333, 1981.

[15] D.E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algorithms, 3rd Edition. Addison-
Wesley Professional, 1997.

[16] D. E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Algorithms, 3rd Edition.
Addison-Wesley Professional, 1997.

[17] D. E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching 2nd Edition. Addison-
Wesley Professional, 1998.

[18] H. T. Kung and C. L. Leiserson. Algorithms for VLSI Processor Arrays. In Introduction to VLSI Systems,
ed. C. Mead and L. Conway, Addison-Wesley, Reading, MA, 1980, pp. 271-292.

[19] M. Moreno Maza and W. Pan. Fast polynomial arithmetic on a GPU. In J. of Physics: Conference Series,
volume 256, 2010.

[20] M. Moreno Maza and W. Pan. Solving Bivariate Polynomial Systems on a GPU. In J. of Physics: Conference
Series, volume 341, 2011.

[21] M. Moreno Maza and Y. Xie. Balanced dense polynomial multiplication on multicores. In Int. J. Found.
Comput. Sci., volume 22, numbe 5, pages 1035-1055, 2011.

[22] M. Moreno Maza and Y. Xie. FFT-based dense polynomial arithmetic on multi-cores. In D. Mewhort,
editor, Proc. HPCS 2009, volume 5976 of LNCS, Heidelberg, 2010. Springer-Verlag Berlin.

[23] M. Nele, S. B. C“)rs7 B, Preneel and J. Vandewalle An FPGA Implementation of a Montgomery Multiplier
Over GF(2™). J. of Computers and Artificial Intelligence, vol. 23, num. 5, pages 487-499, 2004.

[24] M. Piischel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong, F. Franchetti, A. Gacic,
Y. Voronenko, K. Chen, R. W. Johnson and N. Rizzolo. SPIRAL: Code Generation for DSP Transforms,
In Proceedings of the IEEE, special issue on Program Generation, Optimization, and Adaptation, volume
93, numbe 2, pages 232-275, 2005.

[25] V. Shoup. NTL: A Library for doing Number Theory. http://www.shoup.net/ntl/

[26] C. Yap. Fundamental Problems in Algorithmic Algebra. Princeton University Press, 1993.

