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An overview of this tutorial

e Main objective: an introduction for non-experts.

e Prerequisites: some familiarity with linear algebra, univariate polynomials
(division, Euclidean Algorithm, roots of a polynomial), polynomial rings (partial
degree, ideal).

e Outline:

algebraic varieties,

term orders,

multivariate division,

leading term 1deal,

Grobner bases,

S-polynomials,

Buchberger’s algorithm,



Minimal Grobner bases,
Reduced Grobner bases,
elimination ideals,

operation on ideals,

Hilbert theorems of zeros,
operation on algebraic varieties,
constructible sets,

Zariski topology,

smoothness,

multiplicity.



Some notations before we start the theory (I)

NOTATION. Throughout the talk, we consider a field K and an ordered set
X =x1 < --- < x, of n variables. Typically K will be

- a finite field, such as Z/pZ for a prime p, or
- the field Q of rational numbers, or
- afield of rational functions over Z/pZ or Q.

We will denote by K an algebraic closure of K.
https://en.wikipedia.org/wiki/Algebraic_closure

- K is the smallest field containing K and over which any non-constant
polynomial factorizes into factors of degree 1,

- For K = R, the field of real numbers, we can choose K = C, the field of

complex numbers.

We will also consider a field L extending K and contained in K. Hence, we have
K c L C K. More on field extensions and algebraic closures in the next chapter.
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Some notations before we start the theory (II)

NOTATION. We denote by K|z, ..., x,] the ring of the polynomials with
coefficients in K and variables in X. For F' C K[x1,...,z,]|, we write (F') and
\/(F) for the ideal generated by F in K[z, ..., x,] and its radical, respectively.
Thus, writing F' = {g1, ..., gs}, by definition, for f € K[z1,...,z,] we have

o fe(F) <= (Qq,...,qs €Klzy,...,2,]) f=qg1 + -+ qs9g,
e fe/(F) < (deeN) fce(l).
Observe that we have (F') C /(F).
https://en.wikipedia.org/wiki/Ideal_(ring_theory)
https://en.wikipedia.org/wiki/Radical_of_an_ideal

EXAMPLE. For F' = {:zjy2 +2y?, z* — 222 + 1}, we have

(F) = (2 = 1,y)

NOTATION. For 1 < 7 < n, we denote by A*(IL) the affine space of dimension i
over L.
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with (PolynomialIdeals) :

gl = x x V2 + 2 x y 2;
g2 := x4 -2 xx"2 + 1;
J := <gl, g2>;

J
£ =y 2;
f in J;

<Xy

true



1 in J;

false
gcdex (g2, (x+2),x,"'s’, "t’);
1
s, t;
3 2
1/9, -1/9 x + 2/9 x - 2/9 x + 4/9
expand(s * g2 + t * (x +2) - 1);
0

## Hence t is the inverse of (x+2) modulo g2
g3 =t x (x +2) % y°2 + s x g2 % y 2:
expand (g3) ;



Term orders (I)

NOTATION. We denote by M the abelian monoid generated by =1, ..., x,.

DEFINITION. A total order < on M is a term order if the following two

conditions hold
(7) for every m € M we have 1y < m
(i) for every m,m’,m” € M we have m < m’ = mm/” < m'm”

NOTATION. For f € K|z, ..., x,]| with f # 0, we denote by

e Im(f) the leading monomial of f, that is the largest m € M occurring in f,
e lc(f) the leading coefficient of f, that is the coefficient of Im( f) in f,

o It(f) =lc(f)lm(f) the leading term of f,

e rd(f) the reductum of f, thatis f — It(f).

PROPOSITION. For f, g € K|x1,...,x,], with f # 0 and g # 0, we have

Im(fg) = Im(f)lm(g) and le(fg) = le(f)le(g).
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Term orders (II)

REMARK. Recall that the variables x4, ..., z,, are ordered by

1 < - < Iy.

Hence, we identify every monomial m = x¢~ - - - x{* with the tuple of
non-negative integers ¢ = (e, . . ., €1) often called the exponent vector of m.

It is convenient to denote by |e| the sum e + - - - 4 e,, which is the total degree of

the monomial m. Finally, we define rev(e) = (eq1,...,e,).
NOTATION. Fora = (ay,...,a1) and b = (b,,...,b1) in N we define
a; < b;

a<pee b <= (Fie{l,....,n}) tq.
aj =b; (Vj>1)

and

la| < |b| or
a <deglex b <=
la| = [b|and a@ <je; b
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and

la| < |b| or
Qa <degrevlex b <+
la| = |b| and rev(a) >c. rev(b)

Moreover, we define
a<j.,0 <<= a<jezbora=>b

and

agdeglexb — A <deglex bora=5b

and

agdegrevlexb <~ a <degrevlex b or a=0b.

PROPOSITION. The binary relations <;..., <gegier aNd <gegrevies define term

orders in K[z, ..., x,].
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Term orders (III)

EXAMPLE. Assume n = 2 and define x1 = x and xo = vy. Then, we have

1 <lex T <lex $2 Lllez " <lex Y <lex Xy <lex $2y <lex ** <lex y2 <lex "

and

2 2 3
1 <degle:c £Z <deglex Y <degle:c 44 <degle:c LY <deglex Yy <deglex X

Forn = 3 withx1 = x, x9 = y and x3 = z we have
3 2 2 3
Yy ngeglexxyz but LYz Sdegrevlexy 2

PROPOSITION. Let < be a term order for K|x1, ..., x,]|. Then for all monomials

m, m’, we have

m | m'" = m<m.

THEOREM. Let < be a term order for K[x1, ..., z,]. Then, for every non-empty

set M of monomials of K|x1, ..., x,]| there exists m € M such that we have

(Vm' € M) m <m/.
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Multi-divisor division (I)

NOTATION. | From now on, we fix a term order <.

DEFINITION. Let f,g,h € K|z1,...,x,]| with g # 0. We say that f reduces to
h modulo g in one step and we write

L h

if and only if Im(g) divides a non-zero term ¢ of f and

h= 1 egimig)

REMARK. When this holds, observe that we have

h=(f—t)—p with p:= —L rd(g)

One can check that either p = 0 holds or that we have

Im(p) < Im(?).
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Multi-divisor division (II)

DEFINITION. Let f, h,r and f1,..., fs be polynomials in K[z, ..., z,] with
fi#0foralli=1,...,s. Define FF = {f1,..., fs}. We say that f reduces to h
modulo F' and we write

f—>_|_h
if and only if there exists a sequence of indices 21,22, .. ., 7; and a sequence of
polynomials hi, ho, ..., ht_1 such that
fghl &)h&"’ht—l ﬂ)?“.

The polynomial r 1s called reduced w.r.t. F'if
e citherr =0

e or no monomials in 7 is divisible by one of the Im(f;), fori =1,... s.

The polynomial r is called a remainder of f w.r.t. F'if f i>+fr and r is
reduced w.r.t. F'.
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Multi-divisor division (III)

PROPOSITION. Let A, F’ be as in the previous definition, with h # 0, and let m
be a monomial and ¢ € K with ¢ # 0. Then, we have

cminrh — Im(h) < m.

PROPOSITION. Let f, F' be as above. Then, we have

f # 0 and fL+O —> f not reduced w.r.t. F.

PROPOSITION. Let f, F' be as above. Then, we have

f-5,0 = fe(F)

14



Multi-divisor division (IV)

REMARK. Observe that the univariate division of f by g, with g ¢ K, in K[|

can be computed as follows:

r:=f

q:=0

while Im(g) | Im(r) repeat
Compute ' and ¢’ such that

r L andr = q'g + 1/

ro=r'
¢:=q+q

return (q, )
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Multi-divisor division (V)

DEFINITION. Let f, g1,...,9s,q1,---,qs,7 € K|x1,...,z,] such that g; # 0
foralli =1,...,s. Define G = {g1,...,9s}. We say that (q1,...,qs) are the
quotients and r the remainder in the multivariate division of f w.r.t. GG if the
following conditions hold

(4¢) ris reduced w.r.t. G,

(i) max(Im(q1)Im(g1), . ., Im(gs)Im(g, ), Im(r)) = Im(f).
If this holds, then we write

f‘gl‘---‘gs
N o e

Input: f,91,...,9s € Klz1,...,2,]suchthatg; #Oforalli =1,...,s.

f‘gl‘---‘gs
Y o e

Output: ¢1,...,qs,7 € K|x1,...,z,] such that

16



for::=1,...,srepeatqg; :=0

h:==f
r:=0
while / # 0 repeat
1:=1
while : < s repeat
if Im(g;) | Im(h) then

oo UB)
- 1t(g:)
qi =q; +1
h:=h—tg;
7=
else
=1+ 1
r:=r—+It(h)
h:=h —1t(h)
return(q,...,Qs,7)

17



Multi-divisor division (VI)

PROPOSITION. The previous algorithm terminates and 1s correct.

EXAMPLE. Withn =1, 1 = x and < = <;,, we consider g, = x°,

go=a*—x,G={g1,92} and f = x. Then, we have

f‘m‘gg
flolo

However f is not reduced w.rt. G = {g1, g2 }.

EXAMPLE. Withn =2, v = 21 < x2 = y and < = <jeg1cq We consider
g1 =yr —y, g2 =y> —x, G =1{g1,92} and f = y*x. Then, we have

EXAMPLE. Withn =2, v = 21 < x2 = y and < = <jeg1cq We consider
18



f=v?x —x, g1 =yx —yand g» = y* — x. Then we have

However we have
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Leading term ideal

DEFINITION. For a subset S of K|z1, ..., x,], the leading term ideal of S is the
ideal of K|z, ..., x,]| denoted by 1t(.S) and defined by

1t(S) = (It(s) | s € S).

PROPOSITION. Let S be a set of non-zero terms of K|x1,...,x,| and let Z be its
leading term ideal. For every f € K|z, ..., x,] the following statements are
equivalent
(i) feZ

(72) for every term ¢ of f there exists s € .S such that s divides t.

Moreover, there exists a finite subset Sy of .S such that Z = (.Sy).

20



Grobner bases (I)

DEFINITION. Let Z be an ideal of K[x1, ..., z,]|. A finite subset G of Z is a

Grobner basis of Z if and only if
(VfeT)(dg € G) Im(g) divides Im(f).

A finite subset G of K[x1, ..., x,] is a Grobner basis if it is a Grobner basis for
the ideal (G) it generates.

THEOREM. Let Z be an ideal of K|x1,...,x,] and G = {g1, ..., g:} be a finite

subset of Z. Then, the following statements are equivalent

() G is a Grobner basis for Z.
(i2) Forevery f € Klz1,...,z,] wehave: f € T <= fﬁq().

(712) Forevery f € Klzq,...,x,], the polynomial f belongs to Z if and only if
there exists q1,...,q € K|zy,...,2,] such that f = ¢191 + - - - ¢:g; and

max(Im(qq)Im(gy), . ..,Im(qs)Im(gs)) = Im(f).

(iv) 1t(G) = It(T).



Grobner bases (II)

COROLLARY. Let Z be an ideal of K|x1,...,x,] and G = {g1,...,9:} be a
finite subset of Z. If GG is a Grobner basis of Z, then we have Z = (g1, ..., gs).

PROOF > Clearly (g1, ..., g:) C Z holds. For the reverse inclusion, let f € Z.
With the previous theorem we have f inr 0, which implies f € (g1,...,9:). <

THEOREM. Every ideal of K[z, ..., z,| admits a Grobner basis.

PROOF > Let Z be an ideal of K|z, ..., x,]|. The leading term ideal 1t(Z) is
generated by a finite subset S of 1t(Z). Hence S is of the form
{1t(g1),...,1t(g¢)} where g1, ..., g; are polynomials of Z. We define
G =1{91,---,9:} such that we have 1t(Z) = 1t(G). With the previous theorem we
deduce that GG is a Grobner basis for Z. <

THEOREM. Let G = {g1, ..., g:} be a set of non-zero polynomials of
K|z1,...,xy]. Then, the set G is a Grobner basis if and only if for all
f € K|x1,...,x,] all remainders of a multivariate division of f w.r.t. G are
equal.
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S-polynomials (I)

REMARK. Let f, f1, ..., fs be non-zero polynomials in K|x1, . .., x,]. We define

F ={fi1,..., fs}. For performing the multivariate division of f w.r.t F', one needs
to order the polynomials in F'. We know that the result of this division may depend
on this order. For one order, we may first reduce a term t in f by a polynomial f;

and for another order, we may first reduce t by a polynomial f;, with j # i. In the

first case we obtain the polynomial

t
hi = [ — lt(fi)fi
and in the second case we obtain the polynomial
hy = f— b I
1t(f5)
The ambiguity that is introduced is
t t
C AR TE AR

This leads to the notion of a S-polynomial
23



S-polynomials (II)

DEFINITION. Let f, g € K[x1,...,z,] be two non-zero polynomials and let L.
be the least common multiple of Im(f) and Im(g). The polynomial

L L
S(f,g9) = mf— @9

is called the S-polynomial of f and g.

EXAMPLE. Withn =2, v = 21 < x2 = y and < = <jeg1cq We consider
fi=yx—y, fo=vy?>—a, F={f1, fo} and f = y*x. We have

f£>f—yf1:y2 and ff%zf—gng:;pQ,
The ambiguity introduced is
S(f1. f2) =yfr —afo = —y* +2°.

Also note that

S(f1, f2) € {f1, f2).
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Moreover, the polynomial S( f1, f2) is not reduced w.r.t. F' and we have

(f17f2) S

The polynomial f4 = x* — x is reduced w.r.t. F without being null. Observe that
we have

f£>y2£>:13 and fﬁmﬂﬁx

Hence, adding f4 to F' allows the two reductions to converge toward the same
result.
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Buchberger’s algorithm (I)

THEOREM. [Buchberger] Let G = {g1, ..., g: } be a set of non-zero polynomials
in K|z1,...,z,]. Then, the set G is a Grobner basis if and only if for all i # j we
have

G
S(gi,9;)—+0.

EXAMPLE. Withn =2, v = 21 < x2 = y and < = <jeg1cq We consider
fi=xy —zand fo = x* —y. We define F = {f1, f2}. Then we have

S(f1>f2) =xf1 —yfo :y2 — z° g?ﬁ — Y

Since fs = y? — v is reduced w.rt. F, the set I is not a Grobner basis. So, let us
define F' = FU{ f3}. Now we have

S(f1, ) 25, 0.
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Then we have

S(fi, f3) =yfi —zfs =ylzy —z) —z(y* —y) = 0.

and
f f
S(f2, f3) = y*(2° —y) — 2°(y° —y) = —y° + y2® = y2® —y* =5 0.

Thus, Buchberger’s Theorem shows that F' is a Grobner basis.
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Buchberger’s algorithm (II)

Input: FF'={f1,...,fs} CKlzy,...,x,] with f; #0foralli =1,...,s.
Output: G = {g1,...,9:} € K|x1,...,x,]| a Grobner basis of (F').

G()Z:F
P=A(fi,f;) | 1<i<j<s}
1:=1

while P # () repeat
Choose (f,g) € P
P:=P\{(f,9)}
Compute h; the remainder of S(f, g) w.r.t. G;_1
if h; # 0 then
P:=PU{(9,hi) | g€ Gi-1}
G; =G,y U{h;}
=141
return(G;_1)

28




Buchberger’s algorithm (I1II)

THEOREM. Buchberger’s algorithm terminates and is correct.

PROOF > The previous algorithm constructs a sequence of sets
GoCG1 C---CG; CGiyp C---

together with a sequence of non-zero polynomials i, ..., h;, hj1q, ... such that
h; is reduced w.r.t. G;_1. Hence, no term in h; is divisible by Im(g) for any ¢ in
(z;_1. Thus we have

lt(hz) Q lt(GZ‘_l)

Therefore, we have
lt(Gi_l) g lt(Gz) but lt(GZ’_l) 7é lt(GZ)

It follows, that the 1t(G;)’s form a strictly ascending chain of ideals. Since
K|z1,...,z,] is Noetherian, this chain must be ultimately constant. This implies
that the algorithm must terminate. The proof of the correctness of the algorithm

follows from Buchberger’s Theorem. <
29



Buchberger’s algorithm (IV)

EXAMPLE. Withn =2, x = x1 < 9 = y and < = <;., we consider
fi=y+a*—1and fo = y* +x — 1. Wedefine F = {fi1, fo}. Following
Buchberger’s Algorithm, let us compute a Grobner basis of F' for the <.,

ordering induced by y > x. We set Gy = F'. Then, we compute

S(fl,fg):yx2—y—x—|—1i)—x4—|—2x2—x£>—x4—l—2x2—x.

So, we define
hi = —2* 4222 — 2 and Gy = {f1, f2, h1 }.
Then, we compute
S(f1,h1) = —2yz? 4+ yr — 2% + 2 S0

and
S(fa, h1) = —2y°2° +y*x — x° + 24 94 0

Hence G4 is a Grobner basis of the ideal generated by F' for the lexicographical
30



ordering induced by y > x. Now observe that
fa=(y+32°+1)fi —h

which shows that fs is in the ideal generated by f1 and hi. Therefore {f1,h1} is
a set of generators of the ideal generated by F'.
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Minimal Grobner bases

PROPOSITION. Let G = {g1, ... g+ } be a Grobner basis for an ideal non-trivial Z
of Klx1,...,x,]. Iflc(gs) divides Ic(gq) then {gs, . .. g; } is also a Grobner basis
of Z.

PROOF > A consequence of the definition of a Grobner basis. <

DEFINITION. A Grébner basis G = {g1,...g;:} of K|x1, ..., x,] is called
minimal if the following conditions hold

e foralli =1,...,t the leading coefficient Ic(g;) of g; is 1,

e forall 1 <i < j <t theleading monomial Im(g;) does not divide the leading
monomial Im(g;).

PROPOSITION. Every non-trivial ideal Z of K|z1, ..., z,| admits a minimal
Grobner basis.

PROPOSITION. Let G = {g1,...9:} and H = {hq, ..., hs} be two minimal
Grobner bases for the same non-trivial ideal Z of K|x1, ..., z,] for the same term

order. Then, s = t and after re-indexing the elements of H, if necessary, we have

Im(g;) = lm(h;) foralli =1,...,t. "



Reduced Grobner bases (I)

DEFINITION. A Grobner basis G = {g1,...g:} of K|x1,...,x,] is called
reduced if the following conditions hold

e foralli =1,...,tthe leading coefficient Ic(g;) of g; is 1,

e forall 1 <: < j <t nomonomials of g; can be divided by the leading
monomial Im(g; ).

Input: G = {g1,...,9:} C Klzy,...,x,] a minimal Grobner basis of a non-trivial
ideal 7.

Output: areduced Grobner basis of Z.

Hy:={g2,... gt}
for::=1---trepeat
Compute h; the remainder of g; w.r.t. H;
Hipr:=1hi} U Hi \ {gi41}
return(H;, )
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Reduced Grobner bases (II)

PROPOSITION. The previous algorithm terminates and 1s correct.

THEOREM. [Buchberger] Every non-trivial ideal Z of K[z, ..., z,| admits a

unique reduced Grobner basis.

THEOREM. Let F' be a finite set of non-zero polynomials of K|z, ..., x,] and
let G be a reduced Grobner basis of (F'). Then (F') = K|z, ..., z,] if and only if
G ={1}.

PROOF > The condition is clearly sufficient. Let us prove that it is necessary.
Let us assume that (F') = K|z, ...,x,]. Then 1 € (F'). The only polynomial f

such that Ic(f) = 1 and Im( f) divides 1 is 1 itself. Therefore, 1 € G. But the
leading monomial of 1 divides any monomial. Hence, we have G = {1}. <
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Elimination ideals

DEFINITION. Let Z be a non-trivial ideal of K|x1,...,x,] andlet 0 < k < n be
an integer. The k-th elimination ideal of T is the ideal Z, = Z N K|x1, ..., Tph_k].

DEFINITION. Let 0 < k < n be an integer. A term order < is said of

k-elimination if for every monomial Y of K|z, ..., x,] with a positive degree
w.r.t. at least one of the variables x,,_x1, ..., 2z, and for every monomial X of
Klz1,...,xp_r| wehave X < Y.

EXAMPLE. The lexicographical ordering induced by x1 < --- < x,, is of

k-elimination for every 0 < k < n.

THEOREM.[Elimination Theorem] Let 0 < £ < n be an integer and let < be a
term order of k-elimination. Let Z be a non-trivial ideal and let Z;, be its k-th
elimination ideal of Z. Let G be a Grobner basis of Z for <. Then, the set
Gr = GNK|zy,...,x,_k] is a Grobner basis of Z;, for <.

PROOF > See Chapter 3 in (Cox, Little, O’Shea, 1992). <
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J 1= <y + x°2 -1, v°2 + x —-1>;

2 2
J =<y +x -1, x +y - 1>
> EliminationIdeal (J, {x});
4 2
<X - 2 x + x>
> EliminationIdeal (J, {y});
4 2
<y — 2y + y>
J 1= <y + x°2 -1, yv°3 + x =1>;
2 3
J = <x +vy -1, v + x - 1>
> EliminationIdeal (J, {x});
6 4 2
<x - 3 x + 3 x - x>
> J 1= <y 2 + vy + x, 272 4+ z+xy + 1>;
2 2
J =<y +x+vy, vz + 2z + 1>
> EliminationIdeal (J, {x});
<0>
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Intersection of ideals (I)

LEMMA. Let Z be an ideal of K|z, ..., x,] and let ¢ an extra variable. Let

{f1,-.., fs}and {g1, ..., g} be two sets of generators of Z. Then we have the
following properties.

e The sets {tf1,...,tfs} and {tg1,...,tq,} generate the same ideal in
Kl|z1,...,xy,t] denoted tZ.

e For every polynomial h(z1,...,x,,t) € tZ and for every element a € K, we
have h(x1,...,z,,a) € L.
PROPOSITION. Let Z and 7 be two ideals of K|z1, ..., x,]. Let t be an extra

variable. Then we have

INT =T+ (1-0T) NK[xy,...,x,] (1)
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Intersection of ideals (II)

PROOF > Let f € K|z, ..., x,]. First assume that f € ZN 7 holds. Then,
clearly tf and (1 — t) f belong to tZ and (1 — t).J respectively. Hence, f belongs
to the sum of these ideals. Since f belongs to K[x1, ..., z,]|, we have
fe{tlZ+ (1-t)J)NnKlzxy,...,x,]. Conversely, assume that this latter relation
holds. Then there exists g(x1, ..., T,,t) € tZ and h(x1,...,z,,t) € (1 — )T
such that

flxy,....xn) =9g(x1,..., 20, t) + h(x1,...,25,1)

Since every polynomial in tZ 1s a multiple of ¢ we must have by specializing ¢ to 0
f(x1,...,zn) = h(x1,...,2,,0)

which shows that f belongs to /7. Similarly, by specializing ¢ to 1 we obtain
flxy,...,xn) =9(x1, ..., Tn, 1)

which shows that f belongs to Z. Therefore, we have f €¢ 7N J. <
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Intersection of ideals (I1I)

Input: 7 and 7 ideals of K|z, ..., x,| generated by { f1,..., fs} and {g1,..., 9.}
respectively.

Output: A Grobner basis of ZN 7.

Let ¢ be an extra variable

Fo={th, ..., tfe (1= g1 ....(1—t)g,)

Let < be a term order in K[x1, ..., x,, t] such that every monomial
involving ¢ 1s greater than every monomial of degree zero w.r.t. ¢

Compute G a Grobner basis of F' w.r.t. <

return G NK[xq,..., z,]
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> J 1= <y 2 + 1>;

> Intersect (J, K);

A

> J 1= <y"2 - 1>;

> Intersect (J, K);

K

<x"2

—2>;

<Y

<X

2>



> J 1= <xx(x-1), y 2%x(y—-2)>;
J 1= <X
> K 1= <(x-1) " 2%xy~3>;
K
> L := Intersect (J, K);

3 3 2 3 3 2 4
<X vV - 2x vy +xvy ., X y -
> map (factor, Generators(L));

3
{xy (x -

1),
<(x — 1)
2 3
X Yy
3
y Yy (X

1)

(y — 2)}



Quotient of ideals (I)

DEFINITION. Let Z, 7 be ideals of K|z, ..., x,]| and X be a non-empty subset
of Kz, ..., xy].

e The sum of Z and 7 is denoted by Z + J and defined by
IT+J ={a+b | (a,b) €T x J}.
e The product 7 and J is denoted by Z.7 and defined by
ZJ = {ab | (a,b) e x J}.
e The quotient of Z by X is denoted by Z : X and defined by

T:X ={achA | (Vexe X)ax €L}
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Quotient of ideals (II)

PROPOSITION. Let Z, 7, K be ideals of K|z, ..., x,] and X be a non-empty
subset of K|x1,...,x,]. Then, the following properties hold.
(1) ZN J and Z.J are ideals of K|z1, ..., z,].
(2) fZ+ JisnotK|zq,...,x,], thenitis an ideal of K|zq,...,x,].
(3) IfZ: X isnot K[zq,...,x,], then itis an ideal of K|z1, ..., x,].
(4) Wehave ZJ CZ N J.
(5) Wehave 7(Z: J)CZ CZT:J.
(6) WehaveZ : (7 +K)=Z:J+Z:K.
(7) Wehave (Z:7):K=Z:(JK)=(Z:K):J.
(8) Wehave (ZNJ):K=(Z:K)N(J :K).
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Quotient of ideals (I1I)

PROPOSITION. Let f1,..., fs, g be polynomials of K[x1,...,z,] and let Z be
an ideal of K[z1, ..., x,]. Then we have
In(g) = f1- i fs) = L:Ag)={1/g,---  fs/9)- (2)
PROOF > We assume that { f1, ..., fs} generates Z N (g). Observe that for

1 < < s the polynomial f; is a multiple of g. So we can consider the ideal 7 of
Klx1,...,x,] generated by {f1/g, ..., fs/g}. Now, let f € J. For every p € (g)
we have fp € (f1,..., fs), thatis f € T : {g). Conversely, let f € T : (g). Then,
fg € TN {g) holds. Hence, there exists q1,...,qs € K|z, ..., x,] such that

fg = Z;j% fi. Since every f; is a multiple of g, this latter equality shows that f
liesin J. <
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Quotient of ideals (IV)

Input: 7 and 7 ideals of K|z, ...

respectively.

, | generated by { f1,...

Output: A Grobner basis of the quotient ideal Z : 7.

Let H; be a Grobner basis of Z N (gy).

Q:={h/g1 | he H}
for: = 2---r repeat

Let H; be a Grobner basis of Z N (g;).

HY:={h/g; | h € H;}

Replace () by a Grobner basis of (Q) N (H})

return ()

, fs} and {g1, ...

 r )
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J = <x"3-1, y " 2-3>;
K 1= <x"2-2z2>;
S := Add(J, K);

Quotient (J,

<X 24+x+1>);



Saturation of an ideal (I)

DEFINITION. Let Z be an ideal of K[xz1, ..., z,] and h be a non-zero element of

K[Qﬁl, .. .,%n].

The saturated ideal of Z by h is denoted by Z : h*° and defined by

Z:h>* = {feKlxy,...,z,] | (GeeN)h®f eT}.

PROPOSITION. Let Z and h be as above. Then, Z : Ah°° is an ideal. Moreover,
there exists an integer N such that Z : h>° =T : h'V.
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Saturation of an ideal (II)

PROPOSITION. LetZ = (fy, ..., fs) be an ideal of K[x1, ..., x,] and let
h € Klz1,...,z,| be a non-zero polynomial. Let y be an extra variable. The we
have
T:h>® = {f1,.... [, 1 —yh) NK[z1,..., 2] (3)

PROOF > Let g € Z : h*™. Then, there exists ¢ € N and polynomials
qi,---,qs € Klz1,...,x,] such that

heg=qf1+ - -qsfs.

Now observe that

g = Y°htg+ (1 — yehe)g
— Zz‘%’fiye‘l‘(1—yh)(1+yh—|-..._|_y€—1he—1>g
Since g belongs to K[ajla < ey xn] wE haVC
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g€ {fi,..., fs, 1 —yhy NKl[zxy,...,x,]. Conversely, assume that this g belongs
to this latter ideal. Then, there exist polynomials q1, . . ., qs, g0 € K|z, ..., z,][y]
such that

g = Z%fz' + qo(1 — yh)
holds. Let e be the highest degree w.r.t. ¥ among the polynomials ¢4, ..., qs, qo

Then replacing y with 1/h and multiplying this equality by h¢, we obtain
htg e 1. <
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Saturation of an ideal (I1II)

Input: h a polynomial of K[z1,...,x,]| and Z an ideal of K[x1,...,z,]| generated

by {fl; c o ey fs}
Output: A Grobner basis of the saturated ideal Z : h*°.

Let y be an extra variable.

Let < be a term order in K|x1, ..., x,,y| such that every monomial
involving y 1s greater than every monomial of degree zero w.r.t. y

Fo={fi,.... fs,1 —yh}

Compute G a Grobner basis of F' w.r.t. <

return G NK[xq, ..., x,]
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>

>

J 1= <x"2,

Saturate (J, y—-1);

K := <x"3*xy"2 + x*xyv~2,

Saturate (K,

(y=1) "2% (y+1)>;

X);

x"3xy + XT3xy"3>;
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gl := Quotient (K, x);

2 3 2 2 2 4 2
ql (= <x y +tvy, x vy +vy, x y+x y>
> g2 := Quotient (gl, x);
2 3 2 2 2 3
g2 = <-x y tvy, x y +vy, x y +t xy>
> g3 := Quotient (g2, x);
3 2
g3 := <y + vy, X y + y>
> Saturate (g3, Vv);
2 2
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Algebraic varieties (I)

DEFINITION. For f1,..., fs € K|zy,...,x,], we define

VL(f15 0 fs) =1¢ € AN | fo(Q) = - = fs(C) = O}
More generally, for F' C K|z, ..., z,], the zero set of F'in A™(LL) is defined by

VL(F) ={¢ e A™(L) | (Vf € F) f(¢) = 0}.

A subset V of A" (L) is an (affine) algebraic variety over K if there exists
F Cc Klzy,...,x,] such that V = V[ (F).

PROPOSITION. For F' C K|z1,...,z,], we have

VL(F) = VL((F)).

COROLLARY. For fi1,..., fs,91,-..,9: € Klz1,...,z,], we have

<f17---7fs> :<gl,...,gt> = VL(fla---afs):V]L(gla---;gt)-
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Algebraic varieties (II)

DEFINITION. Let V be any subset of A™(IL). (Hence, ) may not be an algebraic
variety.) The ideal over K of V is defined by

Ig(V) ={f € Klzy, ..., zn] [ (V¢ € V) () = 0}

PROPOSITION. Let Z, 7 be ideals of K|[x1,...,x,] and let V, W C A™(LL) be
algebraic varieties over K. Then we have

(1) ZCJ = W(J) CW(2),
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Zariski topology (I)

REMARK. Let £ be a non-empty set. We recall that a topology of £ is a
collection T of subsets of £ satisfying the following axioms

(01) & c T,

(O2) the intersection of two elements of T is an element of T,
(O3) any union (finite or not) of elements of T is an element of T.

The elements of ‘T are called the open sets of the topology. Their complements are
called the closed sets of the topology and satisfy the following properties

(C1) 0is a closed set.
(C3) the union of two closed sets is a closed set,
(C'3) any intersection (finite or not) of closed sets is a closed set.

Observe that a topology may be given by its closed sets rather than its open sets.
Therefore, the properties of (C1), (C5), (C3) can be viewed as axiomx for a

topology given by its closed sets.
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Zariski topology (II)

REMARK. A subset X of £ may be approximated by a closed set, precisely the
intersection of all the closed sets containing X, which is called the closure of X
w.r.t. the topology and which is denoted by X. The map X — X satisfies the

following properties for every subsets X,Y of £

(F) XCX
(F) X=X

(F3) XCY = XCVY

(F}) XCY <= XCVY
(F5) XUY =XUY

(Fs) XCY =Y =XUY\X
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Zariski topology (I1I)

PROPOSITION. The set of the affine varieties over K of A™(IL) are the closed sets

of a topology called Zariski topology.

PROPOSITION. Let W be a subset of A™(IL). The affine variety Vi, (Ix(W)) is
the intersection of all varieties V' containing WV. Therefore, it is denoted V) and
called the Zariski closuer of WV .
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Zariski topology (1IV)
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Hilbert theorems of zeros (I)

LEMMA. Let IL be an infinite field and let p € LL|x1, ..., xx]. Then we have

p#0 = (Iai,...,a,) € L") pla,...,a,) #0.

THEOREM.[Weak Theorem of Zeros] Let IL. be an algebraically closed field of
which K is a sub-field and let F" be a subset of K[x1, ..., z,]. Then we have

VLUFY) =0 = (F)=K|xq,...,x,]
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Hilbert theorems of zeros (II)

LEMMA. Let f1,..., fs, h be polynomials of K|z, ..., x,]| and let y be an extra

variable. Then we have

(fryoo o fss 1 —yh) =K[z1, ..., 0, y] = heV{fi,... [s)

where (f1,..., fs,1 —yh) and (f1,..., fs) denote respectively the ideals

generated by { f1,..., fs,1 —yh} inK|zy,...,x,,yland {f1,..., fs} in
Klx1, ...,z = Klzg, ..., 2]
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Hilbert theorems of zeros (III)

PROOF > Let us assume that (f1,..., fs, 1 — yh) generates K|x1, ..., z,,y].
Then there exists p1, ..., ps,q € K|x1,...,z,,y] such that

1= Zpi(xla s 733n7y)fi —|—Q(ZU1, s ,Zlfn,y)(l — yh)
1=1

Substituting 1/h to y we obtain

1= Zpi(xla ceey In ]-/h)fz
1=1

Let e be the maximum degree in y among the polynomials pq, ..., ps. By
multiplying the previous equality by /¢ we obtain

h* = Z Gi fi-
i=1

where ¢; = h®p;(x1,...,xn,1/h) is a polynomial of K|z, ..., x,] for
1 <4 < s. This shows that i belongs to the radical of the ideal generated by

fi,- o fsinKzy, ... 2] < .



Hilbert theorems of zeros (IV)

THEOREM. [Theorem of Zeros] Let IL. be an algebraically closed field of which K
is a sub-field. Let ' = { f1,..., fs} be a subset of K[x1,...,x,] and let
h € Klz1,...,2z,]. Then we have

helg(VWW(F)) <= (JeeN)ht e (F).
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Hilbert theorems of zeros (V)

PROOF > The condition (right-hand part of the equivalence) 1s clearly sufficient.
Let us prove it is necessary. So, let us assume that h € Ix(VL(F')). Let y be an
extra variable and consider 7 the subset of K[x1, ..., x,,y| generated by
(fi,. ., fs, 1 —yh). Leta = (ay,...,an,any1) € L™ be a point. We
distinguish two cases.

e If (a1,...,a,) € VL(F) then (ay,...,a,) € Vi(h) and a & VL(J).
o If (ay,...,a,) & VIL(F') then clearly a & V(7).

Therefore a & Vi,(J) in any case. By virtue of Theorem ?? we have
J =K|x1,...,xy,y]. Then, from Lemma 60 we obtain h &€ \/(fl, ooy fs)
which completes the proof. <
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Hilbert theorems of zeros (VI)

THEOREM. [Strong Theorem of Zeros] Let IL be a field of which K is a sub-field.
Let F' be a subset of K|x1,...,x,] and let V be the affine variety of F' over L.
Then we have

Ix (V) = Ix(V). 4)

In addition, if IL is an algebraically closed field, then we have

Ix(VL((F))) = V(F). (5)
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Hilbert theorems of zeros (VII)

PROOF > Relation (4) is a consequence of the fact that K[z1, ..., z,] is an

integral domain. The details are left to the reader | To Do.

Let us prove

Relation (5. Let f € \/(F). There exists e € N such that f¢ € (F'). Hence, f°,
and thus f, belong to I'x (V1 ((F'))). Conversely, let f € Ix(VL((F'))). By
definition, the polynomial f vanishes at every point of V1 ({F')). Hence, by virtue
of Theorem ?? there exits an integer e such that f¢ € (F'), thatis f € /(F). <
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Radical membership (I)

THEOREM. Let f1, ..., fs, h be polynomials of K|x1,...,x,] and let y be an
extra variable. Let Z be the ideal generated by f1,..., fsin K[z, ..., z,]. Then
we have

heVvI <« (fi,....fs,1—yh) =K[z1,...,2n,1] (6)

PROOF > Lemma 60 states that the condition is sufficient. Let us prove that it is

necessary. Let e be a positive integer such that h® € Z. We write
1—yh®=(1—-yh)(1+yh+ --+ythe ) eJg (7)

Let J be the subset of K|z1,...,x,,y| generated by f1,..., fs,1 — yh. (Thus J
is either an ideal or the entire ring). Relation (7) shows that 1 — y°h° belongs to
the ideal generated by 1 — yh in K[x1, ..., z,,y|. Since h® € Z, the polynomial
y©h° lies in the ideal generated by f1, ..., fs in K|zq,. .., x,,y]. Therefore
1 =1-—y°h® + y°h® belongs to J. <
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Radical membership (II)

Input: f1,..., fs, h be polynomials of K|z1, ..., z,] and y be an extra variable.

Output: ¢rue if and only if h belongs to 1/{f1, ..., fs)-

Choose any term order < for the monomials of K[x1, ..., z,, Y]
Compute a Grobner basis G of f1,..., fs,1 — yh w.rt.<
return GNK # ()
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Operation on algebraic varieties
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The tangent space at a point (I)

NOTATION. Let V' C A™(IL) be a variety over K and let
fi,---s fr € Klz1,...,2,] besuch that Ix (V) = (f1,..., fr).

Consider a point p € V. We choose our coordinate system so that p 1s the origin.

We consider an arbitrary line ¢ through p and a point ¢ = (a4, ..., a,), that is
¢ ={(tay,...,ta,) | t €L}.
The intersection V' N £ is described by the system of equations in L |¢]
fi(tay, ... tay) =--- = fr(tay,...,tay) =0

DEFINITION. We say that the line £ is tangent to p at order n if £ = 0 is a zero

of order n + 1 of the above system.

We say that the line ¢ tangent to p if it is tangent to V' at order one.
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The tangent space at a point (II)

DEFINITION. The tangent space 7,V of V' at p is the union of all points lying

on lines tangent to V" at p.

In the degenerate case where p 1s an 1solated point of V', the tangent space of V' at
p 1s the zero-dimensional vector space consisting only of the point p.

PROPOSITION. The above definition 1s independent of the choice of generators

EXAMPLE. Consider the parabola V' C A%(LL) defined by y = x* with x < 1.
The expression tas — t?a1 = 0 shows that

TpV = {(CLl,O) ’ a1 € L}

EXAMPLE. Consider the nodal curve V C A*(LL) defined by y* = z° + 27
with v < y. The expression t>a3 — t*a} — t3aj = 0 shows that T,V = A*(L).

EXAMPLE. Consider the cusp V. C A?(LL) defined by y* = x° with v < y. The
expression t>a3 — t>a3 = 0 shows that T,V = A?(LL).
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The tangent space at a point (I1I)

DEFINITION. The differential of f € LL[x, ..., z,] at an arbitrary point
p=(p1,...,pn) € A"(L), denoted by dF| , is the
linear part of the Taylor expansion of f around p, that is
n b
df|,(x —p) = X321 5L (o) (x5 — py).

Observe that dI'|  is a linear form from A" (L) to L.

THEOREM. Recall V' C A™(IL) is a variety over K and

fi,---s fr € Klz1,...,2,] are such that Ix(V) = (f1,..., f-). Let p a point of
V. Then, the tangent space 1}, of V" at p is the linear variety defined by

Tpv — V'K(dfllp(gj _p)7 S 7df1|r(x _p))

Moreover, the tangent space 1,V 1s independent of the choice of generators of
Ix(V).

71



The tangent space at a point (IV)

COROLLARY. Let V(f) c A™(L), for f € K|x1,...,x,], be an hypersurface
and let p € V(f) be a point. Then, the dimension of the tangent space 7,V is
given by

n—1 if atleast onea‘%(p) # 0

dim(7T,V) =
g n if all%(p) =0

EXAMPLE. Continuing the parabola example, we define f(x,vy) =y — x? such
that, for p = (p1,p2) € A*(L), we have

T,V = Vi(=2p1(z — p1) + 1(y — p2))
We observe dim(T,,V') = 1 for all p.

EXAMPLE. Continuing the nodal curve example, we define
f(z,y) = y* — 2% — 23 such that, for p = (p1,p2) € A%(IL), we have

T,V = Vk(—(2p1 + 3p7)(z — p1) + 2p2(y — p2))

We observe dim(T,V) is 2 for p = (0,0) and 1 otherwise.
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Smoothness (I)

DEFINITION. Let V' C A™(IL) be a variety over K and let p € V be a point. The
dimension of V" at p, denoted by dim,,V/, is the maximum dimension of an

irreducible variety V' over K such that
{p}CcvV' CV
The point is said smooth if we have
dim,V = dim(7,V).

DEFINITION. For fy,..., fr € L|x1,...,z,] and p € A" (L), the
Jacobian matrix of fq,..., f; at pis the » X n matrix denoted by

Jac(f1,..., fr)(p) whose (i, 7)-element is %(p).

THEOREM. [Jacobian Criterion] Let f1, ..., fr € K[z, ..., z,] be polynomials
and letp € V(f1,..., f-) be a point. Assume that K has characteristic 0. If
Jac(f1,..., fr)(p) has rank r, then

e the point p 1s smooth and,

e lies in a unique irreducible component of V' of dimension n — 7.
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Smoothness (II)
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Multiplicity
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