A Tutorial on Polynomial Ideals and Algebraic Varieties

Marc Moreno Maza

CS 9652a - Algorithms and software for symbolic solvers of polynomial systems

October 25, 2017

An overview of this tutorial

- Main objective: an introduction for non-experts.
- **Prerequisites:** some familiarity with linear algebra, univariate polynomials (division, Euclidean Algorithm, roots of a polynomial), polynomial rings (partial degree, ideal).

• Outline:

- algebraic varieties,
- term orders,
- multivariate division,
- leading term ideal,
- Gröbner bases,
- S-polynomials,
- Buchberger's algorithm,

- Minimal Gröbner bases,
- Reduced Gröbner bases,
- elimination ideals,
- operation on ideals,
- Hilbert theorems of zeros,
- operation on algebraic varieties,
- constructible sets,
- Zariski topology,
- smoothness,
- multiplicity.

Some notations before we start the theory (I)

<u>NOTATION.</u> Throughout the talk, we consider a field \mathbb{K} and an ordered set $X = x_1 < \cdots < x_n$ of *n* variables. Typically \mathbb{K} will be

- a finite field, such as $\mathbb{Z}/p\mathbb{Z}$ for a prime p, or
- the field ${\mathbb Q}$ of $\mbox{ rational numbers},$ or
- a field of **rational functions** over $\mathbb{Z}/p\mathbb{Z}$ or \mathbb{Q} .

We will denote by $\overline{\mathbb{K}}$ an algebraic closure of \mathbb{K} . https://en.wikipedia.org/wiki/Algebraic_closure

- $\overline{\mathbb{K}}$ is the smallest field containing \mathbb{K} and over which any non-constant polynomial factorizes into factors of degree 1,
- For $\mathbb{K} = \mathbb{R}$, the field of *real numbers*, we can choose $\overline{\mathbb{K}} = \mathbb{C}$, the field of *complex numbers*.

We will also consider a field \mathbb{L} extending \mathbb{K} and contained in $\overline{\mathbb{K}}$. Hence, we have $\mathbb{K} \subset \mathbb{L} \subset \overline{\mathbb{K}}$. More on *field extensions* and *algebraic closures* in the next chapter.

Some notations before we start the theory (II)

<u>NOTATION</u>. We denote by $\mathbb{K}[x_1, \ldots, x_n]$ the ring of the polynomials with coefficients in \mathbb{K} and variables in X. For $F \subset \mathbb{K}[x_1, \ldots, x_n]$, we write $\langle F \rangle$ and $\sqrt{\langle F \rangle}$ for the *ideal* generated by F in $\mathbb{K}[x_1, \ldots, x_n]$ and its *radical*, respectively. Thus, writing $F = \{g_1, \ldots, g_s\}$, by definition, for $f \in \mathbb{K}[x_1, \ldots, x_n]$ we have

• $f \in \langle F \rangle \iff (\exists q_1, \ldots, q_s \in \mathbb{K}[x_1, \ldots, x_n]) f = q_1 q_1 + \cdots + q_s q_s$

•
$$f \in \sqrt{\langle F \rangle} \iff (\exists e \in \mathbb{N}) f^e \in \langle F \rangle.$$

Observe that we have $\langle F \rangle \subseteq \sqrt{\langle F \rangle}$.

https://en.wikipedia.org/wiki/Ideal_(ring_theory) https://en.wikipedia.org/wiki/Radical_of_an_ideal

EXAMPLE. For
$$F = \{xy^2 + 2y^2, x^4 - 2x^2 + 1\}$$
, we have
 $\sqrt{\langle F \rangle} = \langle x^2 - 1, y \rangle$

<u>NOTATION.</u> For $1 \leq i \leq n$, we denote by $A^i(\mathbb{L})$ the affine space of dimension i over \mathbb{L} .

true

7

У

Term orders (I)

<u>NOTATION.</u> We denote by M the **abelian monoid** generated by x_1, \ldots, x_n .

<u>**DEFINITION.</u>** A total order \leq on M is a **term order** if the following two conditions hold</u>

- (i) for every $m \in M$ we have $1_M \leq m$
- $(ii) \ \ \text{for every} \ m,m',m'' \in \mathsf{M} \ \text{we have} \ m \leq m' \Rightarrow mm'' \leq m'm''$

<u>NOTATION.</u> For $f \in \mathbb{K}[x_1, \ldots, x_n]$ with $f \neq 0$, we denote by

- lm(f) the leading monomial of f, that is the largest $m \in M$ occurring in f,
- lc(f) the **leading coefficient** of f, that is the coefficient of lm(f) in f,
- lt(f) = lc(f)lm(f) the leading term of f,
- rd(f) the **reductum** of f, that is f lt(f).

PROPOSITION. For $f, g \in \mathbb{K}[x_1, \dots, x_n]$, with $f \neq 0$ and $g \neq 0$, we have $\lim(fg) = \lim(f) \lim(g)$ and $\operatorname{lc}(fg) = \operatorname{lc}(f) \operatorname{lc}(g)$.

Term orders (II)

<u>REMARK.</u> Recall that the variables x_1, \ldots, x_n are ordered by

 $x_1 < \cdots < x_n$

Hence, we identify every monomial $m = x_n^{e_n} \cdots x_1^{e_1}$ with the tuple of non-negative integers $e = (e_n, \ldots, e_1)$ often called the **exponent vector** of m.

It is convenient to denote by |e| the sum $e_1 + \cdots + e_n$ which is the **total degree** of the monomial m. Finally, we define $rev(e) = (e_1, \ldots, e_n)$.

NOTATION. For $a = (a_n, \ldots, a_1)$ and $b = (b_n, \ldots, b_1)$ in \mathbb{N}^n we define

$$a <_{lex} b \iff (\exists i \in \{1, \dots, n\}) \text{ t.q. } \begin{cases} a_i < b_i \\ a_j = b_j \quad (\forall j > i) \end{cases}$$

and

$$a <_{deglex} b \iff \begin{cases} |a| < |b| \text{ or} \\ |a| = |b| \text{ and } a <_{lex} b \end{cases}$$

and

$$a <_{degrevlex} b \iff \begin{cases} |a| < |b| \text{ or} \\ |a| = |b| \text{ and } \operatorname{rev}(a) >_{lex} \operatorname{rev}(b) \end{cases}$$

٠

Moreover, we define

$$a \leq_{lex} b \iff a <_{lex} b \text{ or } a = b$$

and

$$a \leq_{deglex} b \iff a <_{deglex} b \text{ or } a = b$$

and

$$a \leq_{degrevlex} b \iff a <_{degrevlex} b$$
 or $a = b$.

<u>**PROPOSITION.</u>** The binary relations \leq_{lex} , \leq_{deglex} and $\leq_{degrevlex}$ define term orders in $\mathbb{K}[x_1, \ldots, x_n]$.</u>

Term orders (III)

EXAMPLE. Assume n = 2 and define $x_1 = x$ and $x_2 = y$. Then, we have $1 <_{lex} x <_{lex} x^2 <_{lex} \cdots <_{lex} y <_{lex} xy <_{lex} x^2y <_{lex} \cdots <_{lex} y^2 <_{lex} \cdots$ and

$$1 <_{deglex} x <_{deglex} y <_{deglex} x^2 <_{deglex} xy <_{deglex} y^2 <_{deglex} x^3 \cdots$$

For $n = 3$ with $x_1 = x$, $x_2 = y$ and $x_3 = z$ we have
 $y^3 z \leq_{deglex} xyz^2$ but $xyz^2 \leq_{degrevlex} y^3 z$.
PROPOSITION. Let \leq be a term order for $\mathbb{K}[x_1, \dots, x_n]$. Then for all monomials m, m' , we have

$$m \mid m' \Rightarrow m \leq m'.$$

<u>THEOREM.</u> Let \leq be a term order for $\mathbb{K}[x_1, \ldots, x_n]$. Then, for every non-empty set M of monomials of $\mathbb{K}[x_1, \ldots, x_n]$ there exists $m \in M$ such that we have

 $(\forall m' \in M) \ m \le m'.$

Multi-divisor division (I)

<u>NOTATION.</u> From now on, we fix a term order \leq .

<u>DEFINITION.</u> Let $f, g, h \in \mathbb{K}[x_1, \dots, x_n]$ with $g \neq 0$. We say that f reduces to h modulo g in one step and we write

 $f \xrightarrow{g} h$

if and only if lm(g) divides a non-zero term t of f and

$$h = f - \frac{t}{\mathrm{lc}(g)\mathrm{lm}(g)}g.$$

REMARK. When this holds, observe that we have

$$h = (f - t) - p$$
 with $p := \frac{t}{\operatorname{Im}(g)} \frac{\operatorname{rd}(g)}{\operatorname{lc}(g)}$.

One can check that either p = 0 holds or that we have

 $\ln(p) < \ln(t).$

Multi-divisor division (II)

DEFINITION. Let f, h, r and f_1, \ldots, f_s be polynomials in $\mathbb{K}[x_1, \ldots, x_n]$ with $f_i \neq 0$ for all $i = 1, \ldots, s$. Define $F = \{f_1, \ldots, f_s\}$. We say that f reduces to h modulo F and we write

$$f \xrightarrow{F} + h$$

if and only if there exists a sequence of indices i_1, i_2, \ldots, i_t and a sequence of polynomials $h_1, h_2, \ldots, h_{t-1}$ such that

$$f \xrightarrow{f_{i_1}} h_1 \xrightarrow{f_{i_2}} h_2 \cdots h_{t-1} \xrightarrow{f_{i_t}} r.$$

The polynomial r is called **reduced w.r.t.** F if

- either r = 0
- or no monomials in r is divisible by one of the $lm(f_i)$, for i = 1, ..., s.

The polynomial r is called a remainder of f w.r.t. F if $f \xrightarrow{F}_{+} r$ and r is reduced w.r.t. F.

Multi-divisor division (III)

<u>**PROPOSITION.**</u> Let h, F be as in the previous definition, with $h \neq 0$, and let m be a monomial and $c \in \mathbb{K}$ with $c \neq 0$. Then, we have

$$cm \xrightarrow{F} + h \implies \operatorname{lm}(h) < m.$$

PROPOSITION. Let f, F be as above. Then, we have

$$f \neq 0$$
 and $f \xrightarrow{F} + 0 \implies f$ not reduced w.r.t. F .

PROPOSITION. Let f, F be as above. Then, we have

$$f \xrightarrow{F} 0 \Rightarrow f \in \langle F \rangle$$

Multi-divisor division (IV)

<u>**REMARK.</u></u> Observe that the univariate division** of f by g, with $g \notin \mathbb{K}$, in $\mathbb{K}[x]$ can be computed as follows:</u>

r := f q := 0while $\operatorname{Im}(g) \mid \operatorname{Im}(r)$ repeat
Compute r' and q' such that $r \xrightarrow{g} r' \text{ and } r = q'g + r'$ r := r' q := q + q'return (q, r)

Multi-divisor division (V)

DEFINITION. Let $f, g_1, \ldots, g_s, q_1, \ldots, q_s, r \in \mathbb{K}[x_1, \ldots, x_n]$ such that $g_i \neq 0$ for all $i = 1, \ldots, s$. Define $G = \{g_1, \ldots, g_s\}$. We say that (q_1, \ldots, q_s) are the *quotients* and r the *remainder* in the *multivariate division* of f w.r.t. G if the following conditions hold

- $(i) f = q_1g_1 + \dots + q_sg_s + r,$
- (ii) r is reduced w.r.t. G,
- (*iii*) $\max(\operatorname{lm}(q_1)\operatorname{lm}(g_1),\ldots,\operatorname{lm}(q_s)\operatorname{lm}(g_s),\operatorname{lm}(r)) = \operatorname{lm}(f).$

If this holds, then we write

$$\begin{array}{c|cccc} f & g_1 & \cdots & g_s \\ r & q_1 & \cdots & q_s \end{array}$$

Input: $f, g_1, \ldots, g_s \in \mathbb{K}[x_1, \ldots, x_n]$ such that $g_i \neq 0$ for all $i = 1, \ldots, s$.

Output:
$$q_1, \ldots, q_s, r \in \mathbb{K}[x_1, \ldots, x_n]$$
 such that $\begin{array}{c|c} f & g_1 & \cdots & g_s \\ r & q_1 & \cdots & q_s \end{array}$

for i := 1, ..., s repeat $q_i := 0$ h := fr := 0while $h \neq 0$ repeat *i* := 1 while $i \leq s$ repeat if $lm(g_i) \mid lm(h)$ then $t := \frac{\operatorname{lt}(h)}{\operatorname{lt}(g_i)}$ $q_i := q_i + t$ $h := h - tg_i$ i := 1else i := i + 1

$$r := r + \operatorname{lt}(h)$$
$$h := h - \operatorname{lt}(h)$$
$$\operatorname{return}(q_1, \dots, q_s, r)$$

Multi-divisor division (VI)

PROPOSITION. The previous algorithm terminates and is correct.

EXAMPLE. With n = 1, $x_1 = x$ and $\leq \leq_{lex}$ we consider $g_1 = x^2$, $g_2 = x^2 - x$, $G = \{g_1, g_2\}$ and f = x. Then, we have

$$\begin{array}{c|cc} f & g_1 & g_2 \\ f & 0 & 0 \end{array}$$

However f is not reduced w.r.t. $G = \{g_1, g_2\}$.

EXAMPLE. With n = 2, $x = x_1 < x_2 = y$ and $\leq \leq \leq_{deglex}$ we consider $g_1 = yx - y$, $g_2 = y^2 - x$, $G = \{g_1, g_2\}$ and $f = y^2 x$. Then, we have

$$\begin{array}{c|ccc} f & g_1 & g_2 \\ x & y & 1 \end{array}$$

<u>EXAMPLE.</u> With n = 2, $x = x_1 < x_2 = y$ and $\leq \leq \leq_{deglex}$ we consider

$$f = y^2 x - x$$
, $g_1 = yx - y$ and $g_2 = y^2 - x$. Then we have

$$\begin{array}{c|c}
f & g_1 & g_2 \\
0 & y & 1
\end{array}$$

However we have

$$\begin{array}{c|cccc} f & g_2 & g_1 \\ x^2 - x & x & 0 \end{array}$$

Leading term ideal

<u>**DEFINITION.</u></u> For a subset S of \mathbb{K}[x_1, \ldots, x_n], the leading term ideal of S is the ideal of \mathbb{K}[x_1, \ldots, x_n] denoted by lt(S) and defined by</u>**

$$\operatorname{lt}(S) = \langle \operatorname{lt}(s) \mid s \in S \rangle.$$

<u>**PROPOSITION.</u></u> Let S be a set of non-zero terms of \mathbb{K}[x_1, \ldots, x_n] and let \mathcal{I} be its leading term ideal. For every f \in \mathbb{K}[x_1, \ldots, x_n] the following statements are equivalent</u>**

(i) $f \in \mathcal{I}$

(*ii*) for every term t of f there exists $s \in S$ such that s divides t.

Moreover, there exists a finite subset S_0 of S such that $\mathcal{I} = \langle S_0 \rangle$.

Gröbner bases (I)

<u>DEFINITION.</u> Let \mathcal{I} be an ideal of $\mathbb{K}[x_1, \ldots, x_n]$. A finite subset G of \mathcal{I} is a **Gröbner basis of** \mathcal{I} if and only if

 $(\forall f \in \mathcal{I}) \ (\exists g \in G) \ \operatorname{Im}(g) \ \operatorname{divides} \operatorname{Im}(f).$

A finite subset G of $\mathbb{K}[x_1, \ldots, x_n]$ is a **Gröbner basis** if it is a Gröbner basis for the ideal $\langle G \rangle$ it generates.

<u>THEOREM.</u> Let \mathcal{I} be an ideal of $\mathbb{K}[x_1, \ldots, x_n]$ and $G = \{g_1, \ldots, g_t\}$ be a finite subset of \mathcal{I} . Then, the following statements are equivalent

- (i) G is a Gröbner basis for \mathcal{I} .
- (*ii*) For every $f \in \mathbb{K}[x_1, \dots, x_n]$ we have: $f \in \mathcal{I} \iff f \xrightarrow{G} + 0$.
- (*iii*) For every $f \in \mathbb{K}[x_1, \ldots, x_n]$, the polynomial f belongs to \mathcal{I} if and only if there exists $q_1, \ldots, q_t \in \mathbb{K}[x_1, \ldots, x_n]$ such that $f = q_1g_1 + \cdots + q_tg_t$ and $\max(\operatorname{Im}(q_1)\operatorname{Im}(g_1), \ldots, \operatorname{Im}(q_s)\operatorname{Im}(g_s)) = \operatorname{Im}(f).$

 $(iv) \ \operatorname{lt}(G) = \operatorname{lt}(\mathcal{I}).$

Gröbner bases (II)

<u>COROLLARY.</u> Let \mathcal{I} be an ideal of $\mathbb{K}[x_1, \ldots, x_n]$ and $G = \{g_1, \ldots, g_t\}$ be a finite subset of \mathcal{I} . If G is a Gröbner basis of \mathcal{I} , then we have $\mathcal{I} = \langle g_1, \ldots, g_t \rangle$.

PROOF \triangleright Clearly $\langle g_1, \ldots, g_t \rangle \subseteq \mathcal{I}$ holds. For the reverse inclusion, let $f \in \mathcal{I}$. With the previous theorem we have $f \xrightarrow{G} + 0$, which implies $f \in \langle g_1, \ldots, g_t \rangle$. \triangleleft <u>THEOREM.</u> Every ideal of $\mathbb{K}[x_1, \ldots, x_n]$ admits a Gröbner basis.

PROOF \triangleright Let \mathcal{I} be an ideal of $\mathbb{K}[x_1, \ldots, x_n]$. The leading term ideal $\operatorname{lt}(\mathcal{I})$ is generated by a finite subset S_G of $\operatorname{lt}(\mathcal{I})$. Hence S_G is of the form $\{\operatorname{lt}(g_1), \ldots, \operatorname{lt}(g_t)\}$ where g_1, \ldots, g_t are polynomials of \mathcal{I} . We define $G = \{g_1, \ldots, g_t\}$ such that we have $\operatorname{lt}(\mathcal{I}) = \operatorname{lt}(G)$. With the previous theorem we deduce that G is a Gröbner basis for \mathcal{I} .

<u>THEOREM.</u> Let $G = \{g_1, \ldots, g_t\}$ be a set of non-zero polynomials of $\mathbb{K}[x_1, \ldots, x_n]$. Then, the set G is a Gröbner basis if and only if for all $f \in \mathbb{K}[x_1, \ldots, x_n]$ all remainders of a multivariate division of f w.r.t. G are equal.

S-polynomials (I)

REMARK. Let f, f_1, \ldots, f_s be non-zero polynomials in $\mathbb{K}[x_1, \ldots, x_n]$. We define $F = \{f_1, \ldots, f_s\}$. For performing the multivariate division of f w.r.t F, one needs to order the polynomials in F. We know that the result of this division may depend on this order. For one order, we may first reduce a term t in f by a polynomial f_i and for another order, we may first reduce t by a polynomial f_j , with $j \neq i$. In the first case we obtain the polynomial

$$h_i = f - \frac{t}{\operatorname{lt}(f_i)} f_i$$

and in the second case we obtain the polynomial

$$h_j = f - \frac{t}{\operatorname{lt}(f_j)} f_j.$$

The ambiguity that is introduced is

$$h_j - h_i = \frac{t}{\operatorname{lt}(f_i)} f_i - \frac{t}{\operatorname{lt}(f_j)} f_j.$$

This leads to the notion of a S-polynomial

S-polynomials (II)

<u>**DEFINITION.</u>** Let $f, g \in \mathbb{K}[x_1, \dots, x_n]$ be two non-zero polynomials and let L be the least common multiple of Im(f) and Im(g). The polynomial</u>

$$S(f,g) = \frac{L}{\operatorname{lt}(f)}f - \frac{L}{\operatorname{lt}(g)}g$$

is called **the S-polynomial** of f and g.

EXAMPLE. With n = 2, $x = x_1 < x_2 = y$ and $\leq \leq \leq_{deglex}$ we consider $f_1 = yx - y$, $f_2 = y^2 - x$, $F = \{f_1, f_2\}$ and $f = y^2 x$. We have $f \xrightarrow{f_1} f - yf_1 = y^2$ and $f \xrightarrow{f_2} f - xf_2 = x^2$.

The ambiguity introduced is

$$S(f_1, f_2) = yf_1 - xf_2 = -y^2 + x^2.$$

Also note that

$$S(f_1, f_2) \in \langle f_1, f_2 \rangle.$$

Moreover, the polynomial $S(f_1, f_2)$ is not reduced w.r.t. F and we have

$$S(f_1, f_2) \xrightarrow{f_2} x^2 - x.$$

The polynomial $f_4 = x^2 - x$ is reduced w.r.t. F without being null. Observe that we have

$$f \xrightarrow{f_1} y^2 \xrightarrow{f_2} x$$
 and $f \xrightarrow{f_2} x^2 \xrightarrow{f_4} x$.

Hence, adding f_4 to F allows the two reductions to converge toward the same result.

Buchberger's algorithm (I)

<u>THEOREM.</u>[Buchberger] Let $G = \{g_1, \ldots, g_t\}$ be a set of non-zero polynomials in $\mathbb{K}[x_1, \ldots, x_n]$. Then, the set G is a Gröbner basis if and only if for all $i \neq j$ we have

$$S(g_i, g_j) \xrightarrow{G} + 0.$$

EXAMPLE. With n = 2, $x = x_1 < x_2 = y$ and $\leq \leq \leq_{deglex}$ we consider $f_1 = xy - x$ and $f_2 = x^2 - y$. We define $F = \{f_1, f_2\}$. Then we have

$$S(f_1, f_2) = xf_1 - yf_2 = y^2 - x^2 \xrightarrow{f_2} y^2 - y$$

Since $f_3 = y^2 - y$ is reduced w.r.t. F, the set F is not a Gröbner basis. So, let us define $F' = F \cup \{f_3\}$. Now we have

$$S(f_1, f_2) \xrightarrow{F'} 0.$$

Then we have

$$S(f_1, f_3) = yf_1 - xf_3 = y(xy - x) - x(y^2 - y) = 0.$$

and

$$S(f_2, f_3) = y^2(x^2 - y) - x^2(y^2 - y) = -y^3 + yx^2 \xrightarrow{f_3} yx^2 - y^2 \xrightarrow{f_2} 0.$$

Thus, Buchberger's Theorem shows that F' is a Gröbner basis.

Buchberger's algorithm (II)

Input: $F = \{f_1, \ldots, f_s\} \subseteq \mathbb{K}[x_1, \ldots, x_n]$ with $f_i \neq 0$ for all $i = 1, \ldots, s$. **Output:** $G = \{g_1, \ldots, g_t\} \subseteq \mathbb{K}[x_1, \ldots, x_n]$ a Gröbner basis of $\langle F \rangle$. $G_0 := F$ $P := \{ (f_i, f_j) \mid 1 \le i < j \le s \}$ *i* := 1 while $P \neq \emptyset$ repeat Choose $(f, g) \in P$ $P := P \setminus \{(f,g)\}$ Compute h_i the remainder of S(f, g) w.r.t. G_{i-1} if $h_i \neq 0$ then $P := P \cup \{(g, h_i) \mid g \in G_{i-1}\}$ $G_i := G_{i-1} \cup \{h_i\}$ i := i + 1 $return(G_{i-1})$

Buchberger's algorithm (III)

THEOREM. Buchberger's algorithm terminates and is correct.

PROOF > The previous algorithm constructs a sequence of sets

$$G_0 \subseteq G_1 \subseteq \cdots \subseteq G_i \subseteq G_{i+1} \subseteq \cdots$$

together with a sequence of non-zero polynomials $h_1, \ldots, h_i, h_{i+1}, \ldots$ such that h_i is reduced w.r.t. G_{i-1} . Hence, no term in h_i is divisible by Im(g) for any g in G_{i-1} . Thus we have

 $\operatorname{lt}(h_i) \not\in \operatorname{lt}(G_{i-1})$

Therefore, we have

$$\operatorname{lt}(G_{i-1}) \subseteq \operatorname{lt}(G_i)$$
 but $\operatorname{lt}(G_{i-1}) \neq \operatorname{lt}(G_i)$

It follows, that the $lt(G_i)$'s form a strictly ascending chain of ideals. Since $\mathbb{K}[x_1, \ldots, x_n]$ is Noetherian, this chain must be ultimately constant. This implies that the algorithm must terminate. The proof of the correctness of the algorithm follows from Buchberger's Theorem. \triangleleft

Buchberger's algorithm (IV)

EXAMPLE. With n = 2, $x = x_1 < x_2 = y$ and $\leq \leq \leq_{lex}$ we consider $f_1 = y + x^2 - 1$ and $f_2 = y^2 + x - 1$. We define $F = \{f_1, f_2\}$. Following Buchberger's Algorithm, let us compute a Gröbner basis of F for the \leq_{lex} ordering induced by y > x. We set $G_0 = F$. Then, we compute

$$S(f_1, f_2) = yx^2 - y - x + 1 \xrightarrow{f_1} -x^4 + 2x^2 - x \xrightarrow{f_2} -x^4 + 2x^2 - x.$$

So, we define

$$h_1 = -x^4 + 2x^2 - x$$
 and $G_1 = \{f_1, f_2, h_1\}.$

Then, we compute

$$S(f_1, h_1) = -2yx^2 + yx - x^6 + x^4 \xrightarrow{G_1} 0$$

and

$$S(f_2, h_1) = -2y^2x^2 + y^2x - x^5 + x^4 \xrightarrow{G_1} 0$$

Hence G_1 is a Gröbner basis of the ideal generated by F for the lexicographical $\frac{30}{30}$

ordering induced by y > x. Now observe that

$$f_2 = (y + 3x^2 + 1)f_1 - h_1$$

which shows that f_2 is in the ideal generated by f_1 and h_1 . Therefore $\{f_1, h_1\}$ is a set of generators of the ideal generated by F.

Minimal Gröbner bases

PROPOSITION. Let $G = \{g_1, \ldots, g_t\}$ be a Gröbner basis for an ideal non-trivial \mathcal{I} of $\mathbb{K}[x_1, \ldots, x_n]$. If $lc(g_2)$ divides $lc(g_1)$ then $\{g_2, \ldots, g_t\}$ is also a Gröbner basis of \mathcal{I} .

PROOF \triangleright A consequence of the definition of a Gröbner basis. \triangleleft

<u>DEFINITION.</u> A Gröbner basis $G = \{g_1, \ldots, g_t\}$ of $\mathbb{K}[x_1, \ldots, x_n]$ is called **minimal** if the following conditions hold

- for all i = 1, ..., t the leading coefficient $lc(g_i)$ of g_i is 1,
- for all 1 ≤ i < j ≤ t the leading monomial lm(g_i) does not divide the leading monomial lm(g_j).

PROPOSITION. Every non-trivial ideal \mathcal{I} of $\mathbb{K}[x_1, \ldots, x_n]$ admits a minimal Gröbner basis.

PROPOSITION. Let $G = \{g_1, \ldots, g_t\}$ and $H = \{h_1, \ldots, h_s\}$ be two minimal Gröbner bases for the same non-trivial ideal \mathcal{I} of $\mathbb{K}[x_1, \ldots, x_n]$ for the same term order. Then, s = t and after re-indexing the elements of H, if necessary, we have $\lim(g_i) = \lim(h_i)$ for all $i = 1, \ldots, t$.

Reduced Gröbner bases (I)

<u>DEFINITION.</u> A Gröbner basis $G = \{g_1, \ldots, g_t\}$ of $\mathbb{K}[x_1, \ldots, x_n]$ is called **reduced** if the following conditions hold

- for all i = 1, ..., t the leading coefficient $lc(g_i)$ of g_i is 1,
- for all 1 ≤ i < j ≤ t no monomials of g_j can be divided by the leading monomial lm(g_i).

Input: $G = \{g_1, \ldots, g_t\} \subseteq \mathbb{K}[x_1, \ldots, x_n]$ a minimal Gröbner basis of a non-trivial ideal \mathcal{I} .

Output: a reduced Gröbner basis of \mathcal{I} .

 $H_{1} := \{g_{2}, \dots, g_{t}\}$ for $i := 1 \cdots t$ repeat Compute h_{i} the remainder of g_{i} w.r.t. H_{i} $H_{i+1} := \{h_{i}\} \cup H_{i} \setminus \{g_{i+1}\}$ return (H_{t+1})

Reduced Gröbner bases (II)

PROPOSITION. The previous algorithm terminates and is correct.

<u>THEOREM.</u>[Buchberger] Every non-trivial ideal \mathcal{I} of $\mathbb{K}[x_1, \ldots, x_n]$ admits a unique reduced Gröbner basis.

<u>THEOREM.</u> Let F be a finite set of non-zero polynomials of $\mathbb{K}[x_1, \ldots, x_n]$ and let G be a reduced Gröbner basis of $\langle F \rangle$. Then $\langle F \rangle = \mathbb{K}[x_1, \ldots, x_n]$ if and only if $G = \{1\}$.

PROOF \triangleright The condition is clearly sufficient. Let us prove that it is necessary. Let us assume that $\langle F \rangle = \mathbb{K}[x_1, \ldots, x_n]$. Then $1 \in \langle F \rangle$. The only polynomial f such that lc(f) = 1 and lm(f) divides 1 is 1 itself. Therefore, $1 \in G$. But the leading monomial of 1 divides any monomial. Hence, we have $G = \{1\}$.

Elimination ideals

DEFINITION. Let \mathcal{I} be a non-trivial ideal of $\mathbb{K}[x_1, \ldots, x_n]$ and let $0 \le k < n$ be an integer. The *k*-th *elimination ideal* of \mathcal{I} is the ideal $\mathcal{I}_k = \mathcal{I} \cap \mathbb{K}[x_1, \ldots, x_{n-k}]$.

DEFINITION. Let $0 \le k < n$ be an integer. A term order < is said of *k-elimination* if for every monomial Y of $\mathbb{K}[x_1, \ldots, x_n]$ with a positive degree w.r.t. at least one of the variables x_{n-k+1}, \ldots, x_n and for every monomial X of $\mathbb{K}[x_1, \ldots, x_{n-k}]$ we have X < Y.

EXAMPLE. The lexicographical ordering induced by $x_1 < \cdots < x_n$ is of *k*-elimination for every $0 \le k < n$.

<u>THEOREM.</u>[Elimination Theorem] Let 0 < k < n be an integer and let < be a term order of k-elimination. Let \mathcal{I} be a non-trivial ideal and let \mathcal{I}_k be its k-th elimination ideal of \mathcal{I} . Let G be a Gröbner basis of \mathcal{I} for <. Then, the set $G_k = G \cap \mathbb{K}[x_1, \ldots, x_{n-k}]$ is a Gröbner basis of \mathcal{I}_k for <.

PROOF \triangleright See Chapter 3 in (Cox, Little, O'Shea, 1992). \triangleleft

<0>
Intersection of ideals (I)

LEMMA. Let \mathcal{I} be an ideal of $\mathbb{K}[x_1, \ldots, x_n]$ and let t an extra variable. Let $\{f_1, \ldots, f_s\}$ and $\{g_1, \ldots, g_r\}$ be two sets of generators of \mathcal{I} . Then we have the following properties.

- The sets $\{tf_1, \ldots, tf_s\}$ and $\{tg_1, \ldots, tg_r\}$ generate the same ideal in $\mathbb{K}[x_1, \ldots, x_n, t]$ denoted $t\mathcal{I}$.
- For every polynomial h(x₁,...,x_n,t) ∈ tI and for every element a ∈ K, we have h(x₁,...,x_n,a) ∈ I.

PROPOSITION. Let \mathcal{I} and \mathcal{J} be two ideals of $\mathbb{K}[x_1, \ldots, x_n]$. Let t be an extra variable. Then we have

$$\mathcal{I} \cap \mathcal{J} = \langle t\mathcal{I} + (1-t)\mathcal{J} \rangle \cap \mathbb{K}[x_1, \dots, x_n]$$
(1)

Intersection of ideals (II)

PROOF \triangleright Let $f \in \mathbb{K}[x_1, \ldots, x_n]$. First assume that $f \in \mathcal{I} \cap \mathcal{J}$ holds. Then, clearly tf and (1-t)f belong to $t\mathcal{I}$ and $(1-t)\mathcal{J}$ respectively. Hence, f belongs to the sum of these ideals. Since f belongs to $\mathbb{K}[x_1, \ldots, x_n]$, we have $f \in \langle t\mathcal{I} + (1-t)\mathcal{J} \rangle \cap \mathbb{K}[x_1, \ldots, x_n]$. Conversely, assume that this latter relation holds. Then there exists $g(x_1, \ldots, x_n, t) \in t\mathcal{I}$ and $h(x_1, \ldots, x_n, t) \in (1-t)\mathcal{J}$ such that

$$f(x_1, ..., x_n) = g(x_1, ..., x_n, t) + h(x_1, ..., x_n, t)$$

Since every polynomial in $t\mathcal{I}$ is a multiple of t we must have by specializing t to 0

$$f(x_1,\ldots,x_n)=h(x_1,\ldots,x_n,0)$$

which shows that f belongs to \mathcal{J} . Similarly, by specializing t to 1 we obtain

$$f(x_1,\ldots,x_n) = g(x_1,\ldots,x_n,1)$$

which shows that f belongs to \mathcal{I} . Therefore, we have $f \in \mathcal{I} \cap \mathcal{J}$.

Intersection of ideals (III)

Input: \mathcal{I} and \mathcal{J} ideals of $\mathbb{K}[x_1, \ldots, x_n]$ generated by $\{f_1, \ldots, f_s\}$ and $\{g_1, \ldots, g_r\}$ respectively.

Output: A Gröbner basis of $\mathcal{I} \cap \mathcal{J}$.

Let t be an extra variable

 $F := \{tf_1, \dots, tf_s, (1-t)g_1, \dots, (1-t)g_r\}$

Let < be a term order in $\mathbb{K}[x_1, \dots, x_n, t]$ such that every monomial involving t is greater than every monomial of degree zero w.r.t. t Compute G a Gröbner basis of F w.r.t. < return $G \cap \mathbb{K}[x_1, \dots, x_n]$

> Intersect(J, K);

> J := <x * (x-1), $y^2 * (y-2) >;$

$$J := \langle x (x - 1), y (y - 2) \rangle$$

> K := <(x-1)^2*y^3>;

> map(factor, Generators(L));

Quotient of ideals (I)

DEFINITION. Let \mathcal{I}, \mathcal{J} be ideals of $\mathbb{K}[x_1, \ldots, x_n]$ and X be a non-empty subset of $\mathbb{K}[x_1, \ldots, x_n]$.

• The sum of \mathcal{I} and \mathcal{J} is denoted by $\mathcal{I} + \mathcal{J}$ and defined by

$$\mathcal{I} + \mathcal{J} = \{a + b \mid (a, b) \in \mathcal{I} \times \mathcal{J}\}.$$

• The *product* \mathcal{I} and \mathcal{J} is denoted by $\mathcal{I}\mathcal{J}$ and defined by

$$\mathcal{IJ} = \{ab \mid (a,b) \in \mathcal{I} \times \mathcal{J}\}.$$

• The *quotient* of \mathcal{I} by X is denoted by $\mathcal{I} : X$ and defined by

$$\mathcal{I}: X = \{a \in \mathbb{A} \mid (\forall x \in X) a x \in \mathcal{I}\}.$$

Quotient of ideals (II)

PROPOSITION. Let $\mathcal{I}, \mathcal{J}, \mathcal{K}$ be ideals of $\mathbb{K}[x_1, \ldots, x_n]$ and X be a non-empty subset of $\mathbb{K}[x_1, \ldots, x_n]$. Then, the following properties hold.

- (1) $\mathcal{I} \cap \mathcal{J}$ and $\mathcal{I}\mathcal{J}$ are ideals of $\mathbb{K}[x_1, \ldots, x_n]$.
- (2) If $\mathcal{I} + \mathcal{J}$ is not $\mathbb{K}[x_1, \ldots, x_n]$, then it is an ideal of $\mathbb{K}[x_1, \ldots, x_n]$.
- (3) If $\mathcal{I} : X$ is not $\mathbb{K}[x_1, \ldots, x_n]$, then it is an ideal of $\mathbb{K}[x_1, \ldots, x_n]$.
- (4) We have $\mathcal{IJ} \subseteq \mathcal{I} \cap \mathcal{J}$.
- (5) We have $\mathcal{J}(\mathcal{I}:\mathcal{J}) \subseteq \mathcal{I} \subseteq \mathcal{I}:\mathcal{J}$.
- (6) We have $\mathcal{I} : (\mathcal{J} + \mathcal{K}) = \mathcal{I} : \mathcal{J} + \mathcal{I} : \mathcal{K}.$
- (7) We have $(\mathcal{I}:\mathcal{J}):\mathcal{K}=\mathcal{I}:(\mathcal{J}\mathcal{K})=(\mathcal{I}:\mathcal{K}):\mathcal{J}.$
- (8) We have $(\mathcal{I} \cap \mathcal{J}) : \mathcal{K} = (\mathcal{I} : \mathcal{K}) \cap (\mathcal{J} : \mathcal{K}).$

Quotient of ideals (III)

PROPOSITION. Let f_1, \ldots, f_s, g be polynomials of $\mathbb{K}[x_1, \ldots, x_n]$ and let \mathcal{I} be an ideal of $\mathbb{K}[x_1, \ldots, x_n]$. Then we have

$$\mathcal{I} \cap \langle g \rangle = \langle f_1, \dots, f_s \rangle \implies \mathcal{I} : \langle g \rangle = \langle f_1/g, \dots, f_s/g \rangle.$$
 (2)

PROOF \triangleright We assume that $\{f_1, \ldots, f_s\}$ generates $\mathcal{I} \cap \langle g \rangle$. Observe that for $1 \leq i \leq s$ the polynomial f_i is a multiple of g. So we can consider the ideal \mathcal{J} of $\mathbb{K}[x_1, \ldots, x_n]$ generated by $\{f_1/g, \ldots, f_s/g\}$. Now, let $f \in \mathcal{J}$. For every $p \in \langle g \rangle$ we have $fp \in \langle f_1, \ldots, f_s \rangle$, that is $f \in \mathcal{I} : \langle g \rangle$. Conversely, let $f \in \mathcal{I} : \langle g \rangle$. Then, $fg \in \mathcal{I} \cap \langle g \rangle$ holds. Hence, there exists $q_1, \ldots, q_s \in \mathbb{K}[x_1, \ldots, x_n]$ such that $fg = \sum_{i=1}^{i=s} q_i f_i$. Since every f_i is a multiple of g, this latter equality shows that f lies in \mathcal{J} .

Quotient of ideals (IV)

Input: \mathcal{I} and \mathcal{J} ideals of $\mathbb{K}[x_1, \ldots, x_n]$ generated by $\{f_1, \ldots, f_s\}$ and $\{g_1, \ldots, g_r\}$ respectively.

Output: A Gröbner basis of the quotient ideal $\mathcal{I} : \mathcal{J}$.

```
Let H_1 be a Gröbner basis of \mathcal{I} \cap \langle g_1 \rangle.

Q := \{h/g_1 \mid h \in H\}

for i = 2 \cdots r repeat

Let H_i be a Gröbner basis of \mathcal{I} \cap \langle g_i \rangle.

H_i^* := \{h/g_i \mid h \in H_i\}

Replace Q by a Gröbner basis of \langle Q \rangle \cap \langle H_i^* \rangle

return Q
```

> K := <x^2-z>;

2 K := <x - z>

$$3 2 2 S :=$$

> Quotient(J, <x^2+x+1>);

Saturation of an ideal (I)

DEFINITION. Let \mathcal{I} be an ideal of $\mathbb{K}[x_1, \ldots, x_n]$ and h be a non-zero element of $\mathbb{K}[x_1, \ldots, x_n]$.

The *saturated ideal* of \mathcal{I} by h is denoted by $\mathcal{I} : h^{\infty}$ and defined by

$$\mathcal{I}: h^{\infty} = \{ f \in \mathbb{K}[x_1, \dots, x_n] \mid (\exists e \in \mathbb{N}) h^e f \in \mathcal{I} \}.$$

<u>**PROPOSITION.**</u> Let \mathcal{I} and h be as above. Then, $\mathcal{I} : h^{\infty}$ is an ideal. Moreover, there exists an integer N such that $\mathcal{I} : h^{\infty} = \mathcal{I} : h^{N}$.

Saturation of an ideal (II)

<u>**PROPOSITION.**</u> Let $\mathcal{I} = \langle f_1, \dots, f_s \rangle$ be an ideal of $\mathbb{K}[x_1, \dots, x_n]$ and let $h \in \mathbb{K}[x_1, \dots, x_n]$ be a non-zero polynomial. Let y be an extra variable. The we have

$$\mathcal{I}: h^{\infty} = \langle f_1, \dots, f_s, 1 - yh \rangle \cap \mathbb{K}[x_1, \dots, x_n].$$
(3)

PROOF \triangleright Let $g \in \mathcal{I} : h^{\infty}$. Then, there exists $e \in \mathbb{N}$ and polynomials $q_1, \ldots, q_s \in \mathbb{K}[x_1, \ldots, x_n]$ such that

$$h^e g = q_1 f_1 + \cdots + q_s f_s.$$

Now observe that

$$g = y^{e}h^{e}g + (1 - y^{e}h^{e})g$$

= $\sum_{i} q_{i}f_{i}y^{e} + (1 - yh)(1 + yh + \dots + y^{e-1}h^{e-1})g$

Since g belongs to $\mathbb{K}[x_1, \ldots, x_n]$ we have

 $g \in \langle f_1, \ldots, f_s, 1 - yh \rangle \cap \mathbb{K}[x_1, \ldots, x_n]$. Conversely, assume that this g belongs to this latter ideal. Then, there exist polynomials $q_1, \ldots, q_s, q_0 \in \mathbb{K}[x_1, \ldots, x_n][y]$ such that

$$g = \sum_{i} q_i f_i + q_0 (1 - yh)$$

holds. Let e be the highest degree w.r.t. y among the polynomials q_1, \ldots, q_s, q_0 Then replacing y with 1/h and multiplying this equality by h^e , we obtain $h^e g \in \mathcal{I}. \triangleleft$

Saturation of an ideal (III)

Input: *h* a polynomial of $\mathbb{K}[x_1, \ldots, x_n]$ and \mathcal{I} an ideal of $\mathbb{K}[x_1, \ldots, x_n]$ generated by $\{f_1, \ldots, f_s\}$.

Output: A Gröbner basis of the saturated ideal $\mathcal{I} : h^{\infty}$.

Let y be an extra variable.

Let < be a term order in $\mathbb{K}[x_1, \dots, x_n, y]$ such that every monomial involving y is greater than every monomial of degree zero w.r.t. y $F := \{f_1, \dots, f_s, 1 - yh\}$ Compute G a Gröbner basis of F w.r.t. < return $G \cap \mathbb{K}[x_1, \dots, x_n]$ > J := <x^2, (y-1)^2*(y+1)>; 2 2 $J := \langle x , (y - 1) (y + 1) \rangle$ > Saturate(J, y-1); 2 <x , y + 1> > K := $\langle x^3 + y^2 + x + y^2 \rangle$, $x^3 + y + x^3 + y^3 \rangle$; 3 2 2 3 3 3 $K := \langle x y + x y , x y + x y \rangle$ > Saturate(K, x); 3 2

<y + y, x y + y>

51

q1 := Quotient(K, x);2 3 2 2 2 4 2 q1 := $\langle -x \quad y + y \rangle$, x y + y , x y + x y> > q2 := Quotient(q1, x); 2 3 2 2 3 $q2 := \langle -x \quad y + y , x \quad y + y , x \quad y + x \quad y \rangle$ > q3 := Quotient (q2, x); 3 2 q3 := <y + y, x y + y> > Saturate(q3, y); 2 2 <x + 1, y + 1>

Algebraic varieties (I)

DEFINITION. For $f_1, \ldots, f_s \in \mathbb{K}[x_1, \ldots, x_n]$, we define

$$V_{\mathbb{L}}(f_1,\ldots,f_s) = \{\zeta \in A^n(\mathbb{L}) \mid f_1(\zeta) = \cdots = f_s(\zeta) = 0\}.$$

More generally, for $F \subset \mathbb{K}[x_1, \ldots, x_n]$, the zero set of F in $A^n(\mathbb{L})$ is defined by

$$V_{\mathbb{L}}(F) = \{ \zeta \in A^n(\mathbb{L}) \mid (\forall f \in F) \ f(\zeta) = 0 \}.$$

A subset \mathcal{V} of $A^n(\mathbb{L})$ is an **(affine) algebraic variety** over \mathbb{K} if there exists $F \subset \mathbb{K}[x_1, \ldots, x_n]$ such that $\mathcal{V} = V_{\mathbb{L}}(F)$.

<u>**PROPOSITION.**</u> For $F \subset \mathbb{K}[x_1, \ldots, x_n]$, we have

 $V_{\mathbb{L}}(F) = V_{\mathbb{L}}(\langle F \rangle).$

<u>COROLLARY.</u> For $f_1, \ldots, f_s, g_1, \ldots, g_t \in \mathbb{K}[x_1, \ldots, x_n]$, we have $\langle f_1, \ldots, f_s \rangle = \langle g_1, \ldots, g_t \rangle \implies V_{\mathbb{L}}(f_1, \ldots, f_s) = V_{\mathbb{L}}(g_1, \ldots, g_t).$

Algebraic varieties (II)

<u>**DEFINITION.</u>** Let \mathcal{V} be any subset of $A^n(\mathbb{L})$. (Hence, \mathcal{V} may not be an algebraic variety.) The **ideal over** \mathbb{K} of \mathcal{V} is defined by</u>

$$I_{\mathbb{K}}(\mathcal{V}) = \{ f \in \mathbb{K}[x_1, \dots, x_n] \mid (\forall \zeta \in \mathcal{V}) f(\zeta) = 0 \}.$$

<u>**PROPOSITION.**</u> Let \mathcal{I}, \mathcal{J} be ideals of $\mathbb{K}[x_1, \ldots, x_n]$ and let $\mathcal{V}, \mathcal{W} \subset A^n(\mathbb{L})$ be algebraic varieties over \mathbb{K} . Then we have

(i) $\mathcal{I} \subseteq \mathcal{J} \Rightarrow V_{\mathbb{L}}(\mathcal{J}) \subseteq V_{\mathbb{L}}(\mathcal{I}),$ (ii) $\mathcal{V} \subseteq \mathcal{W} \iff I_{\mathbb{K}}(\mathcal{W}) \subseteq I_{\mathbb{K}}(\mathcal{V}),$ (iii) $V_{\mathbb{L}}(I_{\mathbb{K}}(\mathcal{V})) = \mathcal{V},$ (iv) $I_{\mathbb{K}}(V_{\mathbb{L}}(\mathcal{I})) \supseteq \mathcal{I},$ (v) $V_{\mathbb{L}}(\mathcal{I}) \cap V_{\mathbb{L}}(\mathcal{J}) = V_{\mathbb{L}}(\mathcal{I} + \mathcal{J})$ (vi) $V_{\mathbb{L}}(\mathcal{I}) \cup V_{\mathbb{L}}(\mathcal{J}) = V_{\mathbb{L}}(\mathcal{I} \cap \mathcal{J}) = V_{\mathbb{L}}(\mathcal{I}.\mathcal{J}).$

Zariski topology (I)

<u>REMARK.</u> Let \mathcal{E} be a non-empty set. We recall that a topology of \mathcal{E} is a collection \mathcal{T} of subsets of \mathcal{E} satisfying the following axioms

- $(O_1) \ \mathcal{E} \in \mathcal{T},$
- (O_2) the intersection of two elements of \mathcal{T} is an element of \mathcal{T} ,
- (O_3) any union (finite or not) of elements of \mathcal{T} is an element of \mathcal{T} .
 - The elements of \mathcal{T} are called the open sets of the topology. Their complements are called the closed sets of the topology and satisfy the following properties
- (C_1) Ø is a closed set.
- (C_2) the union of two closed sets is a closed set,
- (C_3) any intersection (finite or not) of closed sets is a closed set.

Observe that a topology may be given by its closed sets rather than its open sets. Therefore, the properties of $(C_1), (C_2), (C_3)$ can be viewed as axiomx for a topology given by its closed sets.

Zariski topology (II)

<u>REMARK.</u> A subset X of \mathcal{E} may be approximated by a closed set, precisely the intersection of all the closed sets containing X, which is called the closure of X w.r.t. the topology and which is denoted by \overline{X} . The map $X \mapsto \overline{X}$ satisfies the following properties for every subsets X, Y of \mathcal{E}

 $(F_{1}) \ X \subseteq \overline{X}$ $(F_{2}) \ \overline{\overline{X}} = \overline{X}$ $(F_{3}) \ X \subseteq Y \implies \overline{X} \subseteq \overline{Y}$ $(F_{4}) \ X \subseteq \overline{Y} \iff \overline{X} \subseteq \overline{Y}$ $(F_{5}) \ \overline{X \cup Y} = \overline{X} \cup \overline{Y}$ $(F_{6}) \ X \subseteq Y \implies \overline{Y} = \overline{X} \cup \overline{Y} \setminus \overline{X}$

Zariski topology (III)

<u>**PROPOSITION.</u>** The set of the affine varieties over \mathbb{K} of $A^n(\mathbb{L})$ are the closed sets of a topology called *Zariski topology*.</u>

<u>**PROPOSITION.</u>** Let \mathcal{W} be a subset of $A^n(\mathbb{L})$. The affine variety $V_{\mathbb{L}}(I_{\mathbb{K}}(W))$ is the intersection of all varieties V containing \mathcal{W} . Therefore, it is denoted $\overline{\mathcal{W}}$ and called the *Zariski closuer* of \mathcal{W} .</u>

Zariski topology (IV)

Hilbert theorems of zeros (I)

LEMMA. Let \mathbb{L} be an infinite field and let $p \in \mathbb{L}[x_1, \ldots, x_k]$. Then we have

$$p \neq 0 \Rightarrow (\exists (a_1, \dots, a_n) \in \mathbb{L}^n) p(a_1, \dots, a_n) \neq 0.$$

<u>THEOREM.</u>[Weak Theorem of Zeros] Let \mathbb{L} be an algebraically closed field of which \mathbb{K} is a sub-field and let F be a subset of $\mathbb{K}[x_1, \ldots, x_n]$. Then we have

$$V_{\mathbb{L}}(\langle F \rangle) = \emptyset \implies \langle F \rangle = \mathbb{K}[x_1, \dots, x_n].$$

Hilbert theorems of zeros (II)

LEMMA. Let f_1, \ldots, f_s, h be polynomials of $\mathbb{K}[x_1, \ldots, x_n]$ and let y be an extra variable. Then we have

$$\langle f_1, \dots, f_s, 1 - yh \rangle = \mathbb{K}[x_1, \dots, x_n, y] \implies h \in \sqrt{\langle f_1, \dots, f_s \rangle}$$

where $\langle f_1, \ldots, f_s, 1 - yh \rangle$ and $\langle f_1, \ldots, f_s \rangle$ denote respectively the ideals generated by $\{f_1, \ldots, f_s, 1 - yh\}$ in $\mathbb{K}[x_1, \ldots, x_n, y]$ and $\{f_1, \ldots, f_s\}$ in $\mathbb{K}[x_1, \ldots, x_n] = \mathbb{K}[x_1, \ldots, x_n].$

Hilbert theorems of zeros (III)

PROOF \triangleright Let us assume that $\langle f_1, \ldots, f_s, 1 - yh \rangle$ generates $\mathbb{K}[x_1, \ldots, x_n, y]$. Then there exists $p_1, \ldots, p_s, q \in \mathbb{K}[x_1, \ldots, x_n, y]$ such that

$$1 = \sum_{i=1}^{s} p_i(x_1, \dots, x_n, y) f_i + q(x_1, \dots, x_n, y) (1 - yh)$$

Substituting 1/h to y we obtain

$$1 = \sum_{i=1}^{s} p_i(x_1, \dots, x_n, 1/h) f_i.$$

Let e be the maximum degree in y among the polynomials p_1, \ldots, p_s . By multiplying the previous equality by h^e we obtain

$$h^e = \sum_{i=1}^s q_i f_i.$$

where $q_i = h^e p_i(x_1, \ldots, x_n, 1/h)$ is a polynomial of $\mathbb{K}[x_1, \ldots, x_n]$ for $1 \le i \le s$. This shows that h belongs to the radical of the ideal generated by f_1,\ldots,f_s in $\mathbb{K}[x_1,\ldots,x_n]$.

Hilbert theorems of zeros (IV)

<u>THEOREM.</u>[Theorem of Zeros] Let \mathbb{L} be an algebraically closed field of which \mathbb{K} is a sub-field. Let $F = \{f_1, \ldots, f_s\}$ be a subset of $\mathbb{K}[x_1, \ldots, x_n]$ and let $h \in \mathbb{K}[x_1, \ldots, x_n]$. Then we have

 $h \in I_{\mathbb{K}}(V_{\mathbb{L}}(F)) \iff (\exists e \in \mathbb{N}) h^e \in \langle F \rangle.$

Hilbert theorems of zeros (V)

PROOF \triangleright The condition (right-hand part of the equivalence) is clearly sufficient. Let us prove it is necessary. So, let us assume that $h \in I_{\mathbb{K}}(V_{\mathbb{L}}(F))$. Let y be an extra variable and consider \mathcal{J} the subset of $\mathbb{K}[x_1, \ldots, x_n, y]$ generated by $\langle f_1, \ldots, f_s, 1 - yh \rangle$. Let $a = (a_1, \ldots, a_n, a_{n+1}) \in \mathbb{L}^{n+1}$ be a point. We distinguish two cases.

- If $(a_1, \ldots, a_n) \in V_{\mathbb{L}}(F)$ then $(a_1, \ldots, a_n) \in V_{\mathbb{L}}(h)$ and $a \notin V_{\mathbb{L}}(\mathcal{J})$.
- If $(a_1, \ldots, a_n) \notin V_{\mathbb{L}}(F)$ then clearly $a \notin V_{\mathbb{L}}(\mathcal{J})$.

Therefore $a \notin V_{\mathbb{L}}(\mathcal{J})$ in any case. By virtue of Theorem ?? we have $\mathcal{J} = \mathbb{K}[x_1, \dots, x_n, y]$. Then, from Lemma 60 we obtain $h \in \sqrt{\langle f_1, \dots, f_s \rangle}$ which completes the proof. \triangleleft

Hilbert theorems of zeros (VI)

<u>THEOREM.</u>[Strong Theorem of Zeros] Let \mathbb{L} be a field of which \mathbb{K} is a sub-field. Let F be a subset of $\mathbb{K}[x_1, \ldots, x_n]$ and let V be the affine variety of F over \mathbb{L} . Then we have

$$\sqrt{I_{\mathbb{K}}(V)} = I_{\mathbb{K}}(V). \tag{4}$$

In addition, if \mathbbm{L} is an algebraically closed field, then we have

$$I_{\mathbb{K}}(V_{\mathbb{L}}(\langle F \rangle)) = \sqrt{\langle F \rangle}.$$
(5)

Hilbert theorems of zeros (VII)

PROOF \triangleright Relation (4) is a consequence of the fact that $\mathbb{K}[x_1, \ldots, x_n]$ is an integral domain. The details are left to the reader To Do. Let us prove Relation (5. Let $f \in \sqrt{\langle F \rangle}$. There exists $e \in \mathbb{N}$ such that $f^e \in \langle F \rangle$. Hence, f^e , and thus f, belong to $I_{\mathbb{K}}(V_{\mathbb{L}}(\langle F \rangle))$. Conversely, let $f \in I_{\mathbb{K}}(V_{\mathbb{L}}(\langle F \rangle))$. By definition, the polynomial f vanishes at every point of $V_{\mathbb{L}}(\langle F \rangle)$. Hence, by virtue of Theorem ?? there exits an integer e such that $f^e \in \langle F \rangle$, that is $f \in \sqrt{\langle F \rangle}$.

Radical membership (I)

<u>THEOREM.</u> Let f_1, \ldots, f_s, h be polynomials of $\mathbb{K}[x_1, \ldots, x_n]$ and let y be an extra variable. Let \mathcal{I} be the ideal generated by f_1, \ldots, f_s in $\mathbb{K}[x_1, \ldots, x_n]$. Then we have

$$h \in \sqrt{\mathcal{I}} \iff \langle f_1, \dots, f_s, 1 - yh \rangle = \mathbb{K}[x_1, \dots, x_n, y]$$
 (6)

PROOF \triangleright Lemma 60 states that the condition is sufficient. Let us prove that it is necessary. Let *e* be a positive integer such that $h^e \in \mathcal{I}$. We write

$$1 - y^{e}h^{e} = (1 - yh)(1 + yh + \dots + y^{e-1}h^{e-1}) \in \mathcal{J}$$
(7)

Let \mathcal{J} be the subset of $\mathbb{K}[x_1, \ldots, x_n, y]$ generated by $f_1, \ldots, f_s, 1 - yh$. (Thus \mathcal{J} is either an ideal or the entire ring). Relation (7) shows that $1 - y^e h^e$ belongs to the ideal generated by 1 - yh in $\mathbb{K}[x_1, \ldots, x_n, y]$. Since $h^e \in \mathcal{I}$, the polynomial $y^e h^e$ lies in the ideal generated by f_1, \ldots, f_s in $\mathbb{K}[x_1, \ldots, x_n, y]$. Therefore $1 = 1 - y^e h^e + y^e h^e$ belongs to \mathcal{J} .

Radical membership (II)

Input: f_1, \ldots, f_s, h be polynomials of $\mathbb{K}[x_1, \ldots, x_n]$ and y be an extra variable. **Output:** true if and only if h belongs to $\sqrt{\langle f_1, \ldots, f_s \rangle}$.

Choose any term order < for the monomials of $\mathbb{K}[x_1, \ldots, x_n, y]$ Compute a Gröbner basis G of $f_1, \ldots, f_s, 1 - yh$ w.r.t.< **return** $G \cap \mathbb{K} \neq \emptyset$

Operation on algebraic varieties

The tangent space at a point (I)

<u>NOTATION.</u> Let $V \subset A^n(\mathbb{L})$ be a variety over \mathbb{K} and let $f_1, \ldots, f_r \in \mathbb{K}[x_1, \ldots, x_n]$ be such that $I_{\mathbb{K}}(V) = \langle f_1, \ldots, f_r \rangle$.

Consider a point $p \in V$. We choose our coordinate system so that p is the origin. We consider an arbitrary line ℓ through p and a point $q = (a_1, \ldots, a_n)$, that is

$$\ell = \{ (ta_1, \dots, ta_n) \mid t \in \mathbb{L} \}.$$

The intersection $V \cap \ell$ is described by the system of equations in $\mathbb{L}[t]$

$$f_1(ta_1,\ldots,ta_n)=\cdots=f_r(ta_1,\ldots,ta_n)=0$$

<u>DEFINITION.</u> We say that the line ℓ is **tangent to** p **at order** n if t = 0 is a zero of order n + 1 of the above system.

We say that the line ℓ tangent to p if it is tangent to V at order one.

The tangent space at a point (II)

<u>DEFINITION.</u> The tangent space T_pV of V at p is the union of all points lying on lines tangent to V at p.

In the degenerate case where p is an isolated point of V, the tangent space of V at p is the zero-dimensional vector space consisting only of the point p.

<u>**PROPOSITION.</u></u> The above definition is independent of the choice of generators of I_{\mathbb{K}}(V).</u>**

EXAMPLE. Consider the **parabola** $V \subset A^2(\mathbb{L})$ defined by $y = x^2$ with x < y. The expression $ta_2 - t^2a_1 = 0$ shows that

 $T_p V = \{ (a_1, 0) \mid a_1 \in \mathbb{L} \}.$

EXAMPLE. Consider the nodal curve $V \subset A^2(\mathbb{L})$ defined by $y^2 = x^2 + x^3$ with x < y. The expression $t^2a_2^2 - t^2a_1^2 - t^3a_1^3 = 0$ shows that $T_pV = A^2(\mathbb{L})$.

EXAMPLE. Consider the cusp $V \subset A^2(\mathbb{L})$ defined by $y^2 = x^3$ with x < y. The expression $t^2a_2^2 - t^3a_1^3 = 0$ shows that $T_pV = A^2(\mathbb{L})$.

The tangent space at a point (III)

<u>DEFINITION.</u> The differential of $f \in \mathbb{L}[x_1, \ldots, x_n]$ at an arbitrary point $p = (p_1, \ldots, p_n) \in A^n(\mathbb{L})$, denoted by $dF|_p$, is the linear part of the Taylor expansion of f around p, that is

$$df|_p(x-p) = \sum_{j=1}^{j=n} \frac{\partial f}{\partial x_j}(p)(x_j - p_j).$$

Observe that $dF|_p$ is a linear form from $A^n(\mathbb{L})$ to \mathbb{L} .

<u>THEOREM.</u> Recall $V \subset A^n(\mathbb{L})$ is a variety over \mathbb{K} and $f_1, \ldots, f_r \in \mathbb{K}[x_1, \ldots, x_n]$ are such that $I_{\mathbb{K}}(V) = \langle f_1, \ldots, f_r \rangle$. Let p a point of V. Then, the tangent space T_pV of V at p is the linear variety defined by

$$T_p V = V_{\mathbb{K}} (df_1|_p (x-p), \dots, df_1|_r (x-p)).$$

Moreover, the tangent space T_pV is independent of the choice of generators of $I_{\mathbb{K}}(V)$.

The tangent space at a point (IV)

<u>COROLLARY.</u> Let $V(f) \subset A^n(\mathbb{L})$, for $f \in \mathbb{K}[x_1, \ldots, x_n]$, be an hypersurface and let $p \in V(f)$ be a point. Then, the dimension of the tangent space T_pV is given by

$$\dim(T_p V) = \begin{cases} n-1 & \text{if } \text{ at least one} \frac{\partial f}{\partial x_j}(p) \neq 0\\ n & \text{if } \text{ all} \frac{\partial f}{\partial x_j}(p) = 0 \end{cases}$$

EXAMPLE. Continuing the **parabola** example, we define $f(x, y) = y - x^2$ such that, for $p = (p_1, p_2) \in A^2(\mathbb{L})$, we have

$$T_p V = V_{\mathbb{K}}(-2p_1(x-p_1) + 1(y-p_2))$$

We observe $\dim(T_p V) = 1$ for all p.

EXAMPLE. Continuing the nodal curve example, we define $f(x,y) = y^2 - x^2 - x^3$ such that, for $p = (p_1, p_2) \in A^2(\mathbb{L})$, we have $T_p V = V_{\mathbb{K}}(-(2p_1 + 3p_1^2)(x - p_1) + 2p_2(y - p_2))$

We observe $\dim(T_pV)$ is 2 for p = (0, 0) and 1 otherwise.
Smoothness (I)

<u>DEFINITION.</u> Let $V \subset A^n(\mathbb{L})$ be a variety over \mathbb{K} and let $p \in V$ be a point. The **dimension of** V at p, denoted by $\dim_p V$, is the maximum dimension of an irreducible variety V' over \mathbb{K} such that

$$\{p\} \subseteq V' \subseteq V.$$

The point is said **smooth** if we have

 $\dim_p V = \dim(T_p V).$

<u>DEFINITION.</u> For $f_1, \ldots, f_r \in \mathbb{L}[x_1, \ldots, x_n]$ and $p \in A^n(\mathbb{L})$, the **Jacobian matrix** of f_1, \ldots, f_r at p is the $r \times n$ matrix denoted by $\operatorname{Jac}(f_1, \ldots, f_r)(p)$ whose (i, j)-element is $\frac{\partial f_i}{\partial x_j}(p)$.

<u>THEOREM.</u>[Jacobian Criterion] Let $f_1, \ldots, f_r \in \mathbb{K}[x_1, \ldots, x_n]$ be polynomials and let $p \in V(f_1, \ldots, f_r)$ be a point. Assume that \mathbb{K} has characteristic 0. If $Jac(f_1, \ldots, f_r)(p)$ has rank r, then

- the point p is **smooth** and,
- lies in a unique irreducible component of V of dimension n r.

Smoothness (II)

Multiplicity