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An overview of this tutorial

• Main objective: an introduction for non-experts.

• Prerequisites: some familiarity with linear algebra, univariate polynomials

(division, Euclidean Algorithm, roots of a polynomial), polynomial rings (partial

degree, ideal).

• Outline:

- algebraic varieties,

- term orders,

- multivariate division,

- leading term ideal,

- Gröbner bases,

- S-polynomials,

- Buchberger’s algorithm,
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- Minimal Gröbner bases,

- Reduced Gröbner bases,

- elimination ideals,

- operation on ideals,

- Hilbert theorems of zeros,

- operation on algebraic varieties,

- constructible sets,

- Zariski topology,

- smoothness,

- multiplicity.
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Some notations before we start the theory (I)

NOTATION. Throughout the talk, we consider a field K and an ordered set

X = x1 < · · · < xn of n variables. Typically K will be

- a finite field, such as Z/pZ for a prime p, or

- the field Q of rational numbers, or

- a field of rational functions over Z/pZ or Q.

We will denote by K an algebraic closure of K.

https://en.wikipedia.org/wiki/Algebraic_closure

- K is the smallest field containing K and over which any non-constant

polynomial factorizes into factors of degree 1,

- For K = R, the field of real numbers, we can choose K = C, the field of

complex numbers.

We will also consider a field L extending K and contained in K. Hence, we have

K ⊂ L ⊂ K. More on field extensions and algebraic closures in the next chapter.
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Some notations before we start the theory (II)

NOTATION. We denote by K[x1, . . . , xn] the ring of the polynomials with

coefficients in K and variables in X . For F ⊂ K[x1, . . . , xn], we write 〈F 〉 and
√

〈F 〉 for the ideal generated by F in K[x1, . . . , xn] and its radical, respectively.

Thus, writing F = {g1, . . . , gs}, by definition, for f ∈ K[x1, . . . , xn] we have

• f ∈ 〈F 〉 ⇐⇒ (∃q1, . . . , qs ∈ K[x1, . . . , xn]) f = q1g1 + · · ·+ qsgg,

• f ∈
√

〈F 〉 ⇐⇒ (∃e ∈ N) fe ∈ 〈F 〉.
Observe that we have 〈F 〉 ⊆

√

〈F 〉.
https://en.wikipedia.org/wiki/Ideal_(ring_theory)

https://en.wikipedia.org/wiki/Radical_of_an_ideal

EXAMPLE. For F = {xy2 + 2y2, x4 − 2x2 + 1}, we have
√

〈F 〉 = 〈x2 − 1, y〉

NOTATION. For 1 ≤ i ≤ n, we denote by Ai(L) the affine space of dimension i

over L.
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> with(PolynomialIdeals):

> g1 := x * yˆ2 + 2 * yˆ2;

2 2

g1 := x y + 2 y

> g2 := xˆ4 -2 *xˆ2 + 1;

4 2

g2 := x - 2 x + 1

> J := <g1, g2>;

2 2 4 2

J := <x y + 2 y , x - 2 x + 1>

> f := yˆ2;

2

f := y

> f in J;

true
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> 1 in J;

false

> gcdex(g2,(x+2),x,’s’, ’t’);

1

> s,t;

3 2

1/9, -1/9 x + 2/9 x - 2/9 x + 4/9

> expand(s * g2 + t * (x +2) - 1);

0

> ## Hence t is the inverse of (x+2) modulo g2

> g3 := t * (x +2) * yˆ2 + s * g2 * yˆ2:

> expand(g3);

2

y
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Term orders (I)

NOTATION. We denote by M the abelian monoid generated by x1, . . . , xn.

DEFINITION. A total order ≤ on M is a term order if the following two

conditions hold

(i) for every m ∈ M we have 1M ≤ m

(ii) for every m,m′,m′′ ∈ M we have m ≤ m′ ⇒ mm′′ ≤ m′m′′

NOTATION. For f ∈ K[x1, . . . , xn] with f 6= 0, we denote by

• lm(f) the leading monomial of f , that is the largest m ∈ M occurring in f ,

• lc(f) the leading coefficient of f , that is the coefficient of lm(f) in f ,

• lt(f) = lc(f)lm(f) the leading term of f ,

• rd(f) the reductum of f , that is f − lt(f).

PROPOSITION. For f, g ∈ K[x1, . . . , xn], with f 6= 0 and g 6= 0, we have

lm(fg) = lm(f)lm(g) and lc(fg) = lc(f)lc(g).
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Term orders (II)

REMARK. Recall that the variables x1, . . . , xn are ordered by

x1 < · · · < xn.

Hence, we identify every monomial m = xen
n · · ·xe1

1 with the tuple of

non-negative integers e = (en, . . . , e1) often called the exponent vector of m.

It is convenient to denote by |e| the sum e1 + · · ·+ en which is the total degree of

the monomial m. Finally, we define rev(e) = (e1, . . . , en).

NOTATION. For a = (an, . . . , a1) and b = (bn, . . . , b1) in Nn we define

a <lex b ⇐⇒ (∃i ∈ {1, . . . , n}) t.q.







ai < bi

aj = bj (∀j > i)

and

a <deglex b ⇐⇒







|a| < |b| or

|a| = |b| and a <lex b

9



and

a <degrevlex b ⇐⇒







|a| < |b| or

|a| = |b| and rev(a) >lex rev(b)
.

Moreover, we define

a≤lexb ⇐⇒ a <lex b or a = b

and

a≤deglexb ⇐⇒ a <deglex b or a = b

and

a≤degrevlexb ⇐⇒ a <degrevlex b or a = b.

PROPOSITION. The binary relations ≤lex, ≤deglex and ≤degrevlex define term

orders in K[x1, . . . , xn].
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Term orders (III)

EXAMPLE. Assume n = 2 and define x1 = x and x2 = y. Then, we have

1 <lex x <lex x2 <lex · · · <lex y <lex xy <lex x2y <lex · · · <lex y2 <lex · · ·

and

1 <deglex x <deglex y <deglex x2 <deglex xy <deglex y2 <deglex x3 · · ·

For n = 3 with x1 = x, x2 = y and x3 = z we have

y3z≤deglexxyz
2 but xyz2≤degrevlexy

3z.

PROPOSITION. Let ≤ be a term order for K[x1, . . . , xn]. Then for all monomials

m,m′, we have

m | m′ ⇒ m ≤ m′.

THEOREM. Let ≤ be a term order for K[x1, . . . , xn]. Then, for every non-empty

set M of monomials of K[x1, . . . , xn] there exists m ∈ M such that we have

(∀m′ ∈ M) m ≤ m′.
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Multi-divisor division (I)

NOTATION. From now on, we fix a term order ≤.

DEFINITION. Let f, g, h ∈ K[x1, . . . , xn] with g 6= 0. We say that f reduces to

h modulo g in one step and we write

f
g−→ h

if and only if lm(g) divides a non-zero term t of f and

h = f − t

lc(g)lm(g)
g.

REMARK. When this holds, observe that we have

h = (f − t)− p with p := t

lm(g)
rd(g)

lc(g)
.

One can check that either p = 0 holds or that we have

lm(p) < lm(t).
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Multi-divisor division (II)

DEFINITION. Let f, h, r and f1, . . . , fs be polynomials in K[x1, . . . , xn] with

fi 6= 0 for all i = 1, . . . , s. Define F = {f1, . . . , fs}. We say that f reduces to h

modulo F and we write

f
F−→+h

if and only if there exists a sequence of indices i1, i2, . . . , it and a sequence of

polynomials h1, h2, . . . , ht−1 such that

f
fi1−→ h1

fi2−→ h2 · · ·ht−1
fit−→ r.

The polynomial r is called reduced w.r.t. F if

• either r = 0

• or no monomials in r is divisible by one of the lm(fi), for i = 1, . . . , s.

The polynomial r is called a remainder of f w.r.t. F if f
F−→+r and r is

reduced w.r.t. F .
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Multi-divisor division (III)

PROPOSITION. Let h, F be as in the previous definition, with h 6= 0, and let m

be a monomial and c ∈ K with c 6= 0. Then, we have

cm
F−→+h =⇒ lm(h) < m.

PROPOSITION. Let f, F be as above. Then, we have

f 6= 0 and f
F−→+0 =⇒ f not reduced w.r.t. F.

PROPOSITION. Let f, F be as above. Then, we have

f
F−→+ 0 ⇒ f ∈ 〈F 〉
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Multi-divisor division (IV)

REMARK. Observe that the univariate division of f by g, with g 6∈ K, in K[x]

can be computed as follows:

r := f

q := 0

while lm(g) | lm(r) repeat

Compute r′ and q′ such that

r
g−→ r′ and r = q′g + r′

r := r′

q := q + q′

return (q, r)
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Multi-divisor division (V)

DEFINITION. Let f, g1, . . . , gs, q1, . . . , qs, r ∈ K[x1, . . . , xn] such that gi 6= 0

for all i = 1, . . . , s. Define G = {g1, . . . , gs}. We say that (q1, . . . , qs) are the

quotients and r the remainder in the multivariate division of f w.r.t. G if the

following conditions hold

(i) f = q1g1 + · · ·+ qsgs + r,

(ii) r is reduced w.r.t. G,

(iii) max(lm(q1)lm(g1), . . . , lm(qs)lm(gs), lm(r)) = lm(f).

If this holds, then we write

f g1 · · · gs

r q1 · · · qs
.

Input: f, g1, . . . , gs ∈ K[x1, . . . , xn] such that gi 6= 0 for all i = 1, . . . , s.

Output: q1, . . . , qs, r ∈ K[x1, . . . , xn] such that
f g1 · · · gs

r q1 · · · qs
.
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for i := 1, . . . , s repeat qi := 0

h := f

r := 0

while h 6= 0 repeat

i := 1

while i ≤ s repeat

if lm(gi) | lm(h) then

t :=
lt(h)
lt(gi)

qi := qi + t

h := h− tgi

i := 1

else

i := i+ 1

r := r + lt(h)

h := h− lt(h)

return(q1, . . . , qs, r)
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Multi-divisor division (VI)

PROPOSITION. The previous algorithm terminates and is correct.

EXAMPLE. With n = 1, x1 = x and ≤ = ≤lex we consider g1 = x2,

g2 = x2 − x , G = {g1, g2} and f = x. Then, we have

f g1 g2

f 0 0

However f is not reduced w.r.t. G = {g1, g2}.

EXAMPLE. With n = 2, x = x1 < x2 = y and ≤ = ≤deglex we consider

g1 = yx− y, g2 = y2 − x, G = {g1, g2} and f = y2x. Then, we have

f g1 g2

x y 1

EXAMPLE. With n = 2, x = x1 < x2 = y and ≤ = ≤deglex we consider
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f = y2x− x, g1 = yx− y and g2 = y2 − x. Then we have

f g1 g2

0 y 1

However we have

f g2 g1

x2 − x x 0
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Leading term ideal

DEFINITION. For a subset S of K[x1, . . . , xn], the leading term ideal of S is the

ideal of K[x1, . . . , xn] denoted by lt(S) and defined by

lt(S) = 〈lt(s) | s ∈ S〉.

PROPOSITION. Let S be a set of non-zero terms of K[x1, . . . , xn] and let I be its

leading term ideal. For every f ∈ K[x1, . . . , xn] the following statements are

equivalent

(i) f ∈ I

(ii) for every term t of f there exists s ∈ S such that s divides t.

Moreover, there exists a finite subset S0 of S such that I = 〈S0〉.
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Gröbner bases (I)

DEFINITION. Let I be an ideal of K[x1, . . . , xn]. A finite subset G of I is a

Gröbner basis of I if and only if

(∀f ∈ I) (∃g ∈ G) lm(g) divides lm(f).

A finite subset G of K[x1, . . . , xn] is a Gröbner basis if it is a Gröbner basis for

the ideal 〈G〉 it generates.

THEOREM. Let I be an ideal of K[x1, . . . , xn] and G = {g1, . . . , gt} be a finite

subset of I . Then, the following statements are equivalent

(i) G is a Gröbner basis for I .

(ii) For every f ∈ K[x1, . . . , xn] we have: f ∈ I ⇐⇒ f
G−→+0.

(iii) For every f ∈ K[x1, . . . , xn], the polynomial f belongs to I if and only if

there exists q1, . . . , qt ∈ K[x1, . . . , xn] such that f = q1g1 + · · · qtgt and

max(lm(q1)lm(g1), . . . , lm(qs)lm(gs)) = lm(f).

(iv) lt(G) = lt(I).
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Gröbner bases (II)

COROLLARY. Let I be an ideal of K[x1, . . . , xn] and G = {g1, . . . , gt} be a

finite subset of I . If G is a Gröbner basis of I , then we have I = 〈g1, . . . , gt〉.
PROOF ⊲ Clearly 〈g1, . . . , gt〉 ⊆ I holds. For the reverse inclusion, let f ∈ I .

With the previous theorem we have f
G−→+0, which implies f ∈ 〈g1, . . . , gt〉. ⊳

THEOREM. Every ideal of K[x1, . . . , xn] admits a Gröbner basis.

PROOF ⊲ Let I be an ideal of K[x1, . . . , xn]. The leading term ideal lt(I) is

generated by a finite subset SG of lt(I). Hence SG is of the form

{lt(g1), . . . , lt(gt)} where g1, . . . , gt are polynomials of I . We define

G = {g1, . . . , gt} such that we have lt(I) = lt(G). With the previous theorem we

deduce that G is a Gröbner basis for I . ⊳

THEOREM. Let G = {g1, . . . , gt} be a set of non-zero polynomials of

K[x1, . . . , xn]. Then, the set G is a Gröbner basis if and only if for all

f ∈ K[x1, . . . , xn] all remainders of a multivariate division of f w.r.t. G are

equal.
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S-polynomials (I)

REMARK. Let f, f1, . . . , fs be non-zero polynomials in K[x1, . . . , xn]. We define

F = {f1, . . . , fs}. For performing the multivariate division of f w.r.t F , one needs

to order the polynomials in F . We know that the result of this division may depend

on this order. For one order, we may first reduce a term t in f by a polynomial fi
and for another order, we may first reduce t by a polynomial fj , with j 6= i. In the

first case we obtain the polynomial

hi = f − t

lt(fi)
fi

and in the second case we obtain the polynomial

hj = f − t

lt(fj)
fj .

The ambiguity that is introduced is

hj − hi =
t

lt(fi)
fi −

t

lt(fj)
fj .

This leads to the notion of a S-polynomial
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S-polynomials (II)

DEFINITION. Let f, g ∈ K[x1, . . . , xn] be two non-zero polynomials and let L

be the least common multiple of lm(f) and lm(g). The polynomial

S(f, g) =
L

lt(f)
f − L

lt(g)
g

is called the S-polynomial of f and g.

EXAMPLE. With n = 2, x = x1 < x2 = y and ≤ = ≤deglex we consider

f1 = yx− y, f2 = y2 − x, F = {f1, f2} and f = y2x. We have

f
f1−→ f − yf1 = y2 and f

f2−→ f − xf2 = x2.

The ambiguity introduced is

S(f1, f2) = yf1 − xf2 = −y2 + x2.

Also note that

S(f1, f2) ∈ 〈f1, f2〉.
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Moreover, the polynomial S(f1, f2) is not reduced w.r.t. F and we have

S(f1, f2)
f2−→ x2 − x.

The polynomial f4 = x2 − x is reduced w.r.t. F without being null. Observe that

we have

f
f1−→ y2

f2−→ x and f
f2−→ x2 f4−→ x.

Hence, adding f4 to F allows the two reductions to converge toward the same

result.
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Buchberger’s algorithm (I)

THEOREM.[Buchberger] Let G = {g1, . . . , gt} be a set of non-zero polynomials

in K[x1, . . . , xn]. Then, the set G is a Gröbner basis if and only if for all i 6= j we

have

S(gi, gj)
G−→+0.

EXAMPLE. With n = 2, x = x1 < x2 = y and ≤ = ≤deglex we consider

f1 = xy − x and f2 = x2 − y. We define F = {f1, f2}. Then we have

S(f1, f2) = xf1 − yf2 = y2 − x2 f2−→ y2 − y

Since f3 = y2 − y is reduced w.r.t. F , the set F is not a Gröbner basis. So, let us

define F ′ = F∪{f3}. Now we have

S(f1, f2)
F ′

−→+ 0.
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Then we have

S(f1, f3) = yf1 − xf3 = y(xy − x)− x(y2 − y) = 0.

and

S(f2, f3) = y2(x2 − y)− x2(y2 − y) = −y3 + yx2 f3−→ yx2 − y2
f2−→ 0.

Thus, Buchberger’s Theorem shows that F ′ is a Gröbner basis.
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Buchberger’s algorithm (II)

Input: F = {f1, . . . , fs} ⊆ K[x1, . . . , xn] with fi 6= 0 for all i = 1, . . . , s.

Output: G = {g1, . . . , gt} ⊆ K[x1, . . . , xn] a Gröbner basis of 〈F 〉.

G0 := F

P := {(fi, fj) | 1 ≤ i < j ≤ s}
i := 1

while P 6= ∅ repeat

Choose (f, g) ∈ P

P := P \ {(f, g)}
Compute hi the remainder of S(f, g) w.r.t. Gi−1

if hi 6= 0 then

P := P ∪ {(g, hi) | g ∈ Gi−1}
Gi := Gi−1 ∪ {hi}
i := i+ 1

return(Gi−1)
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Buchberger’s algorithm (III)

THEOREM. Buchberger’s algorithm terminates and is correct.

PROOF ⊲ The previous algorithm constructs a sequence of sets

G0 ⊆ G1 ⊆ · · · ⊆ Gi ⊆ Gi+1 ⊆ · · ·

together with a sequence of non-zero polynomials h1, . . . , hi, hi+1, . . . such that

hi is reduced w.r.t. Gi−1. Hence, no term in hi is divisible by lm(g) for any g in

Gi−1. Thus we have

lt(hi) 6∈ lt(Gi−1)

Therefore, we have

lt(Gi−1) ⊆ lt(Gi) but lt(Gi−1) 6= lt(Gi)

It follows, that the lt(Gi)’s form a strictly ascending chain of ideals. Since

K[x1, . . . , xn] is Noetherian, this chain must be ultimately constant. This implies

that the algorithm must terminate. The proof of the correctness of the algorithm

follows from Buchberger’s Theorem. ⊳
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Buchberger’s algorithm (IV)

EXAMPLE. With n = 2, x = x1 < x2 = y and ≤ = ≤lex we consider

f1 = y + x2 − 1 and f2 = y2 + x− 1. We define F = {f1, f2}. Following

Buchberger’s Algorithm, let us compute a Gröbner basis of F for the ≤lex

ordering induced by y > x. We set G0 = F . Then, we compute

S(f1, f2) = yx2 − y − x+ 1
f1−→ −x4 + 2x2 − x

f2−→ −x4 + 2x2 − x.

So, we define

h1 = −x4 + 2x2 − x and G1 = {f1, f2, h1}.

Then, we compute

S(f1, h1) = −2yx2 + yx− x6 + x4 G1−→ 0

and

S(f2, h1) = −2y2x2 + y2x− x5 + x4 G1−→ 0

Hence G1 is a Gröbner basis of the ideal generated by F for the lexicographical
30



ordering induced by y > x. Now observe that

f2 = (y + 3x2 + 1)f1 − h1

which shows that f2 is in the ideal generated by f1 and h1. Therefore {f1, h1} is

a set of generators of the ideal generated by F .
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Minimal Gröbner bases

PROPOSITION. Let G = {g1, . . . gt} be a Gröbner basis for an ideal non-trivial I
of K[x1, . . . , xn]. If lc(g2) divides lc(g1) then {g2, . . . gt} is also a Gröbner basis

of I .

PROOF ⊲ A consequence of the definition of a Gröbner basis. ⊳

DEFINITION. A Gröbner basis G = {g1, . . . gt} of K[x1, . . . , xn] is called

minimal if the following conditions hold

• for all i = 1, . . . , t the leading coefficient lc(gi) of gi is 1,

• for all 1 ≤ i < j ≤ t the leading monomial lm(gi) does not divide the leading

monomial lm(gj).

PROPOSITION. Every non-trivial ideal I of K[x1, . . . , xn] admits a minimal

Gröbner basis.

PROPOSITION. Let G = {g1, . . . gt} and H = {h1, . . . , hs} be two minimal

Gröbner bases for the same non-trivial ideal I of K[x1, . . . , xn] for the same term

order. Then, s = t and after re-indexing the elements of H , if necessary, we have

lm(gi) = lm(hi) for all i = 1, . . . , t.
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Reduced Gröbner bases (I)

DEFINITION. A Gröbner basis G = {g1, . . . gt} of K[x1, . . . , xn] is called

reduced if the following conditions hold

• for all i = 1, . . . , t the leading coefficient lc(gi) of gi is 1,

• for all 1 ≤ i < j ≤ t no monomials of gj can be divided by the leading

monomial lm(gi).

Input: G = {g1, . . . , gt} ⊆ K[x1, . . . , xn] a minimal Gröbner basis of a non-trivial

ideal I .

Output: a reduced Gröbner basis of I .

H1 := {g2, . . . gt}
for i := 1 · · · t repeat

Compute hi the remainder of gi w.r.t. Hi

Hi+1 := {hi} ∪ Hi \ {gi+1}
return(Ht+1)
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Reduced Gröbner bases (II)

PROPOSITION. The previous algorithm terminates and is correct.

THEOREM.[Buchberger] Every non-trivial ideal I of K[x1, . . . , xn] admits a

unique reduced Gröbner basis.

THEOREM. Let F be a finite set of non-zero polynomials of K[x1, . . . , xn] and

let G be a reduced Gröbner basis of 〈F 〉. Then 〈F 〉 = K[x1, . . . , xn] if and only if

G = {1}.

PROOF ⊲ The condition is clearly sufficient. Let us prove that it is necessary.

Let us assume that 〈F 〉 = K[x1, . . . , xn]. Then 1 ∈ 〈F 〉. The only polynomial f

such that lc(f) = 1 and lm(f) divides 1 is 1 itself. Therefore, 1 ∈ G. But the

leading monomial of 1 divides any monomial. Hence, we have G = {1}. ⊳
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Elimination ideals

DEFINITION. Let I be a non-trivial ideal of K[x1, . . . , xn] and let 0 ≤ k < n be

an integer. The k-th elimination ideal of I is the ideal Ik = I ∩ K[x1, . . . , xn−k].

DEFINITION. Let 0 ≤ k < n be an integer. A term order < is said of

k-elimination if for every monomial Y of K[x1, . . . , xn] with a positive degree

w.r.t. at least one of the variables xn−k+1, . . . , xn and for every monomial X of

K[x1, . . . , xn−k] we have X < Y .

EXAMPLE. The lexicographical ordering induced by x1 < · · · < xn is of

k-elimination for every 0 ≤ k < n.

THEOREM.[Elimination Theorem] Let 0 < k < n be an integer and let < be a

term order of k-elimination. Let I be a non-trivial ideal and let Ik be its k-th

elimination ideal of I . Let G be a Gröbner basis of I for <. Then, the set

Gk = G ∩ K[x1, . . . , xn−k] is a Gröbner basis of Ik for <.

PROOF ⊲ See Chapter 3 in (Cox, Little, O’Shea, 1992). ⊳
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J := <y + xˆ2 -1, yˆ2 + x -1>;

2 2

J := <y + x - 1, x + y - 1>

> EliminationIdeal(J,{x});

4 2

<x - 2 x + x>

> EliminationIdeal(J,{y});

4 2

<y - 2 y + y>

J := <y + xˆ2 -1, yˆ3 + x -1>;

2 3

J := <x + y - 1, y + x - 1>

> EliminationIdeal(J,{x});

6 4 2

<x - 3 x + 3 x - x>

> J := <yˆ2 + y + x, zˆ2 + z*y + 1>;

2 2

J := <y + x + y, y z + z + 1>

> EliminationIdeal(J,{x});

<0>
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Intersection of ideals (I)

LEMMA. Let I be an ideal of K[x1, . . . , xn] and let t an extra variable. Let

{f1, . . . , fs} and {g1, . . . , gr} be two sets of generators of I . Then we have the

following properties.

• The sets {tf1, . . . , tfs} and {tg1, . . . , tgr} generate the same ideal in

K[x1, . . . , xn, t] denoted tI .

• For every polynomial h(x1, . . . , xn, t) ∈ tI and for every element a ∈ K, we

have h(x1, . . . , xn, a) ∈ I .

PROPOSITION. Let I and J be two ideals of K[x1, . . . , xn]. Let t be an extra

variable. Then we have

I ∩J = 〈tI + (1− t)J 〉 ∩ K[x1, . . . , xn] (1)
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Intersection of ideals (II)

PROOF ⊲ Let f ∈ K[x1, . . . , xn]. First assume that f ∈ I ∩J holds. Then,

clearly tf and (1− t)f belong to tI and (1− t)J respectively. Hence, f belongs

to the sum of these ideals. Since f belongs to K[x1, . . . , xn], we have

f ∈ 〈tI + (1− t)J 〉 ∩ K[x1, . . . , xn]. Conversely, assume that this latter relation

holds. Then there exists g(x1, . . . , xn, t) ∈ tI and h(x1, . . . , xn, t) ∈ (1− t)J
such that

f(x1, . . . , xn) = g(x1, . . . , xn, t) + h(x1, . . . , xn, t)

Since every polynomial in tI is a multiple of t we must have by specializing t to 0

f(x1, . . . , xn) = h(x1, . . . , xn, 0)

which shows that f belongs to J . Similarly, by specializing t to 1 we obtain

f(x1, . . . , xn) = g(x1, . . . , xn, 1)

which shows that f belongs to I . Therefore, we have f ∈ I ∩J . ⊳
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Intersection of ideals (III)

Input: I and J ideals of K[x1, . . . , xn] generated by {f1, . . . , fs} and {g1, . . . , gr}
respectively.

Output: A Gröbner basis of I ∩J .

Let t be an extra variable

F := {tf1, . . . , tfs, (1− t)g1, . . . , (1− t)gr}
Let < be a term order in K[x1, . . . , xn, t] such that every monomial

involving t is greater than every monomial of degree zero w.r.t. t

Compute G a Gröbner basis of F w.r.t. <

return G∩K[x1, . . . , xn]
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> J := <yˆ2 + 1>; K := <xˆ2 -2>;

2

J := <y + 1>

2

K := <x - 2>

> Intersect(J, K);

2 2 2 2

<x y + x - 2 y - 2>

> J := <yˆ2 - 1>; K := <yˆ2 - 2*y + 1>;

2

J := <y - 1>

2

K := <y - 2 y + 1>

> Intersect(J, K);

3 2

<y - y - y + 1>
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> J := <x*(x-1), yˆ2*(y-2)>;

2

J := <x (x - 1), y (y - 2)>

> K := <(x-1)ˆ2*yˆ3>;

2 3

K := <(x - 1) y >

> L := Intersect(J, K);

3 3 2 3 3 2 4 2 3 4 3 4 3

<x y - 2 x y + x y , x y - 2 x y - 2 x y + 4 x y + y - 2 y >

> map(factor, Generators(L));

3 2 3 2

{x y (x - 1) , y (x - 1) (y - 2)}
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Quotient of ideals (I)

DEFINITION. Let I,J be ideals of K[x1, . . . , xn] and X be a non-empty subset

of K[x1, . . . , xn].

• The sum of I and J is denoted by I + J and defined by

I + J = {a+ b | (a, b) ∈ I × J }.

• The product I and J is denoted by IJ and defined by

IJ = {ab | (a, b) ∈ I × J }.

• The quotient of I by X is denoted by I : X and defined by

I : X = {a ∈ A | (∀x ∈ X) ax ∈ I}.
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Quotient of ideals (II)

PROPOSITION. Let I,J ,K be ideals of K[x1, . . . , xn] and X be a non-empty

subset of K[x1, . . . , xn]. Then, the following properties hold.

(1) I ∩ J and IJ are ideals of K[x1, . . . , xn].

(2) If I + J is not K[x1, . . . , xn], then it is an ideal of K[x1, . . . , xn].

(3) If I : X is not K[x1, . . . , xn], then it is an ideal of K[x1, . . . , xn].

(4) We have IJ ⊆ I ∩ J .

(5) We have J (I : J ) ⊆ I ⊆ I : J .

(6) We have I : (J +K) = I : J + I : K.

(7) We have (I : J ) : K = I : (JK) = (I : K) : J .

(8) We have (I ∩ J ) : K = (I : K) ∩ (J : K).
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Quotient of ideals (III)

PROPOSITION. Let f1, . . . , fs, g be polynomials of K[x1, . . . , xn] and let I be

an ideal of K[x1, . . . , xn]. Then we have

I ∩ 〈g〉 = 〈f1, . . . , fs〉 ⇒ I : 〈g〉 = 〈f1/g, . . . , fs/g〉. (2)

PROOF ⊲ We assume that {f1, . . . , fs} generates I ∩ 〈g〉. Observe that for

1 ≤ i ≤ s the polynomial fi is a multiple of g. So we can consider the ideal J of

K[x1, . . . , xn] generated by {f1/g, . . . , fs/g}. Now, let f ∈ J . For every p ∈ 〈g〉
we have fp ∈ 〈f1, . . . , fs〉, that is f ∈ I : 〈g〉. Conversely, let f ∈ I : 〈g〉. Then,

fg ∈ I ∩ 〈g〉 holds. Hence, there exists q1, . . . , qs ∈ K[x1, . . . , xn] such that

fg =
∑i=s

i=1qifi. Since every fi is a multiple of g, this latter equality shows that f

lies in J . ⊳
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Quotient of ideals (IV)

Input: I and J ideals of K[x1, . . . , xn] generated by {f1, . . . , fs} and {g1, . . . , gr}
respectively.

Output: A Gröbner basis of the quotient ideal I : J .

Let H1 be a Gröbner basis of I ∩ 〈g1〉.
Q := {h/g1 | h ∈ H}
for i = 2 · · · r repeat

Let Hi be a Gröbner basis of I ∩ 〈gi〉.
H∗

i := {h/gi | h ∈ Hi}
Replace Q by a Gröbner basis of 〈Q〉 ∩ 〈H∗

i 〉
return Q
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> J := <xˆ3-1, yˆ2-3>;

3 2

J := <x - 1, y - 3>

> K := <xˆ2-z>;

2

K := <x - z>

> S := Add(J, K);

3 2 2

S := <x - 1, y - 3, x - z>

> Quotient(J, <xˆ2+x+1>);

2

<x - 1, y - 3>
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Saturation of an ideal (I)

DEFINITION. Let I be an ideal of K[x1, . . . , xn] and h be a non-zero element of

K[x1, . . . , xn].

The saturated ideal of I by h is denoted by I : h∞ and defined by

I : h∞ = {f ∈ K[x1, . . . , xn] | (∃e ∈ N) hef ∈ I}.

PROPOSITION. Let I and h be as above. Then, I : h∞ is an ideal. Moreover,

there exists an integer N such that I : h∞ = I : hN .
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Saturation of an ideal (II)

PROPOSITION. Let I = 〈f1, . . . , fs〉 be an ideal of K[x1, . . . , xn] and let

h ∈ K[x1, . . . , xn] be a non-zero polynomial. Let y be an extra variable. The we

have

I : h∞ = 〈f1, . . . , fs, 1− yh〉 ∩ K[x1, . . . , xn]. (3)

PROOF ⊲ Let g ∈ I : h∞. Then, there exists e ∈ N and polynomials

q1, . . . , qs ∈ K[x1, . . . , xn] such that

heg = q1f1 + · · · qsfs.

Now observe that

g = yeheg + (1− yehe)g

=
∑

i qifiy
e + (1− yh)(1 + yh+ · · ·+ ye−1he−1)g

Since g belongs to K[x1, . . . , xn] we have
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g ∈ 〈f1, . . . , fs, 1− yh〉 ∩ K[x1, . . . , xn]. Conversely, assume that this g belongs

to this latter ideal. Then, there exist polynomials q1, . . . , qs, q0 ∈ K[x1, . . . , xn][y]

such that

g =
∑

i

qifi + q0(1− yh)

holds. Let e be the highest degree w.r.t. y among the polynomials q1, . . . , qs, q0

Then replacing y with 1/h and multiplying this equality by he, we obtain

heg ∈ I . ⊳
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Saturation of an ideal (III)

Input: h a polynomial of K[x1, . . . , xn] and I an ideal of K[x1, . . . , xn] generated

by {f1, . . . , fs}.

Output: A Gröbner basis of the saturated ideal I : h∞.

Let y be an extra variable.

Let < be a term order in K[x1, . . . , xn, y] such that every monomial

involving y is greater than every monomial of degree zero w.r.t. y

F := {f1, . . . , fs, 1− yh}
Compute G a Gröbner basis of F w.r.t. <

return G∩K[x1, . . . , xn]

50



> J := <xˆ2, (y-1)ˆ2*(y+1)>;

2 2

J := <x , (y - 1) (y + 1)>

> Saturate(J, y-1);

2

<x , y + 1>

> K := <xˆ3*yˆ2 + x*yˆ2, xˆ3*y + xˆ3*yˆ3>;

3 2 2 3 3 3

K := <x y + x y , x y + x y>

> Saturate(K, x);

3 2

<y + y, x y + y>
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q1 := Quotient(K, x);

2 3 2 2 2 4 2

q1 := <-x y + y , x y + y , x y + x y>

> q2 := Quotient(q1, x);

2 3 2 2 2 3

q2 := <-x y + y , x y + y , x y + x y>

> q3 := Quotient(q2, x);

3 2

q3 := <y + y, x y + y>

> Saturate(q3, y);

2 2

<x + 1, y + 1>
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Algebraic varieties (I)

DEFINITION. For f1, . . . , fs ∈ K[x1, . . . , xn], we define

VL(f1, . . . , fs) = {ζ ∈ An(L) | f1(ζ) = · · · = fs(ζ) = 0}.

More generally, for F ⊂ K[x1, . . . , xn], the zero set of F in An(L) is defined by

VL(F ) = {ζ ∈ An(L) | (∀f ∈ F ) f(ζ) = 0}.

A subset V of An(L) is an (affine) algebraic variety over K if there exists

F ⊂ K[x1, . . . , xn] such that V = VL(F ).

PROPOSITION. For F ⊂ K[x1, . . . , xn], we have

VL(F ) = VL(〈F 〉).

COROLLARY. For f1, . . . , fs, g1, . . . , gt ∈ K[x1, . . . , xn], we have

〈f1, . . . , fs〉 = 〈g1, . . . , gt〉 ⇒ VL(f1, . . . , fs) = VL(g1, . . . , gt).
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Algebraic varieties (II)

DEFINITION. Let V be any subset of An(L). (Hence, V may not be an algebraic

variety.) The ideal over K of V is defined by

IK(V) = {f ∈ K[x1, . . . , xn] | (∀ζ ∈ V)f(ζ) = 0}.

PROPOSITION. Let I,J be ideals of K[x1, . . . , xn] and let V ,W ⊂ An(L) be

algebraic varieties over K. Then we have

(i) I ⊆ J ⇒ VL(J ) ⊆ VL(I),

(ii) V ⊆ W ⇐⇒ IK(W) ⊆ IK(V),

(iii) VL(IK(V)) = V ,

(iv) IK(VL(I)) ⊇ I ,

(v) VL(I) ∩ VL(J ) = VL(I + J )

(vi) VL(I) ∪ VL(J ) = VL(I ∩ J ) = VL(I.J ).
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Zariski topology (I)

REMARK. Let E be a non-empty set. We recall that a topology of E is a

collection T of subsets of E satisfying the following axioms

(O1) E ∈ T ,

(O2) the intersection of two elements of T is an element of T ,

(O3) any union (finite or not) of elements of T is an element of T .

The elements of T are called the open sets of the topology. Their complements are

called the closed sets of the topology and satisfy the following properties

(C1) ∅ is a closed set.

(C2) the union of two closed sets is a closed set,

(C3) any intersection (finite or not) of closed sets is a closed set.

Observe that a topology may be given by its closed sets rather than its open sets.

Therefore, the properties of (C1), (C2), (C3) can be viewed as axiomx for a

topology given by its closed sets.
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Zariski topology (II)

REMARK. A subset X of E may be approximated by a closed set, precisely the

intersection of all the closed sets containing X , which is called the closure of X

w.r.t. the topology and which is denoted by X . The map X 7−→ X satisfies the

following properties for every subsets X, Y of E

(F1) X ⊆ X

(F2) X = X

(F3) X ⊆ Y =⇒ X ⊆ Y

(F4) X ⊆ Y ⇐⇒ X ⊆ Y

(F5) X ∪ Y = X ∪ Y

(F6) X ⊆ Y =⇒ Y = X ∪ Y \X
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Zariski topology (III)

PROPOSITION. The set of the affine varieties over K of An(L) are the closed sets

of a topology called Zariski topology.

PROPOSITION. Let W be a subset of An(L). The affine variety VL(IK(W )) is

the intersection of all varieties V containing W . Therefore, it is denoted W and

called the Zariski closuer of W .
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Zariski topology (IV)
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Hilbert theorems of zeros (I)

LEMMA. Let L be an infinite field and let p ∈ L[x1, . . . , xk]. Then we have

p 6= 0 ⇒ (∃(a1, . . . , an) ∈ Ln) p(a1, . . . , an) 6= 0.

THEOREM.[Weak Theorem of Zeros] Let L be an algebraically closed field of

which K is a sub-field and let F be a subset of K[x1, . . . , xn]. Then we have

VL(〈F 〉) = ∅ ⇒ 〈F 〉 = K[x1, . . . , xn].
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Hilbert theorems of zeros (II)

LEMMA. Let f1, . . . , fs, h be polynomials of K[x1, . . . , xn] and let y be an extra

variable. Then we have

〈f1, . . . , fs, 1− yh〉 = K[x1, . . . , xn, y] ⇒ h ∈
√

〈f1, . . . , fs〉

where 〈f1, . . . , fs, 1− yh〉 and 〈f1, . . . , fs〉 denote respectively the ideals

generated by {f1, . . . , fs, 1− yh} in K[x1, . . . , xn, y] and {f1, . . . , fs} in

K[x1, . . . , xn] = K[x1, . . . , xn].
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Hilbert theorems of zeros (III)

PROOF ⊲ Let us assume that 〈f1, . . . , fs, 1− yh〉 generates K[x1, . . . , xn, y].

Then there exists p1, . . . , ps, q ∈ K[x1, . . . , xn, y] such that

1 =
s

∑

i=1

pi(x1, . . . , xn, y)fi + q(x1, . . . , xn, y)(1− yh)

Substituting 1/h to y we obtain

1 =
s

∑

i=1

pi(x1, . . . , xn, 1/h)fi.

Let e be the maximum degree in y among the polynomials p1, . . . , ps. By

multiplying the previous equality by he we obtain

he =

s
∑

i=1

qifi.

where qi = hepi(x1, . . . , xn, 1/h) is a polynomial of K[x1, . . . , xn] for

1 ≤ i ≤ s. This shows that h belongs to the radical of the ideal generated by

f1, . . . , fs in K[x1, . . . , xn]. ⊳
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Hilbert theorems of zeros (IV)

THEOREM.[Theorem of Zeros] Let L be an algebraically closed field of which K

is a sub-field. Let F = {f1, . . . , fs} be a subset of K[x1, . . . , xn] and let

h ∈ K[x1, . . . , xn]. Then we have

h ∈ IK(VL(F )) ⇐⇒ (∃e ∈ N) he ∈ 〈F 〉.
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Hilbert theorems of zeros (V)

PROOF ⊲ The condition (right-hand part of the equivalence) is clearly sufficient.

Let us prove it is necessary. So, let us assume that h ∈ IK(VL(F )). Let y be an

extra variable and consider J the subset of K[x1, . . . , xn, y] generated by

〈f1, . . . , fs, 1− yh〉. Let a = (a1, . . . , an, an+1) ∈ Ln+1 be a point. We

distinguish two cases.

• If (a1, . . . , an) ∈ VL(F ) then (a1, . . . , an) ∈ VL(h) and a 6∈ VL(J ).

• If (a1, . . . , an) 6∈ VL(F ) then clearly a 6∈ VL(J ).

Therefore a 6∈ VL(J ) in any case. By virtue of Theorem ?? we have

J = K[x1, . . . , xn, y]. Then, from Lemma 60 we obtain h ∈
√

〈f1, . . . , fs〉
which completes the proof. ⊳
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Hilbert theorems of zeros (VI)

THEOREM.[Strong Theorem of Zeros] Let L be a field of which K is a sub-field.

Let F be a subset of K[x1, . . . , xn] and let V be the affine variety of F over L.

Then we have
√

IK(V ) = IK(V ). (4)

In addition, if L is an algebraically closed field, then we have

IK(VL(〈F 〉)) =
√

〈F 〉. (5)
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Hilbert theorems of zeros (VII)

PROOF ⊲ Relation (4) is a consequence of the fact that K[x1, . . . , xn] is an

integral domain. The details are left to the reader To Do. Let us prove

Relation (5. Let f ∈
√

〈F 〉. There exists e ∈ N such that fe ∈ 〈F 〉. Hence, fe,

and thus f , belong to IK(VL(〈F 〉)). Conversely, let f ∈ IK(VL(〈F 〉)). By

definition, the polynomial f vanishes at every point of VL(〈F 〉). Hence, by virtue

of Theorem ?? there exits an integer e such that fe ∈ 〈F 〉, that is f ∈
√

〈F 〉. ⊳
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Radical membership (I)

THEOREM. Let f1, . . . , fs, h be polynomials of K[x1, . . . , xn] and let y be an

extra variable. Let I be the ideal generated by f1, . . . , fs in K[x1, . . . , xn]. Then

we have

h ∈
√
I ⇐⇒ 〈f1, . . . , fs, 1− yh〉 = K[x1, . . . , xn, y] (6)

PROOF ⊲ Lemma 60 states that the condition is sufficient. Let us prove that it is

necessary. Let e be a positive integer such that he ∈ I . We write

1− yehe = (1− yh)(1 + yh+ · · ·+ ye−1he−1) ∈ J (7)

Let J be the subset of K[x1, . . . , xn, y] generated by f1, . . . , fs, 1− yh. (Thus J
is either an ideal or the entire ring). Relation (7) shows that 1− yehe belongs to

the ideal generated by 1− yh in K[x1, . . . , xn, y]. Since he ∈ I , the polynomial

yehe lies in the ideal generated by f1, . . . , fs in K[x1, . . . , xn, y]. Therefore

1 = 1− yehe + yehe belongs to J . ⊳

66



Radical membership (II)

Input: f1, . . . , fs, h be polynomials of K[x1, . . . , xn] and y be an extra variable.

Output: true if and only if h belongs to
√

〈f1, . . . , fs〉.

Choose any term order < for the monomials of K[x1, . . . , xn, y]

Compute a Gröbner basis G of f1, . . . , fs, 1− yh w.r.t.<

return G∩K 6= ∅

67



Operation on algebraic varieties

68



The tangent space at a point (I)

NOTATION. Let V ⊂ An(L) be a variety over K and let

f1, . . . , fr ∈ K[x1, . . . , xn] be such that IK(V ) = 〈f1, . . . , fr〉.
Consider a point p ∈ V . We choose our coordinate system so that p is the origin.

We consider an arbitrary line ℓ through p and a point q = (a1, . . . , an), that is

ℓ = {(ta1, . . . , tan) | t ∈ L}.

The intersection V ∩ ℓ is described by the system of equations in L[t]

f1(ta1, . . . , tan) = · · · = fr(ta1, . . . , tan) = 0

DEFINITION. We say that the line ℓ is tangent to p at order n if t = 0 is a zero

of order n+ 1 of the above system.

We say that the line ℓ tangent to p if it is tangent to V at order one.
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The tangent space at a point (II)

DEFINITION. The tangent space TpV of V at p is the union of all points lying

on lines tangent to V at p.

In the degenerate case where p is an isolated point of V , the tangent space of V at

p is the zero-dimensional vector space consisting only of the point p.

PROPOSITION. The above definition is independent of the choice of generators

of IK(V ).

EXAMPLE. Consider the parabola V ⊂ A2(L) defined by y = x2 with x < y.

The expression ta2 − t2a1 = 0 shows that

TpV = {(a1, 0) | a1 ∈ L}.
EXAMPLE. Consider the nodal curve V ⊂ A2(L) defined by y2 = x2 + x3

with x < y. The expression t2a22 − t2a21 − t3a31 = 0 shows that TpV = A2(L).

EXAMPLE. Consider the cusp V ⊂ A2(L) defined by y2 = x3 with x < y. The

expression t2a22 − t3a31 = 0 shows that TpV = A2(L).
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The tangent space at a point (III)

DEFINITION. The differential of f ∈ L[x1, . . . , xn] at an arbitrary point

p = (p1, . . . , pn) ∈ An(L), denoted by dF |p, is the

linear part of the Taylor expansion of f around p, that is

df |p(x− p) =
∑j=n

j=1
∂f
∂xj

(p)(xj − pj).

Observe that dF |p is a linear form from An(L) to L.

THEOREM. Recall V ⊂ An(L) is a variety over K and

f1, . . . , fr ∈ K[x1, . . . , xn] are such that IK(V ) = 〈f1, . . . , fr〉. Let p a point of

V . Then, the tangent space TpV of V at p is the linear variety defined by

TpV = VK(df1|p(x− p), . . . , df1|r(x− p)).

Moreover, the tangent space TpV is independent of the choice of generators of

IK(V ).
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The tangent space at a point (IV)

COROLLARY. Let V (f) ⊂ An(L), for f ∈ K[x1, . . . , xn], be an hypersurface

and let p ∈ V (f) be a point. Then, the dimension of the tangent space TpV is

given by

dim(TpV ) =







n− 1 if at least one ∂f
∂xj

(p) 6= 0

n if all ∂f
∂xj

(p) = 0

EXAMPLE. Continuing the parabola example, we define f(x, y) = y − x2 such

that, for p = (p1, p2) ∈ A2(L), we have

TpV = VK(−2p1(x− p1) + 1 (y − p2))

We observe dim(TpV ) = 1 for all p.

EXAMPLE. Continuing the nodal curve example, we define

f(x, y) = y2 − x2 − x3 such that, for p = (p1, p2) ∈ A2(L), we have

TpV = VK(−(2p1 + 3p21)(x− p1) + 2p2(y − p2))

We observe dim(TpV ) is 2 for p = (0, 0) and 1 otherwise.
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Smoothness (I)

DEFINITION. Let V ⊂ An(L) be a variety over K and let p ∈ V be a point. The

dimension of V at p, denoted by dimpV , is the maximum dimension of an

irreducible variety V ′ over K such that

{p} ⊆ V ′ ⊆ V.

The point is said smooth if we have

dimpV = dim(TpV ).

DEFINITION. For f1, . . . , fr ∈ L[x1, . . . , xn] and p ∈ An(L), the

Jacobian matrix of f1, . . . , fr at p is the r × n matrix denoted by

Jac(f1, . . . , fr)(p) whose (i, j)-element is ∂fi
∂xj

(p).

THEOREM.[Jacobian Criterion] Let f1, . . . , fr ∈ K[x1, . . . , xn] be polynomials

and let p ∈ V (f1, . . . , fr) be a point. Assume that K has characteristic 0. If

Jac(f1, . . . , fr)(p) has rank r, then

• the point p is smooth and,

• lies in a unique irreducible component of V of dimension n− r.
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Smoothness (II)
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Multiplicity
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