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Formal power series (1/4)

Notations

K is a complete field, that is, every Cauchy sequence in K converges.

K[[X1, . . . , Xn]] denotes the set of formal power series in X1, . . . , Xn

with coefficients in K.

These are expressions of the form Σe aeX
e where e is a multi-index

with n coordinates (e1, . . . , en), Xe stands for Xe1
1 · · ·Xen

n ,
|e| = e1 + · · ·+ en and ae ∈ K holds.

For f = Σe aeX
e and d ∈ N, we define

f(d) =
∑
|e|=d aeX

e and f (d) =
∑

k≤d f(k),

which are the homogeneous part and polynomial part of f in degree d.

Addition and multiplication

For f, g ∈ K[[X1, . . . , Xn]], we define

f + g =
∑

d∈N (f(d) + g(d)) and fg =
∑

d∈N
(
Σk+`=d (f(k)g(`))

)
.



Formal power series (2/4)

Order of a formal power series

For f ∈ K[[X1, . . . , Xn]], we define its order as

ord(f) =

{
min{d | f(d) 6= 0} if f 6= 0,

∞ if f = 0.

Remarks

For f, g ∈ K[[X1, . . . , Xn]], we have

ord(f + g) ≥ min{ord(f), ord(g)} and ord(fg) = ord(f) + ord(g).

Consequences

K[[X1, . . . , Xn]] is an integral domain.

M = {f ∈ K[[X1, . . . , Xn]] | ord(f) ≥ 1} is the only maximal ideal
of K[[X1, . . . , Xn]].

We have Mk = {f ∈ K[[X1, . . . , Xn]] | ord(f) ≥ k} for all k ∈ N.



Formal power series (3/4)

Krull Topology

Recall M = {f ∈ K[[X1, . . . , Xn]] | ord(f) ≥ 1}. Let (fn)n∈N be a
sequence of elements of K[[X]] and let f ∈ K[[X]]. We say that

(fn)n∈N converges to f if for all k ∈ N there exists N ∈ N s.t. for all
n ∈ N we have n ≥ N ⇒ f − fn ∈Mk,

(fn)n∈N is a Cauchy sequence if for all k ∈ N there exists N ∈ N s.t.
for all n,m ∈ N we have n,m ≥ N ⇒ fm − fn ∈Mk.

Proposition 1

We have
⋂
k∈NMk = 〈0〉,

If every Cauchy sequence in K converges, then every Cauchy
sequence of K[[X]] converges too.



Formal power series (4/4)

Proposition 2

For all f ∈ K[[X1, . . . , Xn]], the following properties are equivalent:

(i) f is a unit,

(ii) ord(f) = 0,

(iii) f 6∈ M.

Sketch of proof

This follows from the classical observation that for g ∈ K[[X1, . . . , Xn]],
with ord(g) > 0, the following holds in K[[X1, . . . , Xn]]

(1− g)(1 + g + g2 + · · · ) = 1

Since (1 + g + g2 + · · · ) is in fact a sequence of elements in
K[[X1, . . . , Xn]], proving the above relation formally requires the use of
Krull Topology.



Abel’s Lemma (1/2)

Geometric series

From now on, the field K is equipped with an absolute value. The geometric
series ΣeX

e is absolutely convergent provided that |x1| < 1, . . . , |xn| < 1 all
hold. Then we have

Σe x
e1
1 · · ·xenn = 1

(1−x1)···(1−xn) .

Abel’s Lemma

Let f = Σe aeX
e ∈ K[[X]], let x = (x1, . . . , xn) ∈ Kn, let M ∈ R>0 and

Let ρ1, . . . , ρn be real numbers such that

(i) |aexe| ≤M holds for all e ∈ Nn,
(ii) 0 < ρj < |xj | holds for all j = 1 · · ·n.

Then f is uniformly and absolutely convergent in the polydisk

D = {z ∈ Kn | |zj | < ρj}.

In particular, the limit of the sum is independent of the summand order.



Abel’s Lemma (2/2)

Corollary 1

Let f = Σe aeX
e ∈ K[[X]]. Then, the following properties are equivalent:

(i) There exists x = (x1, . . . , xn) ∈ Kn, with xj 6= 0 for all j = 1 · · ·n, s.t.
Σe aex

e converges.
(ii) There exists ρ = (ρ1, . . . , ρn) ∈ R>0

n s.t. Σe aeρ
e converges.

(iii) There exists σ = (σ1, . . . , σn) ∈ R>0
n s.t. Σe |ae|σe converges.

Definition

A power series f ∈ K[[X]] is said convergent if it satisfies one of the
conditions of the above corollary. The set of the convergent power series of
K[[X]] is denoted by K〈X〉.

Remark

It can be shown that, within its domain of convergence, a formal power
series is a multivariate holomorphic function. Conversely, any multivariate
holomorphic function can be expressed locally as the sum of a power series.



ρ-norm of a power series

Notation

Let ρ = (ρ1, . . . , ρn) ∈ R>0
n. For all f = Σe aeX

e ∈ K[[X]], we define

‖ f ‖ρ = Σe |ae|ρe.

Proposition 3

For all f, g ∈ K[[X]] and all λ ∈ K, we have

‖ f ‖ρ = 0 ⇐⇒ f = 0,

‖ λf ‖ρ = |λ| ‖ f ‖ρ,

‖ f + g ‖ρ ≤ ‖ f ‖ρ + ‖ g ‖ρ,

If f = Σk≤d f(d) is the decomposition of f into homogeneous parts,
then ‖ f ‖ρ = Σk≤d ‖ f(d) ‖ρ holds.

If f, g are polynomials, then ‖ fg ‖ρ ≤ ‖ f ‖ρ‖ f ‖ρ,

limρ→0‖ f ‖ρ = |f(0)|.



Convergent power series form a ring (1/5)

Notation

Let ρ = (ρ1, . . . , ρn) ∈ R>0
n. We define

Bρ = {f ∈ K[[X]] | ‖ f ‖ρ <∞}

Theorem

The set Bρ is a Banach algebra. Moreover, if ρ ≤ ρ′ holds then we
have Bρ′ ⊆ Bρ.

We define K〈X〉 :=
⋃
ρBρ K〈X〉 is a subring of K[[X]].

Cauchy’s estimate

Observe that for all f = Σe aeX
e ∈ K[[X]], we have for all e ∈ Ne

|ae| ≤
‖f‖ρ
ρe .



Convergent power series form a ring (2/5)

Theorem 1

The set Bρ is a Banach algebra. Moreover,

1 if ρ ≤ ρ′ holds then we have Bρ′ ⊆ Bρ,

2 we have
⋃
ρBρ = K〈X〉.

Proof (1/3)

From Proposition 3, we know that Bρ is a normed vector space.

Proving that ‖ fg ‖ρ ≤ ‖ f ‖ρ ‖ g ‖ρ holds for all f, g ∈ K[[X]] is
routine. Thus, Bρ is a normed algebra.

To prove (1), it remains to show that Bρ is complete.

Let (fj)j∈N be a Cauchy sequence in Bρ. We write fj = Σe a
(j)
e Xe.

From Cauchy’s estimate, for each e ∈ Nn, for all i, j ∈ N we have

|a(j)
e − a(i)

e | ≤
‖ fj − fi ‖ρ

ρe .



Convergent power series form a ring (3/5)

Proof (2/3)

Since K is complete, for each e ∈ Nn, the sequence (a
(j)
e )j∈N

converges to an element ae ∈ K.

We define f = Σe aeX
e. It must be shown that

(i) f ∈ Bρ holds and
(ii) limj→∞ fj = f holds in the metric topology induced by the ρ-norm of

the normed vector space Bρ.

Hence we must show that

(i) ‖ f ‖ρ <∞ holds, and
(ii) for all ε > 0 there exists j0 ∈ N s.t. for all j ∈ N we have

j ≥ j0 ⇒ ‖ f − fj ‖ρ ≤ ε.

Let ε > 0. Since (fj)j∈N is a Cauchy sequence in Bρ, there exists
j0 ∈ N s.t. for all j ≥ j0 and all i ≥ 0 we have∑

e |a
(j+i)
e − a(j)

e |ρe = ‖ fj+i − fj ‖ρ < ε
2 .



Convergent power series form a ring (4/5)

Proof (3/3)

Let s ∈ N be fixed. Since for each e ∈ Nn the sequence (ae − a(i)
e )i∈N

converges to 0 in K, there exists i0 ∈ N s.t. for all j ≥ j0 and all
i ≥ i0 we have ∑s

|e|=0 |ae − a
(j+i)
e |ρe < ε

2 .

Therefore, for all j ≥ j0 and all i ≥ i0 we have∑s
|e|=0 |ae − a

(j)
e |ρe ≤∑s

|e|=0 |ae − a
(j+i)
e |ρe +

∑
e |a

(j+i)
e − a(i)

e |ρe < ε
2 + ε

2 = ε.

Since the above holds for all s, we deduce that for all j ≥ j0
‖ f − fj ‖ρ =

∑
e |ae − a

(j)
e |ρe ≤ ε,

which proves (ii). Finally, (i) follows from

‖ f ‖ρ ≤ ‖ f − fj0 ‖ρ + ‖ fj0 ‖ρ ≤ ε+ ‖ fj0 ‖ρ <∞.



Convergent power series form a ring (5/5)

Corollary 2

K〈X〉 is a subring of K[[X]].

Proof

For f, g ∈ K〈X〉, there exists ρ ∈ R>on s.t. f, g ∈ Bρ. While proving the
previous theorem we proved fg ∈ Bρ. Moreover, f + g ∈ Bρ clearly holds.

Corollary 3

Let f ∈ K〈X〉. If f is a unit in K[[X]], then f is also a unit in K〈X〉.

Sketch of Proof

W.l.o.g. we can assume f(0) = 1 and we define g = 1− f . We know that
f−1 is the limit of the sequence 1 + g + g2 + · · · in Krull’s topology.
Since g(0) = 0, there exists ρ ∈ R>on s.t. Θ := ‖ g ‖ρ < 1. It follows

that ‖ f−1 ‖ρ ≤
∑

k∈N Θk = 1
1−Θ holds, thus we have f−1 ∈ Bρ.



Substitution of power series (1/4)

Remark

If g1, . . . , gn ∈ K[Y ] then Φg :
K[X] −→ K[Y ]

f 7−→ f(g1(Y ), . . . , gn(Y ))
defines

a homomorphism of K-algebras. This is not always true of convergent
power series, e.g. K[[X]] −→ K[[Y ]], X1, . . . , Xn 7−→ 1.

Theorem 2

For g1, . . . , gn ∈ K[[Y ]], with ord(gi) ≥ 1, there is a K-algebra
homomorphism

Φg :
K[[X]] −→ K[[Y ]]

f 7−→ f(g1(Y ), . . . , gn(Y ))

with the following properties

1 If g1, . . . , gn are polynomials, then Φg is an extension of Φg

2 If g1, . . . , gn are convergent power series, then we have
Φg(K〈X〉) ⊆ K〈Y 〉.



Substitution of power series (2/4)

Proof (1/3)

Let f ∈ K[[X]]. To define Φg(f), we consider the polynomial part
f (k) of f , for all k ∈ N.

Since K[[Y ]] is a ring, we observe that f (k)(g1, . . . , gn) ∈ K[[Y ]]
holds.

Let k, ` ∈ N with k < `. Observe that we have
ord(f (`) − f (k)) ≥ k + 1.

Since ord(gi) ≥ 1 holds, we deduce ord(f (`)(g)− f (k)(g)) ≥ k + 1.

It follows that (f (k)(g))k∈N is a Cauchy sequence in Krull Topology
and thus converges to an element f(g) ∈ K[[X]]. Therefore, Φg(f) is
well defined.

Of the properties asserted for the map Φg only the second one
requires some care.



Substitution of power series (3/4)

Proof (2/3)

Let ρ = (ρ1, . . . , ρn) ∈ R n
>0.

It suffices to prove the following: there exists
σ = (σ1, . . . , σn) ∈ R>0

n such that we have

Φg(Bρ) ⊆ Bσ.
Since gj(0) = 0 for all j = 1 · · ·n, there exists σj ∈ R>0

n such that
we have ‖ gj ‖σj ≤ ρj for all j = 1 · · ·n.

Taking the “component-wise min” of these σj ∈ R>0
n, we deduce

the existence of a σ ∈ R>0
n such that we have

‖ gj ‖σ ≤ ρj
for all j = 1 · · ·n.

It turns out that this σ has the desired property.



Substitution of power series (4/4)

Proof (3/3)

Indeed, writing f = Σe aeX
e, we have

‖ f (k)(g) ‖σ = ‖
∑

d≤k f(k)(g) ‖
σ

≤
∑

d≤k ‖ f(k)(g) ‖
σ

≤
∑

d≤k
∑
|e|=k |ae| ‖ g1 ‖σ

e1 · · · ‖ gn ‖σ
en

≤
∑

d≤k
∑
|e|=k |ae|ρ1

e1 · · · ρnen
= ‖ f (k) ‖ρ.

Thus, we have

‖ f(g) ‖σ = limk→∞ ‖ f (k)(g) ‖σ
≤ limk→∞ ‖ f (k) ‖ρ
≤ ‖ f ‖ρ.

Finally, we have

f ∈ Bρ ⇒ f(g) ∈ Bσ.
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Weierstrass Polynomials (1/4)

Remark

Let f ∈ K[[X1, . . . , Xn]]. We write f =
∑∞

j=0 fjX
j
n with

fj ∈ K[[X1, . . . , Xn−1]] for j ∈ N. Let ρ = (ρ1, . . . , ρn) ∈ R n
>0. We write

ρ′ = (ρ1, . . . , ρn−1). Then we have

‖ f ‖ρ =
∑∞

j=0 ‖ fj ‖ρ′ ρ
j
n.

Hence, if f ∈ K〈X1, . . . , Xn〉 holds, then so does fj ∈ K〈X1, . . . , Xn−1〉
for all j ∈ N.

Definition

Let f ∈ K[[X1, . . . , Xn]] with f 6= 0. We write
f(0, Xn) = f(0, . . . , 0, Xn). Let k ∈ N. We say that f is

general in Xn if f(0, Xn) 6= 0 holds,

general in Xn of order k if ord(f(0, Xn)) = k,

Clearly ord(f) ≤ ord(f(0, Xn)) holds. However, we have the following.



Weierstrass Polynomials (2/4)

Lemma 1

Let f ∈ K[[X1, . . . , Xn]] with f 6= 0 and k := ord(f). Then there is a
shear:

Xi = Yi + ciYn i = 1, . . . , n− 1
Xn = Yn

such that g(Y ) = f(X(Y )) ∈ K[[Y1, . . . , Yn]] is general in Yn of order k.

Proof (1/2)

Let d ∈ N. We write

f(d) =
∑
|e|=d aeX

e1
1 · · ·X

en−1

n−1 X
en
n .

Since the coordinate change is linear, we have

g(d)(Y ) = f(d)(X(Y )).



Weierstrass Polynomials (3/4)

Proof (2/2)

For d = k in particular, we have

g(k)(Y ) =
∑
|e|=k ae(Y1 + c1Yn)e1 · · · (Yn−1 + cn−1Yn)en−1Y en

n

=
(∑

|e|=k aec
e1
1 · · · c

en−1

n−1 Y
k
n

)
+ h(Y )

where h(Y ) necessarily satisfies h(0, Yn) = 0.

Observe also that the coefficient of Y k
n is a polynomial in

c1, . . . , cn−1, which is not identically zero.

Indeed, if it would, then all its coefficients would be, that is, f(k) = 0
would hold, in contradiction to our assumption k := ord(f).

Since this polynomial in c1, . . . , cn−1 is not zero, the variables
c1, . . . , cn−1 can be specialized to values that ensure that g(k)(Y ) has
degree k in Yn. Quod erat demonstrandum!



Weierstrass Polynomials (4/4)

Remark

Let f ∈ K[[X1, . . . , Xn]] such that f ∈ K〈X1, . . . , Xn−1〉[Xn] holds
and k := deg(f,Xn). Assume (just for this remark) that K = C.

Hence, we write f =
∑k

j=0 fjX
j
n with fj ∈ K〈X1, . . . , Xn−1〉 for all

j = 0 · · · k.

In this case, the power series f0, . . . , fk have a common radius of
convergence ρ′ ∈ R n−1

>0 so that they are holomorphic in the polydisk
D′ := {x ∈ Kn−1 | |xi| < ρi}.
Consequently f is holomorphic in D′ ×K.

Definition

Let k ∈ N. Let f =
∑k

j=0 fjX
j
n ∈ K[[X1, . . . , Xn−1]][Xn] with

fj ∈ K〈X1, . . . , Xn−1〉 for j = 0 · · · k and with fk 6= 0. We say that f is a
Weierstrass polynomial if we have

f0(0) = · · · = fk−1(0) = 0 and fk = 1.



Weierstrass preparation theorem

Theorem 3

Let g ∈ K〈X1, . . . , Xn〉 be general of order k. Then, there is a unique pair
(α, p) with α ∈ K〈X1, . . . , Xn〉 and p ∈ K〈X1, . . . , Xn−1〉[Xn] such that

1 α is a unit,

2 p is a Weierstrass polynomial of degree k,

3 we have g = αp.

Thus we have

g = α(X)
(
Xk
n + a1(X1, . . . , Xn−1)Xk−1

n + · · ·+ ak(X1, . . . , Xn−1)
)
,

with a1(0) = · · · = ak(0) = 0. Moreover, if g ∈ K〈X1, . . . , Xn−1〉[Xn]
then α ∈ K〈X1, . . . , Xn−1〉[Xn] also holds.

Remark

The above theorem implies that in some neighborhood of the origin, the
zeros of g are the same as those of the Weierstrass polynomial p.



Weierstrass division theorem

Theorem 4

Let f, g ∈ K〈X1, . . . , Xn〉 with g general in Xn of order k. Then, there
exists a unique pair (q, r) with q ∈ K〈X1, . . . , Xn〉 and
r ∈ K〈X1, . . . , Xn−1〉[Xn] such that we have

1 deg(r,Xn) ≤ k − 1,

2 f = qg + r.

Moreover, if f, g ∈ K〈X1, . . . , Xn−1〉[Xn] with

g = g0 + g1Xn + · · ·+ gkX
k
n and gk(0) 6= 0,

then gk is a unit in the ring K〈X1, . . . , Xn−1〉 and the classical division
theorem (in polynomial rings) gives q ∈ K〈X1, . . . , Xn−1〉[Xn].



Proof of the division theorem (1/7)

Proof of existence (1/5)

We write f =
∑∞

j=0 fjX
j
n with fj ∈ K〈X1, . . . Xn−1〉 for j ∈ N.

We write f = f̂ + f̃Xk
n with

f̂ =
∑k−1

j=0 fjX
j
n and f̃ =

∑∞
j=k fjX

j−k
n .

Let ρ = (ρ1, . . . , ρn) ∈ R n
>0. We have ‖ f ‖ρ = ‖ f̂ ‖ρ + ‖ f̃ ‖ρρkn.

In particular
‖ f̃ ‖ρ ≤ ρ

−k
n ‖ f ‖ρ. (1)

Similarly, we write g = ĝ + g̃Xk
n.

Since g is general in Xn at order k, it follows that g̃ is a unit.

Let ρ be chosen such that all of f, g, g̃−1 are in Bρ.

We consider the auxiliary function h defined as

h = Xk
n − gg̃−1 = −ĝg̃−1.



Proof of the division theorem (2/7)

Proof of existence (2/5)

We claim that for all ν ∈ R, with 0 < ν < 1, we can choose ρ such
that we have

‖ h ‖ρ ≤ νρ
k
n. (2)

Recall that we have h = Xk
n − gg̃−1 and g̃−1(01, . . . , 0n) 6= 0.

More precisely, since g = ĝ + g̃Xk
n holds, we have

h = Xk
n − gg̃−1 = Xk

n −
(
ĝ + g̃Xk

n

)
g̃−1 = −g̃−1

(∑k−1
j=0 gjX

j
n

)
,

with gj ∈ K〈X1, . . . Xn−1〉 and gj(01, . . . , 0n−1) = 0 for
j = 0, . . . , k − 1. Therefore h(01, . . . , 0n−1, Xn) is identically zero.

Writing h = ĥ+ h̃Xk
n with ĥ =

∑k−1
j=0 hjX

j
n and

hj ∈ K〈X1, . . . Xn−1〉, we deduce h̃(01, . . . , 0n) = 0.



Proof of the division theorem (3/7)

Proof of existence (3/5)

Since h̃(01, . . . , 0n) = 0, we can decrease ρ such that we have

‖ h̃ ‖ρ ≤
ν

2
, thus ‖ h̃Xk

n ‖ρ ≤
ν

2
ρkn. (3)

With ρ′ = (ρ1, . . . , ρn−1), and writing ĥ =
∑k−1

j=0 hjX
j
n, we have

‖ ĥ ‖ρ ≤
∑k−1

j=0 ‖ hj ‖ρρ
j
n.

Since h0(0) = · · · = hk−1(0) = 0 holds, we can decrease ρ (actually
ρ′) while holding ρn fixed such that for j = 0, . . . , k − 1, we have

‖ hj ‖ρ′ ≤
ν

2
ρk−jn , thus ‖ ĥ ‖ρ ≤

ν

2
ρkn. (4)

Finally, the claim of (2) follows from (3) and (4).



Proof of the division theorem (4/7)

Proof of existence (4/5)

The function h is used as follows. For every φ ∈ K〈X1, . . . , Xn〉, we
define h(φ) = hφ̃ where φ̃, φ̂ are defined as f̃ , f̂ .

By combining (1) and (2), we deduce

‖ h(φ) ‖ρ ≤ ‖ h ‖ρ ‖ φ̃ ‖ρ ≤ νρknρ−kn ‖ φ ‖ρ = ν ‖ φ ‖ρ.
This lets us write an iteration process

φ0 := f, φi+1 := h(φi) = hφ̃i.

Observe that the series φ :=
∑∞

i=0 φi converges for the metric
topology of Bρ since

‖ φ ‖ρ ≤
∑∞

i=0 ‖ φi ‖ρ ≤
∑∞

i=0 ν
i ‖ f ‖ρ = ‖ f ‖ρ

ν
1−ν .

We define

q := φ̃g̃−1 and r := φ̂.

Observe that q ∈ Bρ and r ∈ Bρ′ [Xn] hold.



Proof of the division theorem (5/7)

Proof of existence (5/5)

Clearly we have

φ̃ =
∑∞

i=0 φ̃i and φ̂ =
∑∞

i=0 φ̂i.

Observe also that we have

φi − φi+1 = φi − hφ̃i
= φ̂i +Xk

nφ̃i −
(
Xk
n − gg̃−1

)
φ̃i

= φ̂i + gg̃−1φ̃i.

Putting everything together

f = φ0

=
∑∞

i=0 (φi − φi+1)

=
∑∞

i=0 φ̂i + gg̃−1
∑∞

i=0 φ̃i
= r + gq.

This proves existence.



Proof of the division theorem (6/7)

Proof of uniqueness (1/2)

Proving the uniqueness is equivalent to prove that for all q, r
satisfying deg(r,Xn) < k and 0 = qg + r we have q = r = 0.

So let q ∈ K〈X〉 and r ∈ K〈X1, . . . , Xn−1〉[Xn] deg(r,Xn) < k and
0 = qg + r.

We have seen that there exists ρ ∈ Rn>0 such that g, q, r, g̃−1 ∈ Bρ
holds.

For h = Xk
n − gg̃−1 as above, we have

qg̃h = qg̃Xk
n − qg̃gg̃−1 = qg̃Xk

n + r.



Proof of the division theorem (7/7)

Proof of uniqueness (2/2)

We assume that ρ is chosen such that (2) holds, that is,
‖ h ‖ρ ≤ νρkn. Defining M = ‖ qg̃ ‖ρρkn, and using deg(r,Xn) < k,

we have:
M = ‖ qg̃Xk

n ‖ρ
≤ ‖ qg̃Xk

n + r ‖ρ
= ‖ qg̃h ‖ρ
≤ ‖ qg̃ ‖ρ ‖ h ‖ρ
≤ ‖ qg̃ ‖ρνρkn
= νM.

Since 0 < ν < 1, we deduce M = 0.

Since ρn 6= 0, we have ‖ qg̃ ‖ρ = 0.

Since g̃ 6= 0, we finally have q = 0, and thus r = 0.



Proof of the first point of the preparation theorem

Proof of the existence

We apply the division theorem and divide f = Xk
n by g leading to

Xk
n = qg +

∑k
i=1 aiX

k−i
n with ai ∈ K〈X1, . . . , Xn−1〉.

That is,

qg = Xk
n −

∑k
i=1 aiX

k−i
n .

We substitute X1 = · · · = Xn−1 = 0 leading to

q(0, Xn)(cXk
n + · · · ) = Xk

n −
∑k

i=1 ai(0)Xk−i
n .

with c ∈ K and c 6= 0.

Comparing the coefficients of X`
n for all ` ∈ N shows that

q(0, 0) = 1
c 6= 0 and a1(0) = · · · = ak(0) = 0

Thus q is a unit and setting α = q−1 completes the proof of the
existence statement.

Proof of the uniqueness

Follows immediately from the uniqueness of the division theorem.



Proof of the second point of the preparation theorem

Proving g ∈ K〈X1, . . . , Xn−1〉[Xn] ⇒ α ∈ K〈X1, . . . , Xn−1〉[Xn]

Let (α, p) be given by the first point of the preparation theorem, thus,
g = αp and p is a Weierstrass polynomial of degree k,

We further assume g ∈ K〈X1, . . . , Xn−1〉[Xn].

Since p is a monic polynomial in Xn, we can divide g by p in
K〈X1, . . . , Xn−1〉[Xn] yielding q, r ∈ K〈X1, . . . , Xn−1〉[Xn] such that

g = qp+ r and deg(r,Xn) < k.

Applying the uniqueness of the Weierstrass preparation theorem, we
deduce

α = q and r = 0.

Quod erat demonstrandum!



Implicit Function Theorem (1/3)

Remark

An important special case of the Weierstrass preparation theorem is when
the polynomial f has order k = 1 in Xn. In this case, we change the
notations for convenience.

Notations and assumptions

Let f =
∑∞

j=0 fjY
j with fj ∈ K〈X1, . . . , Xn〉, f(0) = 0 and

∂(f)
∂(Y )(0) 6= 0. Then f is general in Y of order 1.

By the preparation theorem, there exists a unit
α ∈ K〈X1, . . . , Xn, Y 〉 and φ ∈ K〈X1, . . . , Xn〉 such that

f = α(Y − φ) and φ(0) = 0.

In this section on the Implicit Function Theorem we also assume that
K = C holds.



Implicit Function Theorem (2/3)

Observations

We have

f(X,φ(X)) = α(X,φ(X)) (φ(X)− φ(X)) = 0.

Now consider an arbitrary series ψ(X) ∈ K〈X〉 such that ψ(0) = 0
and f(X,ψ(X)) = 0 hold.

From f(X,ψ(X)) = 0, we deduce

0 = f(X,ψ(X)) = α(X,ψ(X)) (ψ(X)− φ(X)) = 0.

Since ψ(0) = 0 and α(0, 0) 6= 0, we have α(0, ψ(0)) 6= 0.

Since α and ψ are continuous, there exists a neighborhood of 0 ∈ Kn

in which α(x, ψ(x)) 6= 0.

It follows that ψ(x) = φ(x) holds in this neighborhood.

Therefore, we have proved the following.



Implicit Function Theorem (3/3)

Theorem 5

Let f ∈ C〈X1, . . . , Xn, Y 〉 such that

f(0) = 0 and ∂(f)
∂(Y )(0) 6= 0.

Then, there exists exactly one series ψ ∈ C〈X1, . . . , Xn〉 such that we have

ψ(0) = 0 and f(X1, . . . , Xn, ψ(X1, . . . , Xn)) = 0.



Hensel Lemma (1/3)

Notations

Let f = a0Y
k + a1Y

k−1 + · · ·+ ak with ak, . . . , a0 ∈ K〈X1, . . . , Xn〉.
We define f = f(01, . . . , 0n, Y ) ∈ K[Y ].

Assumptions

1 f is monic in Y , that is, a0 = 1.

2 K is algebraically closed. Thus, there exist positive integers k1, . . . , kr
and pairwise distinct elements c1, . . . , cr ∈ K such that we have

f = (Y − c1)k1(Y − c2)k2 · · · (Y − cr)kr .

Theorem 6

There exist f1, . . . , fr ∈ K〈X1, . . . , Xn〉[Y ] all monic in Y s.t. we have

1 f = f1 · · · fr,
2 deg(fj , Y ) = kj , for all j = 1, . . . , r,

3 fj = (Y − cj)kj , for all j = 1, . . . , r.



Hensel Lemma (2/3)

Proof of Hensel Lemma (1/2)

The proof is by induction on r.

Assume first r = 1. Observe that k = k1 necessarily holds. Now
define f1 := f . Clearly f1 has all the required properties.

Assume next r > 1. We apply a change of coordinates sending cr to 0

g(X,Y ) = f(X,Y + cr)
= (Y + cr)

k + a1(Y + cr)
k−1 + · · ·+ ak

By definition of f and cr, we deduce that g(X,Y ) is general in Y of
order kr.

By the preparation theorem, there exist α, p ∈ K〈X1, . . . , Xn〉[Y ]
such that α is a unit, p is a Weierstrass polynomial of degree kr and
we have g = αp.



Hensel Lemma (3/3)

Proof of Hensel Lemma (1/2)

Then, we set fr(Y ) = p(Y − cr) and f∗ = α(Y − cr).

Thus fr is monic in Y and we have f = f∗fr.

Moreover, we have

f∗ = (Y − c1)k1(Y − c2)k2 · · · (Y − cr−1)kr−1 .

The existence of f1, . . . , fr−1 follows by applying the induction
hypothesis on f∗.
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Factorization Properties (1/9)

Notations

Let M′ = 〈X1, . . . , Xn−1〉 be the maximal ideal of K〈X1, . . . , Xn−1〉.
Let p = Xk

n + a1X
k−1
n + · · ·+ ak ∈ K〈X1, . . . , Xn−1〉[Xn] be a

Weierstrass polynomial of degree k. Thus a1, . . . , ak ∈M′ holds.

Proposition 4

The following properties are equivalent

(i) k = 0,

(ii) p is a unit in K〈X1, . . . , Xn−1〉[Xn],

(iii) p is a unit in K〈X1, . . . , Xn−1, Xn〉.

Proof

The equivalence (i) ⇐⇒ (iii) is trivial.

The equivalence (i) ⇐⇒ (ii) follows from k = deg(p,Xn),
1 = lc(p,Xn) and the fact that K〈X1, . . . , Xn−1〉 is integral.



Factorization Properties (2/9)

Proposition 5

Let f, g, h ∈ K〈X1, . . . , Xn−1〉[Xn] be polynomials s. t. f = gh. Then

(i) if g, h are Weierstrass polynomials then so is f ,

(ii) if f is a Weierstrass polynomial, then there exist units
λ, µ ∈ 〈X1, . . . , Xn−1〉 s. t. λg and µh are Weierstrass polynomials.

Proof

Claim (i) is clear.

To prove (ii), we write g = b0X
`
n + · · ·+ b` and h = c0X

m
n + · · ·+ cm.

We observe that c0b0 = 1 holds. So we choose λ = c0 and µ = b0.

W.l.o.g. we assume c0 = b0 = 1. Thus, each of the following power
series belongs to M′

b`cm, b`cm−1 + b`−1cm, b`cm−2 + b`−1cm−1 + b`−2cm, . . .

Since M′ is a prime ideal then each coefficient
b1, b2, . . . , b`, c1, c2, · · · , cm belong to M′



Factorization Properties (3/9)

Lemma 2

Let A be a commutative ring and let f =
∑k

s=0asX
s, g =

∑`
i=0biX

i and
h =

∑m
j=0cjX

j be polynomials s.t. a0, b0, c0 units of A and f = g h holds.
Let P be a prime ideal s.t. a1, . . . , ak ∈ P Then, we have
b1, . . . , b`, c1, . . . , cm ∈ P.

Proof (1/2)

Consider a rectangular grid G where the points are indexed by the
Cartesian Product {0, . . . , `} × {0, . . . ,m}.
The point of G of coordinates (i, j) is mapped to bicj such that the
sum of all points along a line i+ j = q equal aq.

There exists at least one such “line” consisting of a unique point.
bicj .



Factorization Properties (4/9)

Proof (2/2)

If there is only one such point then, this is (0, 0) and G reduces to
that point and we are done.

If there are two such points, then for one of them, either i > 0 or
j > 0 holds. Consider a point of that latter type. Since P is prime,
either bi ∈ P (provided i > 0) or cj ∈ P (provided j > 0) holds.
W.l.o.g., assume bi ∈ P and erase from G all points of the form
bi-something.

If G is not empty, we go back two steps above.

It is not hard to see that this procedure will erase all rows
b1, b2, . . . , b` and all columns c1, c2, . . . , cm, which proves the lemma.



Factorization Properties (5/9)

Lemma 3

For the Weierstrass polynomial
p = Xk

n + a1X
k−1
n + · · ·+ ak ∈ K〈X1, . . . , Xn−1〉[Xn] the following

properties are equivalent

(i) p is irreducible in K〈X1, . . . , Xn−1〉[Xn],

(ii) p irreducible in K〈X1, . . . , Xn−1, Xn〉.

Proof of (i) ⇒ (ii) (1/2)

We proceed by contradiction. Assume that p reducible in
K〈X1, . . . , Xn−1, Xn〉.
So let f1, f2 ∈ K〈X1, . . . , Xn−1, Xn〉 be non-units s. t. p = f1f2.

Since p is general in Xn (that is, p 6≡ 0 mod M′) we can assume
that both f1, f2 are general in Xn.

Applying the preparation theorem, we have f1 = α1q1 and f2 = α2q2,
where α1, α2 are units and q1, q2 are Weierstrass polynomials.



Factorization Properties (6/9)

Proof of (i) ⇒ (ii) (2/2)

Thus, p = α1α2q1q2. Observe that q1q2 is a Weierstrass polynomial.

Uniqueness from the preparation theorem implies α1α2 = 1 and
p = q1q2, which is a factorization of p in K〈X1, . . . , Xn−1〉[Xn].

Recall that we assume that p irreducible in K〈X1, . . . , Xn−1〉[Xn] and
that we aim at contradicting p reducible in K〈X1, . . . , Xn−1, Xn〉.
So, one of the polynomials qi must be a unit in K〈X1, . . . , Xn−1〉[Xn]
This would imply qi = 1, that is, fi = αi. A contradiction.

Proof of (ii) ⇒ (i)

We assume that p irreducible in K〈X1, . . . , Xn−1, Xn〉 and proceeding
by contradiction, we assume p reducible in K〈X1, . . . , Xn−1〉[Xn].
Thus let p1, p2 ∈ K〈X1, . . . , Xn−1〉[Xn] such that p = p1p2 holds.

We know that p1, p2 are Weierstrass polynomials of positive degree.
Thus p is reducible in K〈X1, . . . , Xn−1, Xn〉, a contradiction.



Factorization Properties (7/9)

Theorem 7

The ring K〈X1, . . . , Xn−1, Xn〉 is a unique factorization domain (UFD).

Proof of the Theorem (1/3)

The proof is by induction on n.

For n = 0, this is clear since any field is a UFD.

By induction hypothesis, we assume that K〈X1, . . . , Xn−1〉 is a UFD.

It follows from Gauss Theorem that K〈X1, . . . , Xn−1〉[Xn] is a UFD
as well.

Next, we show that every f ∈ K〈X1, . . . , Xn−1, Xn〉 has a
factorization into irreducibles, unique up to order and units.

We may assume that f is general in Xn. By the preparation theorem,
we have f = αp with α a unit and p ∈ K〈X1, . . . , Xn−1〉[Xn] a
Weierstrass polynomial.



Factorization Properties (8/9)

Proof of the Theorem (2/3)

Since K〈X1, . . . , Xn−1〉[Xn] is a UFD, there is a factorization

p = p1 · · · pr
into irreducible elements, which is unique up to order, after p1, . . . , pr
have been normalized to be Weierstrass polynomials.

By the previous lemma,

f = αp1 · · · pr
is a factorization into irreducibles of K〈X1, . . . , Xn−1, Xn〉.
Let f = f1 · · · fs be another such factorization into irreducibles of
K〈X1, . . . , Xn−1, Xn〉.
We apply the preparation theorem to f1, . . . , fs, leading to f1 = αiq1,
. . . , fs = αsqs, where α1, . . . , αs are units and q1, . . . , qs are
Weierstrass polynomials of positive degrees.



Factorization Properties (9/9)

Proof of the Theorem (3/3)

By uniqueness in the preparation theorem, we have

p1 · · · pr = q1 · · · qs.
Finally, since K〈X1, . . . , Xn−1〉[Xn] is a UFD, we deduce r = s and
{p1, . . . , pr} = {q1, . . . , qs}.

Remarks

Following the techniques of the above proof and using the preparation
theorem, one can prove that K〈X1, . . . , Xn〉 is a Noetherian ring.

One can prove the preparation theorem in K[[X1, . . . , Xn]] (instead of
K〈X1, . . . , Xn〉).

As a result, the results of this section can also be established in
K[[X1, . . . , Xn]] (instead of K〈X1, . . . , Xn〉).

In particular, one can prove that K[[X1, . . . , Xn]] is a UFD.



Weierstrass preparation theorem for formal power series (1/8)

Lemma 4

Assume n ≥ 2. Let f, g, h ∈ K[[X1, . . . , Xn−1]] such that f = gh holds.
Let M be the maximal ideal of K[[X1, . . . , Xn−1]]. We write
f =

∑∞
i=0 fi, g =

∑∞
i=0 gi and h =

∑∞
i=0 hi, where

fi, gi, hi ∈Mi \Mi+1 holds for all i > 0, with f0, g0, h0 ∈ K. We note
that these decompositions are uniquely defined. Let r ∈ N. We assume
that f0 = 0 and h0 6= 0 both hold. Then the term gr is uniquely
determined by f1, . . . , fr, h0, . . . , hr−1.

Proof (1/2)

Since g0h0 = f0 = 0 and h0 6= 0 both hold, the claim is true for
r = 0.

Now, let r > 0. By induction hypothesis, we can assume that
g0, . . . , gr−1 are uniquely determined by f1, . . . , fr−1, h0, . . . , hr−2.

Observe that for determining gr, it suffices to expand f = gh modulo
Mr+1.



Weierstrass preparation theorem for formal power series (2/8)

Proof (2/2)

Modulo Mr+1, we have

f1 + f2 + · · ·+ fr = (g1 + g2 + · · ·+ gr)(h0 + h1 + · · ·+ hr)
= g1h0+

g2h0 + g1h1+
...
grh0 + gr−1h1 + · · ·+ g1hr−1

The conclusion follows.



Weierstrass preparation theorem for formal power series (3/8)

Notations

Assume n ≥ 1. Denote by A the ring K[[X1, . . . , Xn−1]] and by M
be the maximal ideal of A.

Note that n = 1 implies M = 〈0〉.
Let f ∈ A[[Xn]], written as f =

∑∞
i=0 aiX

i
n with ai ∈ A for all i ∈ N.

Theorem 8

We assume f 6≡ 0 mod M[[Xn]]. Then, there exists a unit α ∈ A[[Xn]],
an integer d ≥ 0 and a monic polynomial p ∈ A[Xn] of degree d such that
we have

1 p = Xd
n + bd−1X

d−1 + · · ·+ b1X1 + b0, for some bd−1, . . . , b1, b0 ∈M,

2 f = αp.

Further, this expression for f is unique.



Weierstrass preparation theorem for formal power series (4/8)

Proof (1/5)

Let d ≥ 0 be the smallest integer such that ad 6∈ M. Clearly d exists
since we assume that f 6≡ 0 mod M[[Xn]] holds.

If n = 1, then writing f = αXd
n with α =

∑∞
i=0 ai+dX

i
n proves the

existence of the claimed decomposition.

From now on, we assume n ≥ 2.

Let us write α =
∑∞

i=0 ciX
i
n with ci ∈ A for all i ∈ N.

Since we require α to be a unit, we have c0 6∈ M. Note that c0 is
also a unit modulo M.



Weierstrass preparation theorem for formal power series (5/8)

Proof (2/5)

We must solve for bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . . s. t. for all m ≥ 0 we
have

a0 = b0c0

a1 = b0c1 + b1c0

a2 = b0c2 + b1c1 + b2c0
...

ad−1 = b0cd−1 + b1cd−2 + · · ·+ · · ·+ bd−2c1 + bd−1c0

ad = b0cd + b1cd−1 + · · ·+ · · ·+ bd−1c1 + c0

ad+1 = b0cd+1 + b1cd + · · ·+ · · ·+ bd−1c2 + c1
...

ad+m = b0cd+m + b1cd+m−1 + · · ·+ · · ·+ bd−1cm+1 + cm
...



Weierstrass preparation theorem for formal power series (6/8)

Proof (3/5)

We will compute each of bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . . modulo
each of the successive powers of M, that is, M,M2, . . . ,Mr, . . ..

We start by solving for each of bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . .
modulo M.

By definition of d, the left hand sides of the first d equations above
are all ≡ 0 mod M.

Since c0 is a unit modulo M, these first d equations taken modulo
M imply that each of b0, b1, . . . , bd−1 is ≡ 0 mod M.

Plugging this into the remaining equations we obtain cm ≡ ad+m

mod M, for all m ≥ 0.

Therefore, we have solved for each of
bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . . modulo M.



Weierstrass preparation theorem for formal power series (7/8)

Proof (4/5)

Let r > 0 be an integer. We assume that we have inductively
determined each of bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . . modulo each of
M, . . . ,Mr. We wish to determine them modulo Mr+1.

Consider the first equation, namely a0 = b0c0, with a0, b0, c0 ∈ A.
Recall that a0 ∈M and c0 6∈ M both hold. By assumption, b0 and
c0 are known modulo each of M, . . . ,Mr. In addition, a0 is known
modulo each of M, . . . ,Mr,Mr+1. Therefore, the previous lemma
applies and we can compute b0 modulo Mr+1.

Consider the second equation, that we re-write a1 − b0c1 = b1c0. A
similar reasoning applies and we can compute b1 modulo Mr+1.

Continuing in this manner, we can compute each of b0, b1, . . . , bd−1

modulo Mr+1 using the first d equations.

Finally, using the remaining equations determine cm mod Mr, for all
m ≥ 0.



Weierstrass preparation theorem for formal power series (8/8)

Proof (5/5)

The induction is complete, and the existence of a factorization of f as
claimed is proved.

The uniqueness is obvious, because d is uniquely determined by f ,
and the unit α is uniquely determined as the coefficient of Xd

n in any
two such factorizations.

Finally, equating the coefficients of Xd−1
n , . . . , Xn, X

0
n in any two

such factorizations determine p uniquely.

Remark

The assumption of the theorem, namely f 6≡ 0 mod M[[Xn]], can
always be assumed. Indeed, one can reduce to this case by a suitable
linear change of coordinates.

From this Weierstrass preparation theorem for formal power series,
one can show that K[[X1, . . . , Xn−1]] is a UFD and a Noetherian ring.



Germs of curves (1/8)

Definition

Let D := {x = (x1, . . . , xn) ∈ Kn | |xi| < ρi} be a polydisk and let
M ⊆ D. We say that M is a principal analytic set if there exists
f ∈ K〈X1, . . . , Xn〉 that converges throughout D and satisfies

M = VD(f) where VD(f) := {x ∈ D | f(x) = 0}.

Given f , the set VD(f) may be empty or not, depending on D.

Definition

Let D1 and D2 be two polydisks of Kn. Let M1 ⊆ D1 and M2 ⊆ D2 be
two principal analytic sets. We say that M1 and M2 are equivalent if there
exists a polydisk D ⊆ D1 ∩ D2 such that we have

M1 ∩ D = M2 ∩ D.

An equivalence class of principal analytic sets is called a germ of a
principal analytic set, or, when n = 2, a germ of a curve.



Germs of curves (2/8)

Notation for a germ

Given two equivalent principal analytic sets M1 = VD1(f1) and
M2 = VD1(f2) there exists a polydisk D such that we have

{x ∈ D1 | f1(x) = 0} ∩ D = {x ∈ D2 | f2(x) = 0} ∩ D.

Therefore f1 = f2 holds and we simply write V (f) for the equivalent class
of M1 and M2. Indeed, if the set of zeros of an analytic function f has an
accumulation point inside the domain of f , then f is zero everywhere on
the connected component containing the accumulation point.

The empty germ

It follows that V (f) = ∅ means that 0 6∈ VD(f) for any representative
VD(f) ∈ V (f). This implies f(0) 6= 0, that is, f is a unit in
K〈X1, . . . , Xn〉. The converse is clearly true, so we have

V (f) = ∅ ⇐⇒ f 6≡ 0 mod M.



Germs of curves (3/8)

Binary operations on germs

An inclusion V (f1) ⊆ V (f2) between two germs means that there exist
representatives VD1(f1) ∈ V (f1) and VD2(f2) ∈ V (f2) together with a
polydisk D ⊆ D1 ∩ D2 such that we have

VD1(f1) ∩ D ⊆ VD2(f2) ∩ D.

We define V (f1) ∩ V (f2) and V (f1) ∪ V (f2) similarly.

Proposition 6

For all f, g ∈ K〈X1, . . . , Xn〉 s.t f divides g, we have V (f) ⊆ V (g).

For all f, f1, . . . , fr ∈ K〈X1, . . . , Xn〉 s.t. f = f1 · · · fr holds we have
V (f) = V (f1) ∪ · · · ∪ V (fr).



Germs of curves (4/8)

Lemma (Study’s Lemma)

Let f, g ∈ K〈X1, . . . , Xn〉 with f irreducible. If the germs V (f), V (g)
satisfy V (f) ⊆ V (g) then f divides g in K〈X1, . . . , Xn〉.

Proof of Study’s Lemma (1/3)

We proceed by induction on n.

The case n = 0 is trivial.

Next, by induction hypothesis, we assume that the lemma holds in
K〈X1, . . . , Xn−1〉.
By definition of V (f) ⊆ V (g) and thanks to the preparation
theorem, we can assume that f, g are Weierstrass polynomials in
K〈X1, . . . , Xn−1〉[Xn]. Thus we have

f = Xk
n + a1X

k−1
n + · · ·+ ak, g = X`

n + b1X
`−1
n + · · ·+ b`,

where k, ` ≥ 1 and each of a1, . . . , ak, b1, . . . , b` is zero modulo M′,
where (as usual) M′ is the maximal ideal of K〈X1, . . . , Xn−1〉.



Germs of curves (5/8)

Proof of Study’s Lemma (2/3)

Since K〈X1, . . . , Xn−1〉 is a UFD, it follows from resultant theory
that f and g have a common divisor of positive degree ii and only if
the resultant res(f, g) is not zero.

Since f is also irreducible in K〈X1, . . . , Xn−1〉[Xn], proving
res(f, g) 6= 0 would do what we need.

Let D = {x = (x1, . . . , xn) ∈ Kn | |xi| < ρ} be a polydisk
throughout which f and g are convergent.

Define D′ = {x = (x1, . . . , xn−1) ∈ Kn−1 | |xi| < ρi}.
For each x′ ∈ D′, we denote by fx′ and gx′ the univariate polynomials
of K[Xn] obtained by specializing X1, . . . , Xn−1 to x′ into f, g.

In particular, we have f0 = Xk
n and g = X`

n, so
V (f0) = V (g0) = {0}.



Germs of curves (6/8)

Proof of Study’s Lemma (3/3)

Since the roots of fx′ and gx′ depends continuously on x′, one can
choose the polydisk D = {x = (x1, . . . , xn) ∈ Kn | |xi| < ρi} (and
thus D′) such that for all x′ ∈ D′ each root xn of fx′ and gx′ satisfies
|xn| < ρn.

For the same continuity argument, and since V (f) ⊆ V (g) holds, the
polydisk D can be further refined such that V (fx′) ⊆ V (gx′) holds for
all x′ ∈ D′.
Hence, for all x′ ∈ D′, the univariate polynomials fx′ and gx′ have a
common prime factor, that is, res(fx′ , gx′) = 0.

Finally, using the specialization property of the resultant, we conclude
that res(f, g)(x′) = 0 holds for all x′ ∈ D′.



Germs of curves (7/8)

Definition

A germ of a principal analytic set V (f) is called reducible if there exist two
germs of a principal analytic set V (f1) and V (f2) such that we have
V (f) = V (f1) ∪ V (f2), V (f1) 6= ∅, V (f2) 6= ∅ and V (f1) 6= V (f2).
Otherwise, V (f) is called irreducible.

Lemma 5

A germ of a principal analytic set V (f) is irreducible if and only if there
exists g ∈ K〈X1, . . . , Xn〉 and k ∈ N∗ such that f = gk holds.

Theorem 9

Let V (f) be a germ of a principal analytic set. Then, V (f) admits a
decomposition

V (f) = V (f1) ∪ · · · ∪ V (fr).

where V (f1), . . . , V (fr) are irreducible. This decomposition is unique up
to the order in which the components appear.



Germs of curves (8/8)

Definition

We call a series f ∈ K〈X1, . . . , Xn〉 minimal if every prime factor fi of f
occurs only once, that is, f = f1 · · · fr.

Then, for a curve (that is n = 2) the sets V (f1), . . . , V (fr) are called
the branch of the curve at the origin.

This notion can be translated at any point of the curve by an
appropriate change of coordinates.

If f is minimal, we call

Ord(V (f)) = ord(f)

the order of the germ.
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Implicit function theorem and local parametrization

Definition

Let f ∈ K〈X,Y 〉 be minimal, with f(0, 0) = 0. The branch V (f) is called
smooth if we have

gradf :=

(
∂f

∂X
(0),

∂f

∂Y
(0)

)
6= (0, 0).

Remark

If ∂f/∂Y 6= 0, the implicit function theorem gives us a local
parametrization x 7→ Φ(x) = (x, ϕ(x)) of V (f). That is, there exists a
convergent power series ϕ ∈ K〈X〉 such that f(x, ϕ(x)) = 0 holds in a
neighborhood of the origin.



Motivating the notion of Puiseux series

Example

Let f := X3 − Y 2. The implicit function theorem does not apply to f .
However, there is a parametrization:

t 7→ Φ(t) = (t2, ϕ(t)), where ϕ(t) = t3.

Setting t = x1/2, we obtain a parametrization of the cuspidal cubic with
fractional exponents

x 7→
(
x, x

3
2

)
.

Remark

We will show that locally any branch of a curve has a parametrization of
the form

t 7→ (tn, ϕ(t)) or x 7→
(
x, ϕ(x

1
n )
)
,

for some power series ϕ ∈ C〈T 〉. Such ϕ are called Puiseux Series.



Theorem on Puiseux Series

Definition

Let f(X,Y ) ∈ C[[X,Y ]] be with f(0, 0) = 0. A pair (ϕ1, ϕ2) of series in
C[[T ]] is called a formal parametrization of f if we have:

1 (ϕ1, ϕ2) 6= (0, 0),
2 ϕ1(0) = ϕ2(0) = 0 and
3 f(ϕ1(T ), ϕ2(T )) = 0 holds in C[[T ]].

Here, the substitution is the sense of Theorem 2.

Puiseux’s Theorem (algebraic version)

Let the series f ∈ C[[X,Y ]] be general in Y of order k ≥ 1. Then there
exists a natural number n ≥ 1 and ϕ ∈ C[[T ]] such that ϕ(0) = 0 and
f(Tn, ϕ(T )) = 0 hold in C[[T ]]. Moreover, if f is convergent, then so is ϕ.

The proof will be done throughout this section. In the first claim, the field C
could be any algebraically closed field. In the second (convergence) methods
from analysis are used, so C stand for the complex numbers.
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Proving convergence of the power series in Puiseux Theorem

Remark

In the special case of the implicit function theorem, the convergence
of ϕ can be derived easily from convergence of f , see Appendix 3.

The general case is more complicated.

Remark

The proof (to be presented hereafter) combines

methods from complex analysis and topology to prove the existence
of sufficiently many “convergent solutions”, and

an algebraic trick to show that the formally constructed series is equal
to one of the convergent solutions.

Thus ϕ must be convergent.



Discriminant (recall)

Notation

Let A be a commutative ring and f ∈ A[Y ] a non-constant polynomial.
We denote by Df the discriminant of f .

Proposition

Let U ⊂ C be a domain, let A := O(U) be the ring of holomorphic
functions in U . For f ∈ A[Y ] monic and x ∈ U , we write

fx := Y k + a1(x)Y k−1 + · · ·+ ak(x) ∈ C[Y ].

Then fx has a multiple root in C if and only if Df (x) = 0 holds.

Proof

By the specialization property of resultants, we have Df (x) = Dfx .

Then, the assertion follows from definition of discriminants of Dfx .



Geometric Version of Puiseux’s Theorem

Puiseux’s Theorem (geometric version)

Let f(X,Y ) = Y k + a1(X)Y k−1 + · · ·+ ak(X) ∈ C〈X〉[Y ], k ≥ 1 be an
irreducible Weierstrass polynomial. (Note that f could have irreducible
factors that are not Weierstrass polynomials.) Let ρ > 0 be chosen such
that

a) a1, . . . , ak converge in U := {x ∈ C | |x| < ρ},
b) Df (x) 6= 0 in U∗ := U \ {0}.

Furthermore, let

V := {t ∈ C | |t| < ρ
1
k },

C := {(x, y) ∈ U × C : f(x, y) = 0}.

Then, there exists a series ϕ ∈ C〈T 〉 that converges in V and has the
following properties:

i) we have f(tk, ϕ(t)) = 0 for all t ∈ V ;

ii) the map Φ : V → C, t 7→ (tk, ϕ(t)), is bijective.



Illustration of the geometric version Puiseux’s Theorem

The situation for k = 3 and ρ = 1 is illustrated in the following sketch.
Only the real component of the Y -direction is drawn.

pk : V → U is given by t 7→ tk,
π : U × C→ U , (x, y) 7→ x, is projection.
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Factoring Weierstrass polynomials (1/3)

Notations and hypotheses (recall)

Let f = Y k + a1(X)Y n−1 + · · ·+ ak(X) ∈ C〈X〉[Y ] be an
irreducible Weierstrass polynomial, with degree k ≥ 1.

Let ρ > 0 be chosen such that the series a1, . . . , ak converge in the
open set U := {x ∈ C | |x| < ρ}.
The discriminant discrim(f, Y )(x) is not zero for all x ∈ U \ {0}.
Let V := {t ∈ C | |t| < ρ

1
k }.

Let C := {(x, y) ∈ U × C | f(x, y) = 0}.
From the geometric version of Puiseux’s theorem, there exists a power
series φ ∈ C〈T 〉 that converges in V and has the following properties:

1 for all t ∈ V , we have f(tk, φ(t)) = 0,
2 Ψ : V → C, t 7−→ (tk, φ(t)) is bijective.



Factoring Weierstrass polynomials (2/3)

Proposition

Let ζ = exp(2πı/k) be a k-th primitive root of unity. For all i = 1, . . . , k,
we define

ϕi = ϕ(ζit) and Φi := (tk, ϕi(t))

Then, Φ1, . . . ,Φk are distinct parametrizations of C, that is, the series
ϕ1, . . . , ϕk are distinct.

Proof

The maps V → V, t 7−→ ζit are bijective. Thus, for i = 1, . . . , k,
they are distinct.

Hence, the bijective maps Φ1, . . . ,Φk are distinct.

Remark

From a geometric point of view, the maps Φ1, . . . ,Φk differ from each
other by permutations of the sheets of the covering map π∗ : C∗ → U∗.
Thus, the roots of unity act as “covering transformations”.



Factoring Weierstrass polynomials (3/3)

Remark

The parametrizations ϕ1, . . . , ϕk can be used to extend each factorization

fx(Y ) = (Y − c1) · · · (Y − cn), where ci ∈ C

for x ∈ U \ {0}, to the entire U .

Corollary

Let (T k, ϕ(T )) be a parametrization given by the geometric version of
Puiseux’s theorem. Let ζ, ϕ1, . . . , ϕk be as in the previous proposition.
Then, the following holds in C〈T 〉[Y ]

f(T k, Y ) = (Y − ϕ1(T )) · · · (Y − ϕk(T )).

Proof

Each of ϕ1, . . . , ϕk is a distinct root in C〈T 〉 of the polynomial
f(T k, Y ) ∈ C〈T 〉[Y ].



Complement on the algebraic version Puiseux’s theorem (1/3)

Notations

Let f ∈ C〈X,Y 〉 be general in Y .

Let n ∈ N and ϕ(S) ∈ C[[S]] be defining a solution to the algebraic
version Puiseux’s theorem, that is, f(Sn, ϕ(S)) = 0 holds in C[[S]].

By the preparation theorem, there exist a unit α ∈ 〈X,Y 〉 and
irreducible Weierstrass polynomials p1, . . . , pr ∈ C〈X〉[Y ]

Observations

Since α(Sn, ϕ(S)) 6= 0, there exists j ∈ {1, . . . , r} such that
pj(S

n, ϕ(S)) = 0 holds.

Therefore, w.l.o.g. one can assume that f is an irreducible Weierstrass
polynomial of C〈X〉[Y ] of degree k and of which φ is a formal
solution in the sense of the algebraic version Puiseux’s theorem.



Complement on the algebraic version Puiseux’s theorem (2/3)

Observations

From the previous corollary, there exist ϕ1, . . . , ϕk ∈ C〈T 〉 such that
we have in C〈T 〉[Y ]

f(T k, Y ) = (Y − ϕ1(T )) · · · (Y − ϕk(T )).

In the algebraic of version Puiseux’s theorem, the denominator n can
be as large as desired. Thus we can assume n = `k, for some `.

Therefore, we have in C[[S]][Y ]

f(Sn, Y ) = (Y − ϕ1(S`)) · · · (Y − ϕk(S`)).
Since ϕ ∈ C[[S]] is also a zero of f(Sn, Y ) and since C[[S]][Y ] is an
integral domain, we have ϕi = φ, for some i. Hence ϕ is convergent.

Corollary

If f ∈ C〈X,Y 〉 is an irreducible power series, general in Y of order k, then
there exists a convergent power series φ ∈ C〈T 〉 such that
f(T k, φ(T )) = 0 holds in C〈T 〉.



Complement on the algebraic version Puiseux’s theorem (3/3)

Corollary

If f ∈ C〈X,Y 〉 is irreducible in C〈X,Y 〉, then it is also irreducible in
C[[X,Y ]]. (Thus, for power series, there is no change in the divisibility
theory in passing from convergent to formal power series.)

Proof of the corollary

We may assume that f is a Weierstrass polynomial of degree k.

Since it is irreducible in C〈X,Y 〉, the geometric version of Puiseux’s
theorem applies. Thus, there exist convergent power series ϕ1, . . . , ϕk
such that we have

f(T k, Y ) = (Y − ϕ1(T )) · · · (Y − ϕk(T )).

Since each factor on the right hand side of the above equality belongs
to C〈X,Y 〉 and since C[[X,Y ]] is a unique factorization domain, it
follows that all possible formal factor of f are necessarily convergent
power series. This yields the conclusion.



The ring of Puiseux series (1/9)

Definition

For m ≥ 1, there is an injective homomorphism

C[[X]]→ C[[T ]], X 7→ Tm.

We regard this as a ring extension

C[[X]] ⊆ C[[T ]] ≡ C[[X
1
m ]]

If m = kn, there are injections

C[[X]]→ C[[T ]]→ C[[S]],
X 7→ Tn. T 7→ Sk,
X 7→ (Sk)n = Sm.

which can be regarded as inclusions

C[[X]] ⊆ C[[X
1
n ]] ⊆ C[[X

1
m ]].

Continuing in this way, we define

C[[X∗]] =
⋃∞
n=1 C[[X

1
n ]].

This is an integral domain that contains all formal Puiseux series.



The ring of Puiseux series (2/9)

Definition

For a fixed ϕ ∈ C[[X∗]], there is an n ∈ N such that ϕ ∈ C[[X
1
n ]]. Hence

ϕ =
∑∞

m=0 amX
m
n , where am ∈ C.

and we call order of ϕ the rational number defined by

ord(ϕ) = min{mn | am 6= 0} ≥ 0.

Lemma

Every monic polynomial of C〈X〉[Y ] splits into linear factors in C[[X∗]][Y ].

Proof of the lemma (1/3)

Let f ∈ C〈X〉[Y ] be monic and k := deg(f). There exist
k1, . . . , kr ∈ N>0 and pairwise distinct c1, . . . , cr ∈ C s, t. we have

f(0, Y ) = (Y − c1)k1 · · · (Y − cr)kr .



The ring of Puiseux series (3/9)

Proof of the lemma (2/3)

By Hensel’s Lemma, there exist monic polynomials
f1, . . . , fr ∈ C〈X〉[Y ] such that fi(0, Y ) = (Y − ci)ki and

f = f1 · · · fr.
If some i, we have ci = 0, then the Weierstrass preparation theorem
can be applied to fi, so fi = αipi where pi is a Weierstrass
polynomial of degree ki and αi is a unit.

If q is an irreducible factor of pi, say of degree `, then q is itself a
Weierstrass polynomial. Moreover, the geometric version of Puiseux’s
theorem implies the existence of Puiseux series φ1, . . . , φ` ∈ C[[X∗]]
of positive order such that we have

q(X,Y ) = (Y − φ1(X)) · · · (Y − φ`(X)).

Thus, there exist Puiseux series ϕi,1, . . . , ϕi,ki ∈ C[[X∗]] s. t. we have

pi = (Y − ϕi,1(X)) · · · (Y − ϕi,ki(X)).

and ord(ϕi,j) > 0 for all 1 ≤ j ≤ ki.



The ring of Puiseux series (4/9)

Proof of the lemma (2/3)

For each i, such that ci 6= 0 holds, we apply the change of
coordinates Ỹ = Y + ci and set f̃i(Y ) = fi(Ỹ ). After returning to
the original coordinate system, this gives a factorization of pi similar
to the one in the previous case (that is, the case ci = 0) up to the
fact that ϕi,j = ci + · · · , that is, ord(ϕi,j) = 0 for all 1 ≤ j ≤ ki.
Putting things together, we define p := p1 · · · pr and we have

p =
∏

1 ≤ i ≤ r
1 ≤ j ≤ ki

(Y − ϕi,ki(X).

Since f and p have the same roots (counted with multiplicities) in
C[[X∗]] and are both normalized, we conclude f = p.



The ring of Puiseux series (5/9)

Notation

We denote by C((X∗)) the quotient field of C[[X∗]].

Remark

In the previous lemma, the hypothesis f monic is essential. Consider
f = XY 2 + Y + 1. We write f = Xg(1/X, Y ) with
g(T, Y ) = Y 2 + TY + T . The previous lemma applies to g which yields a
factorization of f into linear factors of C((X∗))[Y ].

Definition

Let ϕ ∈ C[[X∗]] and n ∈ N minimum with the property that ϕ ∈ C[[X
1
n ]]

holds. We say that the Puiseux series ϕ is convergent if we have
ϕ ∈ C〈X〉. Convergent Puiseux series form an integral domain denoted by
C〈X∗〉 and whose quotient field is denoted by C(〈X∗〉).



The ring of Puiseux series (6/9)

Proposition

For every element ϕ ∈ ((X∗)), there exist n ∈ Z, r ∈ N>0 and a sequence
of complex numbers an, an+1, an+2, . . . such that

ϕ =
∑∞

m=n amX
m
r and an 6= 0.

and we define ord(ϕ) = n
r . The proof, easy, uses power series inversion.

Remark

Formal Puiseux series can be defined over an arbitrary field K. One
essential property of Puiseux series is expressed by the following theorem,
attributed to Puiseux for K = C but which was implicit in Newton’s use of
the Newton polygon as early as 1671 and therefore known either as
Puiseux’s theorem or as the Newton–Puiseux theorem. In its modern
version, this theorem requires only K to be algebraically closed and of
characteristic zero. See corollary 13.15 in D. Eisenbud’s Commutative
Algebra with a View Toward Algebraic Geometry.



The ring of Puiseux series (7/9)

Theorem

If K is an algebraically closed field of characteristic zero, then the field
K((X∗)) of formal Puiseux series over K is the algebraic closure of the
field of formal Laurent series over K. Moreover, if K = C, then the field
C(〈X∗〉) of convergent Puiseux series over C is algebraically closed as well.

Proof of the Theorem (1/3)

We restrict the proof to the case K = C. Hence, we prove that
C((X∗)) and C(〈X∗〉) are algebraically closed. We follow the elegant
and short proof of K. J. Nowak which relies only on Hensel’s lemma.

It suffices to prove that any monic polynomial f ∈ C((X∗))[Y ] (resp.
f ∈ C(〈X∗〉)[Y ])

f(X,Y ) = Y n + a1(X)Y n−1 + · · ·+ an(X)

of degree n > 1 is reducible.



The ring of Puiseux series (8/9)

Proof of the Theorem (2/3)

Making use of the Tschirnhausen transformation of variables
Ỹ = Y + 1

na1(X), we can assume that the coefficient a1(X) is
identically zero. W.l.o.g., we assume an(X) not identically zero.

For each k = 1, . . . , n, define rk = ord(ak(X)) ∈ Q, unless ak is
identically zero.

Define r := min{rk/k}. Obviously, we have rk/k − r ≥ 0, with
equality for at least one k.

Take a positive integer q so large that all Puiseux series ak(X) are of
the form fk(X

1/q) for fk ∈ C[[Z]] (resp. fk ∈ C〈Z〉). Let r := p/q
for an appropriate p ∈ Z.

After the transformation of variables X = wq, Y = U · wp, we get

f(X,Y ) = wnp ·Q(w,U), where

Q(w,U) = Un+b2(w)Un−2 + · · ·+bn(w) and bk(w) = ak(w
q)w−kp.



The ring of Puiseux series (9/9)

Proof of the Theorem (3/3)

Observe that ord(bk(w)) ∈ Z and satisfies in fact

ord(bk(w)) = q · rk − k · p = q · k(rk · k − r) ≥ 0.

Therefore Q(w,U) is a polynomial in C[[w]][U ] (resp. C〈w〉[U ]).

Furthermore we have ord(bk(w)) = 0 for at least one k. Thus, for
every such k, we have bk(0) 6= 0.

Therefore, the complex polynomial

Q(0, U) = Un + b2(0)Un−2 + · · ·+ bn(0) 6≡ (U − c)n

for any c ∈ C.

Hence, Q(0, U) is the product of two coprime polynomials in C[U ].

By Hensel’s lemma, Q(w,U) is the product of two polynomials
Q1(w,U) and Q2(w,U) in C[[w]][U ] (resp. C〈w〉[U ]).

Finally, we have

f(X,Y ) = Xnr ·Q1(X1/q, X−rY ) ·Q2(X1/q, X−rY ).
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The extended Hensel construction (EHC)

Goal

Factorize F (X,Y ) ∈ C[X,Y ] into linear factors in X over C(〈Y ∗〉):

F (X,Y ) = (X − χ1(Y ))(X − χ2(Y )) · · · (X − χd(Y ))

where each χi(Y ) is a Puiseux series.

Thus offers an alternative algorithm to that of Newton-Puiseux.

Remarks

The EHC generalizes to factorize polynomials over multivariate power
series rings

Hence, the EHC has similar goal to Abhyankar-Jung theorem

However, it is a weaker form:
• less demanding hypotheses, and
• weaker output format, making it easier to compute.



An example with the PowerSeries library

> P := PowerSeries([y]):

> U := UnivariatePolynomialOverPowerSeries([y], x):

> poly := y^2 *x + y^2 - y*x^3 - y*x^2 + y -x^2;

3 2 2 2 2

poly := -x y - x y + x y - x + y + y

U:-ExtendedHenselConstruction(poly,[0],3);

-T - 1 2 2 2 2

[[y = T, x = ------], [y = T , x = -T ], [y = T , x = T ]]

T



Another example



Related works (1/2)

1 Extended Hensel Construction (EHC):
• Introduction: F. Kako and T. Sasaki, 1999
• Extensions:

M. Iwami, 2003,
D. Inaba, 2005,
D. Inaba and T. Sasaki 2007,
D. Inaba and T. Sasaki 2016.

2 Newton-Puiseux:
• H. T. Kung and J. F. Traub, 1978,
• D. V. Chudnovsky and G. V. Chudnovsky, 1986
• A. Poteaux and M. Rybowicz, 2015.



Related works (2/2)

The Extended Hensel Construction (EHC) compute all branches
concurrently

while approaches based on Newton-Puiseux computes one branch
after another.

For F (X,Y ) := −X3 + Y X + Y :
1 the EHC produces

1 χ1(Y ) := Y
1
3 + 1

3 Y
2
3 +O(Y ),

2 χ2(Y ) := −1+
√
−3

2 Y
1
3 + 1

3 (−1−
√
−3

2 )Y
2
3 +O(Y ),

3 χ3(Y ) := (−1−
√
−3

2 )Y
1
3 + 1

3 (−1+
√
−3

2 )Y
2
3 +O(Y ).

2 Whereas Kung-Traub’s method (based on Newton-Puiseux) computes

1 χ1(Y ) := Y
1
3 + 1

3 Y
2
3 +O(Y ),

2 χ2(Y ) := θ Y
1
3 + θ2

3 Y
2
3 +O(Y ),

3 χ3(Y ) := θ2 Y
1
3 + θ

3 Y
2
3 +O(Y ),

for θ ∈ C such that θ3 = 1, θ2 6= 1, θ 6= 1, since F (X,Y ) is a
Weierstrass polynomial.
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Overview

Notations

Let F (x, y) ∈ C[x, y] be square-free, monic in x and let d := degx(F ).
Note that assuming F (x, y) is general in x of order d = degx(F ) (thus
meaning F (x, 0) = xd and F (x, y) is a Weierstrass polynomial) is a
stronger condition, which is not required here.
On can easily reduce to the case where F is monic in x as long as the
leading coefficient of F in x can be seen an invertible power series in
C〈y〉.

Objectives

The final goal is to to factorize F over the field C(〈y∗〉) of convergent
Puiseux series over C.
This follows the ideas of Hensel lemma: lifting the factors of an intial
factorization.
If the initial factorization has no multile roots, then we are able to
generate the homomogeneous parts (one degree after another) of the
coefficients of the factors predicted by Puiseux’s theorem.



Newton line (1/2)

Definition

We consider a 2D grid G where the Cartesian coordinates (ex, ey) of a
point are integers.
Each nonzero term c xexyey of F (x, y), with c ∈ C is mapped to the
point of coordinates (ex, ey) on the grid.
Let L be the straight line passing through the point (d, 0) as well as
another point of the plot of F such that no points in the plot of F lye
below L; The line L is called the Newton line of F .



Newton line (2/2)

> F := x^3 - x^2 * y^2 -x*y^3 + y^4;

2 2 3 4 3

F := -x y - x y + y + x

> U := UnivariatePolynomialOverPowerSeries([y], x):

> U:-ExtendedHenselConstruction(F,[0],2);

5 6

3 4 5 T T

[[y = T , x = T %1 - 1/3 T %1 + ---- + ----],

3 3

3 4 5 6

[y = T , x = -T - 1/3 T + 1/3 T ],

6

3 4 4 5 T

[y = T , x = -T %1 + T + 1/3 T %1 + ----]]

3

2

%1 := RootOf(_Z - _Z + 1)



Newton polynomial

Definition

The sum of all the terms of F (x, y), which are plotted on the Newton line
of F is called the Newton polynomial of F and is denoted by F (0)(x, y).

Remarks

The Newton polynomial is uniquely determined and has at least two
terms.

Let δ ∈ Q such that the equaton of the Newton line is
ex/d+ ey/δ = 1.

Observe that F (0)(x, y) is homogeneous in (x, yδ/d) of degree d.

That is, F (0)(x, y) consists of monomials included in the set
{xd, xd−1yδ/d, xd−2y2δ/d, . . . , ydδ/d}.



Factorizing Newton polynomial (1/2)

Notations

Let r ≥ 1 be an integer, let ζ1, . . . , ζr ∈ C, with ζi 6= ζj for any i 6= j and
let m1, . . . ,mr ∈ N be positive such that we have

F (0)(x, 1) = (x− ζ1)m1 · · · (x− ζr)mr .

Recall that F (0)(x, y) is homogeneous in (x, yδ/d) of degree d.

Lemma

We have:

F (0)(x, y) = (x− ζ1y
δ/d)m1 · · · (x− ζryδ/d)mr .

Proof of the lemma

It is enough to show that (ζiy
δ/d, y) vanishes F (0)(x, y) for all y.

Define ŷ = yδ/d such that F (0)(x, ŷ) is homogeneous of degree d in
(x, ŷ).
Since each monomial of F (0)(x, ŷ) is of the form xexyey where
ex + ey = d, we have

F (0)(ζiŷ, ŷ) = ŷd (· · · )︸ ︷︷ ︸
some constant terms

= 0.

The last equality is valid since F (0)(ζi, 1) = 0 clearly holds.



Factorizing Newton polynomial (2/2)

> F := x^3 - x^2 * y^2 -x*y^3 + y^4;

2 2 3 4 3

F := -x y - x y + y + x

> L := x^3 - y^4;

4 3

L := -y + x

> PolynomialTools:-Split(eval(L,[y=1]), x);

2 2

(x - 1) (x - RootOf(_Z + _Z + 1)) (x + 1 + RootOf(_Z + _Z + 1))

> U:-ExtendedHenselConstruction(F,[0],1);

5 6

3 4 5 T T

[[y = T , x = T %1 - 1/3 T %1 + ---- + ----],

3 3

3 4 5 6

[y = T , x = -T - 1/3 T + 1/3 T ],

6

3 4 4 5 T

[y = T , x = -T %1 + T + 1/3 T %1 + ----]]

3

2

%1 := RootOf(_Z - _Z + 1)



The moduli of the Hensel-Sasaki constuction (1/2)

Notations

Let δ̂, d̂ ∈ Z>0 such that:

δ̂/d̂ = δ/d, gcd δ̂, d̂ = 1

Choosing such integers δ̂, d̂ is possible since δ ∈ Q and d ∈ N>0.

Lemma

Each non-constant monomial of F (x, y) is contained in the set

{xdy(k+0)/d̂, xd−1y(k+δ̂)/d̂, xd−2y(k+2δ̂)/d̂, . . . , x0y(k+dδ̂)/d̂ | k = 0, 1, 2, . . .}.

Proof of the lemma

It is enough to show that for each exponent vector (ex, ey) which is not
below the Newton’s line, there exists i, k such that we have

xexyey = xd−iy(k+iδ̂)/d̂.
Given such an exponent vector (ex, ey), let us choose i = d− ex and

k = eyd̂− iδ̂.
One should check, of course, that k ≥ 0 holds, which follows easily
from ex/d+ ey/δ ≥ 1.



The moduli of the Hensel-Sasaki constuction (2/2)

Notations

The previous lemma leads us to define the following monomial ideals

Sk = <x, yδ̂/d̂>d × <y1/d̂>k

= <xd, xd−1yδ̂/d̂, xd−2y2δ̂/d̂, . . . , x0ydδ̂/d̂> × <y1/d̂>k

= <xdy(k+0)/d̂, xd−1y(k+δ̂)/d̂, xd−2y(k+2δ̂)/d̂, . . . , x0y(k+dδ̂)/d̂>

Remark

The generators of <x, yδ̂/d̂>d are homogeneous monomials in (x, yδ̂/d̂)
of degree d.

We can view Sk as a polynomial ideal in the variables x and y1/d̂; note
that the monomials generating Sk regarded in this way do not all have
the same total degree.
We shall use the ideals Sk, for k = 1, 2, . . ., as moduli of the
Hensel-Sasaki construction to be described hereafter.
We have F (x, y) ≡ F (0)(x, y) mod S(1).



A weak but algrithmic version of Puiseux theorem (1/2)

As before, for F ∈ C[x, y] (and in fact, even for F (x, y) ∈ C〈y〉[x]) our
ultimate goal is to factorize F (x, y) as

F (x, y) = G1(x, y) · · ·Gr(x, y)

where

1 this factorization holds in C((y∗)), and

2 degx (Gi) = 1 holds for all i = 1, . . . , r.

In our first step, we will allow degx (Gi) ≥ 1 for all i = 1, . . . , r. Moreover,
in practice,

1 we compute a truncated factorization, that is, G1(x, y), . . . , Gr(x, y)
are polynomials in C]x, y] (in fact homomogeneous polynomials) and,

2 the relation F (x, y) = G1(x, y) · · ·Gr(x, y) holds modulo an ideal Sk.



A weak but algrithmic version of Puiseux theorem (2/2)

Hypothesis

We assume that F (0)(x, y) has been factorized as

F (0)(x, y) = G
(0)
1 (x, y) · · ·G(0)

r (x, y)

where the polynomials G
(0)
i (x, y) are homomogeneous and coprime w.r.t.

x (that is, once y is specialized to 1). Of course, a special case is

G
(0)
i (x, y) = (x− ζiyδ/d)mi

For simplicity, we write ŷ = yδ̂/d̂.



Lagrange’s Interpolation polynomials (1/4)

Lemma

Let Ĝi(x, ŷ) ∈ C[x, ŷ], for i = 1, . . . , r, be homogeneous polynomials in
(x, ŷ), that we regard in C〈ŷ〉[x], such that

r ≥ 2 and d = degx

(
Ĝ1 · · · Ĝr

)
,

degx Ĝi = mi for i = 1, . . . , r, and
gcdx(Ĝi, Ĝj) = 1 for any i 6= j.

Then, for each ` ∈ {0, . . . , d− 1}, there exists only one set of polynomials

{W (`)
i (x, ŷ) ∈ C〈ŷ〉[x] | i = 1, . . . , r} satisfying

1 W
(`)
1

((
Ĝ1 · · · Ĝr

)
/Ĝ1

)
+ · · ·+W

(`)
r

((
Ĝ1 · · · Ĝr

)
/Ĝr

)
= x`ŷd−`,

2 degx (W
(`)
i (x, ŷ)) < degx (Ĝi(x, ŷ)), for i = 1, . . . , r.

Moreover, the polynomials W
(0)
i , . . . ,W

(d−1)
i , for i = 1, . . . , r are

homogeneous in (x, ŷ) of degree mi. We call them the Lagrange’s
interpolation polynomials.



Lagrange’s Interpolation polynomials (2/4)

Proof of the lemma (1/3)

We shall first prove that there exists only one set of polynomials

{W (`)
i (x, 1) | i = 1, . . . , r}

satisfying (1) and (2) in the above lemma statement, when ŷ = 1.

Using the extended Euclidean algorithm, one can compute
A1, . . . , As ∈ C[x] such that

A1
Ĝ1···Ĝs
Ĝ1

+ · · ·+As
Ĝ1···Ĝs
Ĝs

= 1.

If we multiply both sides of the above equality by x`, then we have

A1x
` Ĝ1···Ĝs

Ĝ1
+ · · ·+Asx

` Ĝ1···Ĝs
Ĝs

= x` (F).



Lagrange’s Interpolation polynomials (3/4)

Proof of the lemma (2/3)

For each i = 1, . . . , r − 1, let Qi, Ri ∈ C[x] such that
• Aix` = QiĜi +Ri and
• degx (Ri) < degx(Ĝi)

Thus the equality (F) can be re-written as:

R1
Ĝ1···Ĝr
Ĝ1

+ · · ·+Rr−1
Ĝ1···Ĝr
Ĝr−1

+ (Arx
` +

∑r−1
i=1 QiĜr)

Ĝ1···Ĝr
Ĝr

= x`.

Observe that we have
• degx (Ri

Ĝ1···Ĝr

Ĝi
) < d for i = 1, . . . , r − 1,

• degx( Ĝ1···Ĝr

Ĝr
) = d−mr, and also

• ` < d.

Combined with relation (F), we obtain

degx(Arx
` +

∑r−1
i=1 QiĜr) < mr = degx(Ĝr).



Lagrange’s Interpolation polynomials (4/4)

Proof of the lemma (3/3)

Hence, we set
• W (`)

i (x, 1) = Ri, for i = 1, . . . , r − 1

• W (`)
r (x, 1) = Arx

` +
∑r−1
i=1 QiĜr

The proof of the unicity will be added later . . .

Note that we have deg(x`ŷd−`) = d.

Since degx

(
W

(`)
i (x, 1)

(
Ĝ1 · · · Ĝr

)
/Ĝi

)
< d, we can homogenize in

degree d both W
(`)
i (x, 1) and Ĝi(x, 1), for i = 1, . . . , r, using ŷ as

homogeization variable.

This homogeization process defines each W
(`)
i (x, ŷ) uniquely.

Moreover we have,

degx(W
(`)
i (x, ŷ)) < degx(Ĝi),

since the homogenization has no effect on degrees in x.



Hensel-Sasaki construction: bivariate case

Theorem

Let F (x, y) ∈ C〈y〉[x] be a square-free polynomial, monic in x of degree
d > 0. Let F (0)(x, y) be the Newton polynomial of F (x, y). Let

G
(0)
1 (x, y), . . . , G

(0)
r (x, y) ∈ C[x, y] be homogeneous polynomials in (x, ŷ),

pairwise coprime when ŷ = 1, such that we have:

F (0)(x, y) = G
(0)
1 (x, y) · · ·G(0)

r (x, y).

Recall Sk =<xdy(k+0)/d̂, xd−1y(k+δ̂)/d̂, xd−2y(k+2δ̂)/d̂, . . . , x0y(k+dδ̂)/d̂> for
k = 1, 2, . . .. Then, for any positive integer k, we can construct

G
(k)
i (x, y) ∈ C〈y1/d̂〉[x], for i = 1, . . . , r, satisfying

1 F (x, y) = G
(k)
1 (x, y) · · ·G(k)

r (x, y) mod Sk+1,

2 G
(k)
i (x, y) = G

(0)
i (x, y) mod S1, i = 1, . . . , r.

The proof is by induction on k and constructive.



Proof (1/5)

base case: Since F (x, y) ≡ F (0)(x, y) mod S1, the theorem is valid
for k = 0.

inductive step: Let the theorem be valid up to the (k − 1)-st
construction. We write

G
(k−1)
i = G

(0)
i (x, y) + ∆G

(1)
i (x, y) + · · ·+ ∆G

(k−1)
i (x, y),

such that
• G(k′)

i (x, y) ∈ Sk′ for k′ = 1, . . . , k − 1,

• degx(∆G
(k′)
i (x, y)) < degx(G

(0)
i (x, y)) = mi, k′ = 1, . . . , k − 1.

These latter properties are part of the induction hypothesis.

Note: Each ∆G
(k′)
i (x, y) is being computed in the k′-th Hensel

construction step. So the degree in x does not increase contrary to
the degree in y, because of the definition of Sk.



Proof (2/5)

We define:

∆F (k)(x, y) := F (x, y)−G(k−1)
1 · · ·G(k−1)

r mod Sk+1.

According to the format of monomials of F (x, y) (Lemma in page 8) and
also induction assumptions, we have

∆F (k)(x, y) = f
(k)
d−1x

d−1yδ̂/d̂ + · · ·+ f
(k)
0 x0ydδ̂/d̂

f
(k)
` = c

(k)
` yk/d̂, c

(k)
` ∈ C for ` = 0, . . . , d− 1



Proof (3/5)

We construct G
(k)
i (x, y) by observing that we have:

G
(k)
i (x, y) = G

(k−1)
i (x, y) + ∆G

(k)
i (x, y), ∆G

(k)
i (x, y) ≡ 0 mod Sk

Then we have:

F (x, y) ≡
(
G

(k−1)
1 + ∆G

(k)
1

)
· · ·
(
G

(k−1)
r + ∆G

(k)
r

)
mod Sk+1

≡ G
(k−1)
1 · · ·G(k−1)

r + ∆G
(k)
1 (G2 · · ·Gr) + · · · + ∆G

(k)
r

(
G1 · · ·Gr−1

)
+

other terms︸ ︷︷ ︸
containg ∆G

(k)
i

(x, y) and ∆G
(k)
j

(x, y)

mod Sk+1

≡ G
(k−1)
1 · · ·G(k−1)

r + ∆G
(k)
1 (G2 · · ·Gr) + · · · + ∆G

(k)
r

(
G1 · · ·Gr−1

)
mod Sk+1

≡ G
(k−1)
1 · · ·G(k−1)

r + ∆G
(k)
1

(
G

(0)
2 · · ·G(0)

r

)
+ · · · + ∆G

(k)
r

(
G

(0)
1 · · ·G(0)

r−1

)
mod Sk+1



Proof (4/5)

The last two equivalence relations are valid, since

∆G
(k)
i (x, y)∆G

(k′)
j (x, y) ≡ 0 mod Sk+1 for k′ = 1, . . . , k.

It actually follows from the fact that by assumption,

∆G
(k)
j ≡ 0 mod Sk

∆G
(k′)
j ≡ 0 mod Sk′ for k′ = 1, . . . , k

Thus,

∆G
(k)
j ∆G

(k′)
j ≡ 0 mod SkSk′

Since, SkSk′ = Sk+k′ then

∆G
(k)
j ∆G

(k′)
j ≡ 0 mod Sk+k′ for k′ = 1, . . . , k

Furthermore, since k′ ≥ 1, then

∆G
(k)
j ∆G

(k′)
j ≡ 0 mod Sk+1 for k′ = 1, . . . , k



Proof (5/5)

Therefore,

∆F (k) ≡ ∆G
(k)
1

(
G

(0)
2 · · ·G

(0)
r

)
+ · · ·+ ∆G

(k)
r

(
G

(0)
1 · · ·G

(0)
r−1

)
mod Sk+1

If in the lemma of Lagrange Interpolation polynomial we let

Ĝi(x, ŷ) = G
(0)
i (x, ŷ), using the other representation of ∆F (k)(x, y), it allows us

to solve the last equation (the equation above) as

∑r
i=1 ∆G

(k)
i (x, y)

(
G

(0)
1 ···G

(0)
r

)
G

(0)
i

=
∑d−1
`=0 f

(k)
` x`ŷd−`

=
∑d−1
`=0 f

(k)
`

(∑r
i=1W

(`)
i

(
G

(0)
1 ···G

(0)
r

)
G

(0)
i

)
=

∑r
i=1

(∑d−1
`=0 f

(k)
` W

(`)
i

) (G(0)
1 ···G

(0)
r

)
G

(0)
i

Since degx(f
(k)
` W

(`)
i ) < degx(G

(0)
i ) and degx(∆G

(k)
i (x, y)) < degx(G

(0)
i ) for

i = 1, . . . , r, then we have

∆G
(k)
i (x, y) =

∑d−1
`=0 W

(`)
i (x, y)f

(k)
` (y) i = 1, . . . , r



About the theorem

Remarks

The proof of the theorem constructs the G
(k)
i (x, y) uniquely.

The theorem holds in particular for the case where the case where

G
(0)
i (x, y) = (x− ζiyδ̂/d̂)mi holds for each i = 1, . . . , r.

However, the theorem is more generral and only requires that the

G
(0)
i (x, y) are homogeneous polynomials in (x, ŷ), pairwise coprime

when ŷ = 1.

And, in fact each factor G
(0)
i (x, y) of the Newton polynomial are

necessarily a product of some of the (x− ζiyδ̂/d̂) and thus each factor

G
(0)
i (x, y) is homogeneous in (x, ŷ).

Proposition

If the initial factors G
(0)
i (x, y) are in fact polynomials in C[x, y], then, after

the k-th lifting step, the computed factors G
(k)
i (x, y) are themselves

polynomials in C[x, y].

The proof of this proposition follows by tracking the calculations of the
lemma and the theorem.



Plan

1 From Formal to Convergent Power Series
2 Polynomials over Power Series

Weierstrass Preparation Theorem
Properties of Power Series Rings
Puiseux Theorem and Consequences
Algebraic Version of Puiseux Theorem
Geometric Version of Puiseux Theorem
The Ring of Puiseux Series
The Hensel-Sasaki Construction: Bivariate Case
Limit Points: Review and Complement

3 Limits of Multivariate Real Analytic Functions
At isolated poles for bivariate functions
Limit along a semi-algebraic set
At isolated poles for multivariate functions
Proof of the main lemma

4 Computations of tangent cones and intersection multiplicities
Tangent Cones
Iintersection Multiplicities



Limit points of (the quasi-component of) a regular chain

Let R := {t2(x1, x2), . . . , tn(x1, . . . , xn)} where ti has its coefficients
in C.

We regard ti as a univariate polynomial w.r.t. xi, for i = 2, . . . , n:

We denote by hi the leading coefficient (also called initial) of ti w.r.t.
xi, and assume that hi depends on x1 only; hence we have

ti = hi(x1)xdii + cdi−1(x1, . . . , xi−1)xdi−1
i + · · ·+ c0(x1, . . . , xi−1)

Consider the system

W (R) :=


tn(x1, . . . , xn) = 0
...
t2(x1, x2) = 0
(h2 · · ·hn)(x1) 6= 0

We want to compute the non-trivial limit points of W (R), that is

lim(W (R)) := W (R)
Z \W (R).



Puiseux expansions of a regular chain (1/2)

Notation

Let R be as before. Assume R is strongly normalized, that is, every
initial is a univariate polynomial in x1

Let K = C(〈x∗1〉).

Then R generates a zero-dimensional ideal in C[x2, . . . , xn].

Let V ∗(R) be the zero set of R in Kn−1.

Definition

We call Puiseux expansions of R the elements of V ∗(R).



Puiseux expansions of a regular chain (1/2)

A regular chain R

R :=

{
X1X

2
3 +X2

X1X
2
2 +X2 +X1

Puiseux expansions of R{
X3 = 1 +O(X2

1 )
X2 = −X1 +O(X2

1 )

{
X3 = −1 +O(X2

1 )
X2 = −X1 +O(X2

1 ){
X3 = X1

−1 − 1
2X1 +O(X2

1 )
X2 = −X1

−1 +X1 +O(X2
1 )

{
X3 = −X1

−1 + 1
2X1 +O(X2

1 )
X2 = −X1

−1 +X1 +O(X2
1 )



Relation between lim0(W (R)) and Puiseux expansions of R

Theorem

For W ⊆ Cs, denote

lim0(W ) := {x = (x1, . . . , xs) ∈ Cs | x ∈ lim(W ) and x1 = 0},

and define

V ∗≥0(R) := {Φ = (Φ1, . . . ,Φs−1) ∈ V ∗(R) | ord(Φj) ≥ 0, j = 1, . . . , s−1}.

Then we have

lim0(W (R)) = ∪Φ∈V ∗≥0(R){(X1 = 0,Φ(X1 = 0))}.

V ∗≥0(R) :=

{
X3 = 1 +O(X2

1 )
X2 = −X1 +O(X2

1 )
∪
{
X3 = −1 +O(X2

1 )
X2 = −X1 +O(X2

1 )

Thus the limit ponts are lim0(W (R)) = {(0, 0, 1), (0, 0,−1)}.



Limit points: this example again

Figure: The command RegularChainBranches computes a parametrization for
the complex and real paths of the quasi-component defined by rc. When
coefficient argument is set as real, then the command RegularChainBranches

computes the real branches.
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Quotients of bivariate real analytic functions (1/3)

Notations

Let a, b ∈ R and f, g be real analytic functions.

Hence, f, g are given by power series which are absolutely convergent
in an open disk centered at (a, b).

The problem

Determining whether lim(x,y)→(a,b)
f(x,y)
g(x,y) exists, and

if it does then compute it.



Quotients of bivariate real analytic functions (2/3)

Weierstrass preparation theorem (recalled in K〈X,Y 〉)
Let h ∈ K〈X,Y 〉 be general in Y of order d ∈ N. Then there exists a
unique pair (α, p) such that

1 α is a unitt of K〈X,Y 〉,
2 p is a Weierstrass polynomial in Y of degree k, that is, p writes
Y d + a1Y

d−1 + · · ·+ ad where a1, . . . , ad belong to the ideal
generated by X in K〈X〉,

3 h = αp.

The above theorem implies that in some neighborhood of the origin, the
zeros of h are the same as those of the Weierstrass polynomial p.



Quotients of bivariate real analytic functions (3/3)

Reduction from analytic to polynomial functions

Weierstrass preparation theorem allows us to reduce the paused
problem to computing the limit of a quotient of rational function.

Indeed, the hypothesis “general in Y of a finite order” always holds
after a suitable change of coordinates of the form. Indeed, we have
the following.

Proposition

For h1, . . . , hn ∈ K〈X,Y 〉, all non-zero, there exists a positive integer ν
such that each power series hi

′(X ′, Y ′) = hi(X + Y ν , Y ) is of finite order
in the variable Y ′.



Limits of multivariate real rational functions

Notations

Let q ∈ Q(X1, . . . , Xn) be a multivariate rational function.

The problem

We want to decide whether

lim
(x1,...,xn)→(0,...,0)

q(x1, . . . , xn)

exists, and if it does, whether it is finite.



Limits of rational functions: previous works (1/3)

Univariate functions (including transcendental ones)

D. Gruntz (1993, 1996), B. Salvy and J. Shackell (1999)

− Corresponding algorithms are available in popular computer algebra
systems

Multivariate rational functions

S.J. Xiao and G.X. Zeng (2014)

− Given q ∈ Q(X1, . . . , Xn), they proposed an algorithm deciding
whether or not: lim(x1,...,xn)→(0,...,0) q exists and is zero.

− No assumptions on the input multivariate rational function

− Techniques used:
• triangular decomposition of algebraic systems,
• rational univariate representation,
• adjoining infinitesimal elements to the base field.



Interlude: the method of Lagrange multipliers (1/3)

Let f and g be functions from Rn to R with continuous first partial
derivatives.

Consider the ooptimization problem

max
subject to g(x1,...,xn)=0

f(x1, . . . , xn)



Interlude: the method of Lagrange multipliers (2/3)

We are looking at points (x1, . . . , xn) where f(x1, . . . , xn) does not
change much as we walk along g(x1, . . . , xn) = 0. This can happen in two
ways:

either such a point is a optimizer (maximizer or minimizer),
or we are following a level of f , that is, f(x1, . . . , xn) = d for some d.

Both cases are captured by imposing that the gradient vectors ∇x1,...,xnf
and ∇x1,...,xng are parallel.



Interlude: the method of Lagrange multipliers (3/3)

The previous observation translates into a system of equations that, in
particular, maximizers and minimizers must satisfy.

g (x1, x2, . . . , xn) = 0

∂f

∂x1
(x1, x2, . . . , xn)− λ ∂g

∂x1
(x1, x2, . . . , xn) = 0

∂f

∂x2
(x1, x2, . . . , xn)− λ ∂g

∂x2
(x1, x2, . . . , xn) = 0

...

∂f

∂xn
(x1, x2, . . . xn)− λ ∂g

∂xn
(x1, x2, . . . , xn) = 0.

where λ is an additional variable, called the Lagrange multiplier of the
corresponding optimization problem.



Limits of rational functions: previous works (2/3)

C. Cadavid, S. Molina, and J. D. Vélez (2013):

Assumes that the origin is an isolated zero of the denominator

Maple built-in command limit/multi

Discriminant variety

χ(q) = {(x, y) ∈ R2 | y ∂q∂x − x
∂q
∂y = 0}.

Key observation

For determining the existence and possible value of

lim
(x,y)→(0,0)

q(x, y),

it is sufficient to compute

lim
(x, y)→ (0, 0)
(x, y) ∈ χ(q)

q(x, y).



Example

Let q ∈ Q(x, y) be a rational function defined by q(x, y) = x4+3x2y−x2−y2

x2+y2 .

χ(q) =

{
x4 + 2x2y2 + 3y3 = 0

y < 0
∪
{
x = 0



Limits of rational functions: previous works (3/3)

J.D. Vélez, J.P. Hernández, and C.A Cadavid (2015).

Assumes that the origin is an isolated zero of the denominator
Ad-hoc method reducing to the case of bivariate rational functions

Similar key observation

For determining the existence and possible value of

lim
(x,y,z)→(0,0,0)

q(x, y, z),

it is sufficient to compute

lim
(x, y, z)→ (0, 0, 0)
(x, y, z) ∈ χ(q)

q(x, y, z).

Techniques used

Computation of singular loci

Variety decomposition into irreducible components



The discriminant variety of Cadavid, Molina, Vélez (1/2)

Notations

Let q : Rn −→ R be a function with continuous first partial derivatives.
For a postive real number ρ, let D∗ρ be the punctured ball

D∗ρ = {(x1, . . . , xn) ∈ Rn | 0 <
√
x2

1 + · · ·+ x2
n < ρ}.

Let χ(q) be the subset of Rn where the vectors ∇x1,...,xnq and
(x1, . . . , xn) are parallel.
For n = 2, we have

χ(q) = {(x, y) ∈ R2 | y ∂q∂x − x
∂q
∂y = 0}.

Theorem (Cadavid, Molina, Vélez)

For all L ∈ R the following assertions re equivalent:

1 lim(x1,...,xn)→(0,...,0) q(x1, . . . , xn) exists and equals L,
2 for all ε > 0, there exists 0 < δ < ρ such that for all

(x1, . . . , xn) ∈ χ(q) ∩ D∗ρ the inequality |q(x1, . . . , xn)− L| < ε holds.



The discriminant variety of Cadavid, Molina, Vélez (2/2)

Proof

Clearly the first assertion implies the second one.
Next, we assume that the second one holds and we prove the first one.
Hence, we assume that for all ε > 0, there exists 0 < δ < ρ such that
for all (x1, . . . , xn) ∈ χ(q) ∩ D∗ρ the inequality |q(x1, . . . , xn)− L| < ε
holds.
We fix ε > 0. For every r > 0, we define

Cr = {(x1, . . . , xn) ∈ Rn |
√
x2

1 + · · ·+ x2
n = r}.

For all r > 0, we choose t1(r) (resp. t2(r)) minimzing (resp.
maximizing) q on Cr. Hence, for all r > 0, we have t1(r), t2(r) ∈ χ(q).
For all (x1, . . . , xn) ∈ Rn, we have

q(t1(r))− L ≤ q(x1, . . . , xn)− L ≤ q(t2(r))− L,
where r =

√
x2

1 + · · · |x2
n.

From the assumption and the definitions of t1(r), t2(r), there exists
0 < δ < ρ such that for all r < ρ we have

−ε < q(t1(r))− L and q(t2(r))− L < ε.

Therefore, there exists 0 < δ < ρ such that for all (x1, . . . , xn) ∈ D∗ρ
the inequality |q(x1, . . . , xn)− L| < ε holds.



The method of Cadavid, Molina, Vélez (1/2)

Their approach transforms the initial limit computation in n = 2
variables to one or more limit computations in n− 1 = 1 variable.

One non-trivial part of the method is to find the real branches of the
variety χ(q) around the origin.

This requires tools like Newton-Puiseux theorem in order to
parametrize χ(q) around the origin.



The method of Cadavid, Molina, Vélez (2/2)

Consider q(x, y) = f(x,y)
g(x,y) with f(x, y) = x2 − y2 and

g(x, y) = x2 + y2.

We have χ(q) = {(x, y) ∈ R2 | xy
(
x2 + y2

)
= 0}

Hence, χ(q) consists of the planes x = 0 and y = 0.

Thus, for computing lim(x,y)→(0,0) q(x, y), it is enough to consider
limx→0 q(x, 0) and limy→0 q(0, y) which are equal to 1 and −1
respectively.

Therefore, lim(x,y)→(0,0) q(x, y) does not exist.



Plan

1 From Formal to Convergent Power Series
2 Polynomials over Power Series

Weierstrass Preparation Theorem
Properties of Power Series Rings
Puiseux Theorem and Consequences
Algebraic Version of Puiseux Theorem
Geometric Version of Puiseux Theorem
The Ring of Puiseux Series
The Hensel-Sasaki Construction: Bivariate Case
Limit Points: Review and Complement

3 Limits of Multivariate Real Analytic Functions
At isolated poles for bivariate functions
Limit along a semi-algebraic set
At isolated poles for multivariate functions
Proof of the main lemma

4 Computations of tangent cones and intersection multiplicities
Tangent Cones
Iintersection Multiplicities



Regular semi-algebraic system

Notation

Let T ⊂ Q[X1 < . . . < Xn] be a regular chain with
y := {mvar(t) | t ∈ T} and u := x \ y = U1, . . . , Ud.

Let P be a finite set of polynomials, s.t. every f ∈ P is regular
modulo sat(T ).

Let Q be a quantifier-free formula of Q[u].

Definition

We say that R := [Q, T, P>] is a regular semi-algebraic system if:

(i) Q defines a non-empty open semi-algebraic set O in Rd,

(ii) the regular system [T, P ] specializes well at every point u of O
(iii) at each point u of O, the specialized system [T (u), P (u)>] has

at least one real solution .

Define

ZR(R) = {(u, y) | Q(u), t(u, y) = 0, p(u, y) > 0, ∀(t, p) ∈ T × P}.



Regular semi-algebraic system

Notation

Let T ⊂ Q[X1 < . . . < Xn] be a regular chain with
y := {mvar(t) | t ∈ T} and u := x \ y = U1, . . . , Ud.

Let P be a finite set of polynomials, s.t. every f ∈ P is regular
modulo sat(T ).

Let Q be a quantifier-free formula of Q[u].

Definition

We say that R := [Q, T, P>] is a regular semi-algebraic system if:

(i) Q defines a non-empty open semi-algebraic set O in Rd,

(ii) the regular system [T, P ] specializes well at every point u of O
(iii) at each point u of O, the specialized system [T (u), P (u)>] has

at least one real solution .

Define

ZR(R) = {(u, y) | Q(u), t(u, y) = 0, p(u, y) > 0, ∀(t, p) ∈ T × P}.



Example

The system [Q, T, P>], where

Q := a > 0, T :=

{
y2 − a = 0
x = 0

, P> := {y > 0}

is a regular semi-algebraic system.



Regular semi-algebraic system

Notations

Let R := [Q, T, P>] be a regular semi-algebraic system. Recall that Q
defines a non-empty open semi-algebraic set O in Rd and

ZR(R) = {(u, y) | Q(u), t(u, y) = 0, p(u, y) > 0, ∀(t, p) ∈ T × P}.

Properties

Each connected component C of O in Rd is a real analytic manifold ,

thus locally homeomorphic to the hyper-cube (0, 1)d

Above each C, the set ZR(R) consists of disjoint graphs of

semi-algebraic functions forming a real analytic covering of C.
There is at least one such graph.

Consequences

R can be understood as a parameterization of ZR(R)

The Jacobian matrix
[
∇t, t ∈ T

]
is full rank.



Triangular decomposition of semi-algebraic sets

Proposition

Let S := [F=, N≥, P>, H6=] be a semi-algebraic system. Then, there exists
a finite family of regular semi-algebraic systems R1, . . . , Re such that

ZR(S) = ∪ei=1ZR(Ri).

Triangular decomposition

In the above decomposition, R1, . . . , Re is called a triangular
decomposition of S and we denote by RealTriangularize an
algorithm computing such a decomposition.

Moreover, such a decomposition can be computed in an
incremental manner with a function RealIntersect
• taking as input a regular semi-algebraic system R and a semi-algebraic

constraint f = 0 (resp. f > 0) for f ∈ Q[X1, . . . , Xn]
• returning regular semi-algebraic system R1, . . . , Re such that

ZR(f = 0) ∩ ZR(R) = ∪ei=1ZR(Ri).



Limit along a semi-algebraic set (1/2)

Notation

Let S be a semi-algebraic set of dimension at least 1 and such that
the origin of Rn belongs to the closure ZR(S) of ZR(S) in the
Euclidean topology.

Let L ∈ R.

Definition

We say that, when (x1, . . . , xn) ∈ Rn approaches the origin along S, the
limit of the rational function q(x1, . . . , xn) exists and equals L, whenever
for all ε > 0, there exists 0 < δ such that for all (x1, . . . , xn) ∈ S ∩ D∗δ
the inequality |q(x1, . . . , xn)− L| < ε holds. When this holds, we write

lim
(x1, . . . , xn)→ (0, . . . , 0)
(x1, . . . , xn) ∈ S

q(x1, . . . , xn) = L



Limit along a semi-algebraic set (2/2)

Lemma

Let R1, . . . , Re be regular semi-algebraic systems forming a triangular
decomposition of χ(q).
Then, for all L ∈ R the following two assertions are equivalent:
(i) lim (x1, . . . , xn)→ (0, . . . , 0)

(x1, . . . , xn) ∈ χ(q)

q(x1, . . . , xn) exists and equals L.

(ii) for all i ∈ {1, . . . , e} such that ZR(Ri) has dimension at least 1 and
the origin belongs to ZR(Ri), we have
lim (x1, . . . , xn)→ (0, . . . , 0)

(x1, . . . , xn) ∈ ZR(Ri)

q(x1, . . . , xn) exists and equals L.
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Overview of main algorithms

Top-level algorithm

1 computes the discriminant variety χ(q) of q

2 applies the previous lemma and reduces the whole process to
computing limits of q along finitely many pathes (i.e. space curves)

3 as soon as either one path produces an infinite limit or two pathes
produce two different finite limits, the procedure stops and returns
no finite limit.

Core algorithm

reduces computations of limits of q along branches of χ(q) to
computing limits of q along pathes.

Base-case algorithm

handles the computation of q along space curves by means of Puiseux
series expansions



The algorithm RationalFunctionLimit

Input: a rational function q ∈ Q(X1, . . . , Xn) such that origin is an
isolated zero of the denominator.

Output: lim(x1,...,xn)→(0,...,0) q(x1, . . . , xn)

1 Apply RealTriangularize on χ(q), obtaining rsas R1, . . . , Re

2 Discard Ri if either dim(Ri) = 0 or o /∈ ZR(Ri)

• QuantifierElimination checks whether o ∈ ZR(Ri) or not.

3 Apply LimitInner (R) on each regular semi algebraic system of
dimension higher than one.
• main task : solving constrained optimization problems

4 Apply LimitAlongCurve on each one-dimensional regular semi

algebraic system resulting from Step 3
• main task : Puiseux series expansions



Principles of LimitInner

Input: a rational function q and a regular semi algebraic system
R := [Q,T, P>] with dim(ZR(R)) ≥ 1 and o ∈ ZR(R)

Output: limit of q at the origin along ZR(R)

1 if dim(ZR(R)) = 1 then return LimitAlongCurve (q,R)

2 otherwise build M :=

[
X1 · · · Xn

∇t, t ∈ T

]
3 For all m ∈ Minors(M) such that ZR(R) * ZR(m) build

M′ :=

 ∂Er
∂X1

· · · ∂Er
∂Xn

X1 · · · Xn

∇t, t ∈ T

 with Er :=
∑n

i=1AiX
2
i − r2

4 For all m′ ∈ Minors(M′) C := RealIntersect (R,m′ = 0,m 6= 0)

5 For all C ∈ C such that dim(ZR(C)) > 0 and o ∈ ZR(C)

1 compute L := LimitInner (q, C);
2 if L is no finite limit or L is finite but different from a previously

found finite L then return no finite limit

6 If the search completes then a unique finite was found and is returned.



Principles of LimitAlongCurve

Input: a rational function q and a curve C given by [Q,T, P>]

Output: limit of q at the origin along C

1 Let f, g be the numerator and denominator of q

2 Let T ′ := {gXn+1 − f} ∪ T with Xn+1 a new variable

3 Compute the real branches of WR(T ′) := ZR(T ′) \ ZR(hT ′) in Rn
about the origin via Puiseux series expansions

4 If no branches escape to infinity and if WR(T ′) has only one limit
point (x1, . . . , xn, xn+1) with x1 = · · · = xn = 0, then xn+1 is the
desired limit of q

5 Otherwise return no finite limit



Example

Let q(x, y, z, w) = z w+x2+y2

x2+y2+z2+w2 .

RealTriangularize (χ(q)):

ZR(χ(q)) = ZR(R1) ∪ ZR(R2) ∪ ZR(R3) ∪ ZR(R4),

where

R1 :=


x = 0
y = 0
z = 0
w = 0

, R2 :=


x = 0
y = 0
z + w = 0

,

R3 :=


x = 0
y = 0
z − w = 0

, R4 :=

{
z = 0
w = 0

.



Example

dim(ZR(R1)) = 0

dim(ZR(R2)) = 1 =⇒ LimitAlongCurve (q,R2) = −1
2

dim(ZR(R3)) = 1 =⇒ LimitAlongCurve (q,R3) = 1
2

dim(ZR(R4)) = 2 =⇒ LimitInner (q,R4)
•

R5 :=


z = 0
w = 0
x = 0
y 6= 0

, R6 :=


z = 0
w = 0
y = 0
x 6= 0

dim(ZR(R5)) = 1 =⇒ LimitAlongCurve (q,R5) = 1

dim(ZR(R6)) = 1 =⇒ LimitAlongCurve (q,R6) = 1

=⇒ the limit does not exists.
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The main result

Notation

Assume that n ≥ 3 holds.
Let S = [Q, T, P>] be a regular semi-algebraic system of
Q[X1, . . . , Xn] such that ZR(S) has dimension d, with n > d ≥ 2, and
the closure ZR(S) contains the origin.
W.l.o.g. we can assume that the polynomials td+1, . . . , tn forming the
regular chain T have main variables Xd+1, . . . , Xn.
Let M be the (n− d+ 1)× n matrix whose first row is the vector
(X1, . . . , Xn) and, for j = d+ 1, . . . , n, whose (j − d+ 1)-th row is the
gradient vector

∇tj =

(
∂tj
∂X1

· · · ∂tj
∂Xn

)
where tj is the polynomial of T with mvar(tj) = Xj .

Theorem

Then, there exists a non-empty set O ⊂ D∗ρ ∩ ZR(S), which is open

relatively to ZR(S) and which satisfies ø ∈ O (that is, the origin is in the
closure of O) such that M is full rank at any point of O.



The main result in codimension 1

Notation

Assume n ≥ 3.

Let S = [Q, {tn}, P>] be a regular semi-algebraic system of
Q[X1, . . . , Xn] such that ZR(S) has dimension d := n− 1, and the
closure ZR(S) contains the origin.

W.l.o.g. we assume that mvar(tn) = Xn holds.

Let M be the 2× n matrix with the vector (X1, . . . , Xn) as first row

and the gradient vector ∇tn =
(
∂tn
∂X1

· · · ∂tn
∂Xn

)
as second row.

Theorem

Then, there exists a non-empty set O ⊂ D∗ρ ∩ ZR(S), which is open
relatively to ZR(S), such that M is full rank at any point of O, and the
origin is in the closure of O.



A simple topological argument

Notation

Assume n ≥ 3.

Let S = [Q, T, P>] be a regular semi-algebraic system of
Q[X1, . . . , Xn] such that ZR(S) has dimension d with n > d ≥ 1.

Lemma

Then, the number of d-dimensional semi-algebraic sets which are the
intersection of ZR(S) and a sphere (or an ellipsoid) centred at the origin is
finite.



The key PDE argument: simple version

Notation

Let h ∈ R[X1, . . . , Xn] be of positive degree in Xn.

Assume that there exists a real number λ such that ∇h(p) = λp
holds for all p in a neighbourhood V0 of the origin in Rn.

Let also U0 ⊂ Rn−1 be a neighbourhood of the origin in Rn−1 such
that the standard projection of V0 onto (X1, . . . , Xn−1) contains U0.

Assume the leading coefficient c of h in Xn and the discriminant ∆ of
h in Xn vanish nowhere on U0.

Lemma

Then, there exists a smooth function u : U0 −→ R for which

h(x1, . . . , xn−1, u(x1, . . . , xn−1)) = 0 (5)

holds, for all (x1, . . . , xn−1) ∈ U0. Moreover, the graph of every smooth
function u : U0 −→ R satisfying Relation (5) is contained in a sphere
centred at the origin.



The key PDE argument: proof (1/6)

We view h as a parametric polynomial in Xn with X1, . . . , Xn−1 as
parameters.

Recall that the leading coefficient c of h in Xn and the discriminant
∆ of h in Xn vanish nowhere on U0.

It follows from the theory of parametric polynomial systems that the
intersection of U0 and the discriminant variety of h is empty.

Therefore, there exists a smooth analytic function u : U0 −→ R such
that Equation (5) holds for all (x1, . . . , xn−1) ∈ U0.

Let u be such a function and define

W = {(x1, . . . , xn−1, xn) | x1, . . . , xn−1 ∈ U0 and xn = u(x1, . . . , xn−1)}.



The key PDE argument: proof (2/6)

Thus, the set W is the graph of u. For any t ∈W , the normal vector
of W at t is given by

n(t) =
(−∂u/∂X1, . . . ,−∂u/∂Xn−1, 1)√

(∂u/∂X1)2 + · · ·+ (∂u/∂Xn−1)2 + 1
.

Using Equation (5) and the hypothesis on ∇h, elementary
calculations yield

n(t) =
(x1, . . . , xn−1, u(x1, . . . , xn−1))√
x2

1 + · · ·+ x2
n−1 + u2(x1, . . . , xn−1)

which results in the following equalities, for i = 1, . . . , n− 1:
Xi√

X2
1 +···+X2

n−1+u2(X1,...,Xn−1)
= − ∂u/∂Xi√

(∂u/∂X1)2+···+(∂u/∂Xn−1)2+1
u(X1,...,Xn−1)√

X2
1 +···+X2

n−1+u2(X1,...,Xn−1)
= 1√

(∂u/∂X1)2+···+(∂u/∂Xn−1)2+1

(6)



The key PDE argument: proof (3/6)

The last equality in Relation (6) implies that we have:

u(X1, . . . , Xn−1) =

√
X2

1 + · · ·+X2
n−1 + u2(X1, . . . , Xn−1)√

(∂u/∂X1)2 + · · ·+ (∂u/∂Xn−1)2 + 1
.

Consequently, we obtain the following system of PDEs:{
u(X1, . . . , Xn−1) ∂u/∂Xi = −Xi , for i = 1, . . . , n− 1. (7)



The key PDE argument: proof (4/6)

Recalll{
u(X1, . . . , Xn−1) ∂u/∂Xi = −Xi , for i = 1, . . . , n− 1.

Now for i = 1, we integrate both sides of Equation (7) with respect
to X1. There exists a differentiable function F2(X2, . . . , Xn−1) such
that we have:

u2(X1, . . . , Xn−1)

2
=
−X2

1

2
+ F2(X2, . . . , Xn−1). (8)

Now by taking the derivative of both sides of Equation (8) with
respect to X2, we have

u ∂u/∂X2 = ∂F2/∂X2.



The key PDE argument: proof (5/6)

After substitution of the latter equality in the equation
u ∂u/∂X2 = −X2, there exists a differentiable function
F3(X3, . . . , Xn−1) such that we have:

−X2
2

2
= F2(X2, . . . , Xn−1) + F3(X3, . . . , Xn−1).

By continuing in the same manner, we have

−X2
i−1

2
= Fi−1(Xi−1, . . . , Xn−1) + Fi(Xi, . . . , Xn−1),

for i = 2, 3, . . . , n− 2.

But for i = n− 1, we have u ∂u/∂Xn−1 = ∂Fn−1/∂Xn−1.

After substitution of the latter equality in u ∂u/∂Xn−1 = −Xn−1,
there exists a constant C such that we have:

−X2
n−1

2
= Fn−1(Xn−1) + C.



The key PDE argument: proof (6/6)

Therefore. we have

u2(X1, . . . , Xn−1)

2
= −X

2
1

2
− · · · −

X2
n−1

2
+ C.

Let α = (α1, . . . , αn−1, αn) be a point of W .

Since u(α1, . . . , αn−1) = αn holds, we have C = 1/2(α2
1 + · · ·+ α2

n).
We deduce:

u(X1, . . . , Xn−1) =
√
r2 −X2

1 − · · · −X2
n−1,

where we define r2 := α2
1 + · · ·+ α2

n.

Finally, we conclude that W is a neighbourhood of p ∈ D∗ρ contained
in a sphere centred at the origin.



The main result in codimension 1 (recall)

Notation

Assume n ≥ 3.

Let S = [Q, {tn}, P>] be a regular semi-algebraic system of
Q[X1, . . . , Xn] such that ZR(S) has dimension d := n− 1, and the
closure ZR(S) contains the origin.

W.l.o.g. we assume that mvar(tn) = Xn holds.

Let M be the 2× n matrix with the vector (X1, . . . , Xn) as first row

and the gradient vector ∇tn =
(
∂tn
∂X1

· · · ∂tn
∂Xn

)
as second row.

Theorem

Then, there exists a non-empty set O ⊂ D∗ρ ∩ ZR(S), which is open
relatively to ZR(S), such that M is full rank at any point of O, and the
origin is in the closure of O.



The main result in codimension 1: proof (1/2)

We shall first prove the following claim.

Claim

Assume that there exists r such that 0 < r < ρ holds and M is not full
rank at any point of D∗r ∩ ZR(S).
Then, there exists r′ such that 0 < r′ < r holds and Sr′ , the r′-radius
sphere centred at the origin, intercepts ZR(S) on a semi-algebraic set
of dimension n− 1.

Proof of the Claim

Since the origin is in the closure of ZR(S), we know that D∗r ∩ZR(S) is
not empty.
W.l.o.g. we can assume that ZR(S) ⊆ D∗r holds.
Indeed, if this was not the case, we could decompose D∗r ∩ ZR(S) into
finitely many regular semi-algebraic systems and reason with each of
those which has the origin of Rn in the topological closure (w.r.t.
Euclidean topology) of its zero set.
We apply the “key PDE argument” with h := tn and V0 := ZR(S).
The conclusion of the claim follows.



The main result in codimension 1: proof (2/2)

Reduction step

W.l.o.g. we can assume that ZR(S) does not intercept a sphere centred
at the origin on semi-algebraic sets Wi of dimension n− 1 for
i = 1, 2, . . . ,m for some m ≥ 0.
Indeed, if this was the case, we could remove all such Wi from ZR(S)
(since such Wi doesn’t have the origin of Rn in its topological closure)
and keep reasoning with each component of ZR(S) \ ∪·mi=1Wi which
contains the origin of Rn in its topological closure.

Using the claim

As a consequence of the above claims, for every r such that 0 < r < ρ
holds, there exists a point p of D∗r ∩ ZR(S) at which M is full rank.
Therefore, for all r > 0 small enough, the set D∗r ∩ ZR(S) contains a
point pr, as well as a neighbourhood Nr of pr (due to the full rank
characterization in terms of minors) such that Nr is open relatively to
ZR(S) and M is full rank at any point of Nr.
Taking the union of those neighbourhoods Nr finally yields the
conclusion of the lemma.



The main result (recall

Notation

Assume that n ≥ 3 holds.
Let S = [Q, T, P>] be a regular semi-algebraic system of
Q[X1, . . . , Xn] such that ZR(S) has dimension d, with n > d ≥ 2, and
the closure ZR(S) contains the origin.
W.l.o.g. we can assume that the polynomials td+1, . . . , tn forming the
regular chain T have main variables Xd+1, . . . , Xn.
Let M be the (n− d+ 1)× n matrix whose first row is the vector
(X1, . . . , Xn) and, for j = d+ 1, . . . , n, whose (j − d+ 1)-th row is the
gradient vector

∇tj =

(
∂tj
∂X1

· · · ∂tj
∂Xn

)
where tj is the polynomial of T with mvar(tj) = Xj .

Theorem

Then, there exists a non-empty set O ⊂ D∗ρ ∩ ZR(S), which is open

relatively to ZR(S) and which satisfies ø ∈ O (that is, the origin is in the
closure of O) such that M is full rank at any point of O.



The main result - Proof (1/8)

Proof

The proof consists again of two main steps: a PDE argument and a
topological argument.

Let O an open set in ZR(S) with ø ∈ O. With proper choice of open sets
Vi for i = n− d+ 1, . . . , n, there exist smooth analytic functions

un−d+1(X1, . . . , Xn−d+1) : Vn−d+1 → R,
...

un(X1, . . . , Xn−1) : Vn → R

such that 
tn(X1, . . . , Xn−d, un−d+1, . . . , un) = 0

...
tn−d+1(X1, . . . , Xn−d, un−d+1) = 0.



The main result - Proof (2/8)

For i = 1, · · · , n− d, define:

mi = det


Xi Xn−d+1 Xn−d+2 . . . Xn

(un)Xi (un)Xn−d+1
(un)Xn−d+2

. . . −1
...

...
...

...
...

(un−d+1)Xi −1 0 . . . 0



mi1 = det


Xn−d+1 Xn−d+2 Xn−d+3 . . . Xn

(un)Xn−d+1
(un)Xn−d+2

(un)Xn−d+3
. . . −1

...
...

...
...

...
(un−d+1)Xn−d+1

−1 0 . . . 0



mi2 = det


Xi Xn−d+2 Xn−d+3 . . . Xn

(un)Xi (un)Xn−d+2
(un)Xn−d+3

. . . −1
...

...
...

...
...

(un−d+1)Xi −1 0 . . . 0





The main result - Proof (3/8)

Assume the matrix M is not full rank at any point of O. This implies we
have the following system of partial differential equations:

m11
∂

∂X1
un−d+1 +m12 = 0

m21
∂

∂X2
un−d+1 +m22 = 0

...

m(n−d)1
∂

∂Xn−d
un−d+1 +m(n−d)2 = 0

(9)

Claim:

Xnun+Xn−1un−1+. . .+Xn−d+1un−d+1+
X2
n−d
2 +

X2
n−d−1

2 +. . .+
X2

1
2 +c = 0

is implied by System 9.



The main result - Proof (4/8)

Proof of the claim: We can expand the i-th differential equation, for
i = 1, . . . , n− d, in System 9 as:

(mi11
∂un−d+2

∂Xn−d+1
+mi12)

∂un−d+1

∂Xi
+mi21

∂un−d+2

∂Xi
+mi22 = 0 (10)

where

mi11 = det


Xn−d+2 Xn−d+3 Xn−d+4 . . . Xn

(un)Xn−d+2
(un)Xn−d+3

(un)Xn−d+4
. . . −1

...
...

...
...

...
(un−d+3)Xn−d+2

−1 0 . . . 0



mi12 = det


Xn−d+1 Xn−d+3 Xn−d+4 . . . Xn

(un)Xn−d+1
(un)Xn−d+3

(un)Xn−d+4
. . . −1

...
...

...
...

...
(un−d+3)Xn−d+1

−1 0 . . . 0





The main result - Proof (5/8)

mi21 = det


Xn−d+2 Xn−d+3 Xn−d+4 . . . Xn

(un)Xn−d+2
(un)Xn−d+3

(un)Xn−d+4
. . . −1

...
...

...
...

...
(un−d+3)Xn−d+2

−1 0 . . . 0



mi22 = det


Xi Xn−d+3 Xn−d+4 . . . Xn

(un)Xi (un)Xn−d+3
(un)Xn−d+4

. . . −1
...

...
...

...
...

(un−d+3)Xi −1 0 . . . 0

 .

Observe mi11 = mi21. So we can rewrite Equation 10 as

mi11
∂un−d+2

∂Xn−d+1

∂un−d+1

∂Xi
+mi12

∂un−d+1

∂Xi
+mi11

∂un−d+2

∂Xi
+mi22 = 0 (11)



The main result - Proof (6/8)

Continuing the same approach on Equation 11, one can observe that the
coefficient of Xk, for k = n− d+ 1, . . . , n, is Uik a function of partial
derivatives of uj , for j = n− d+ 1, . . . , n, such that an anti-derivative of
Uik with respect to Xi is the function uk.

Therefore, Equation 11 can be rewritten as

XnUin +Xn−1Ui(n−1) + . . .+Xn−d+1Ui(n−d+1) +Xi = 0. (12)



The main result - Proof (7/8)

For i = 1, there exists a differentiable function F1(X2, . . . , Xn−d) such
that we have:

Xnun +Xn−1un−1 + . . .+Xn−d+1un−d+1 +
X2

1

2
+F1(X2, . . . , Xn−d) = 0.

Take derivative w.r.t. X2 and substitute into Equation 12 for i = 2, we
have F1(X2, . . . , Xn−d) = X2. Then there exists a differentiable function

F2(X3, . . . , Xn−d) such that F1 =
X2

2
2 + F2. Therefore

Xnun+Xn−1un−1+. . .+Xn−d+1un−d+1+
X2

1

2
+
X2

2

2
+F2(X3, . . . , Xn−d) = 0.

The claim is proved by continuing the same approach. So ∃c constant s.t.

Xnun+Xn−1un−1+. . .+Xn−d+1un−d+1+
X2

1

2
+
X2

2

2
+. . .+

X2
n−d
2

+c = 0.

(13)



The main result - Proof (8/8)

The previous PDE argument helps us to prove the following claim:
Assume that there exists r such that 0 < r < ρ holds and M is not full
rank at any point of D∗r ∩ ZR(S). Then, there exists r′ such that
0 < r′ < r holds and Er′ , the ellipsoid as in Equation 13 for c = −r′2
(centred at the origin), intercepts ZR(S) on a semi-algebraic set of
dimension d.

Then, the reduction step and the use-of-the-claim step are similar to
codimension 1.



Plan

1 From Formal to Convergent Power Series
2 Polynomials over Power Series

Weierstrass Preparation Theorem
Properties of Power Series Rings
Puiseux Theorem and Consequences
Algebraic Version of Puiseux Theorem
Geometric Version of Puiseux Theorem
The Ring of Puiseux Series
The Hensel-Sasaki Construction: Bivariate Case
Limit Points: Review and Complement

3 Limits of Multivariate Real Analytic Functions
At isolated poles for bivariate functions
Limit along a semi-algebraic set
At isolated poles for multivariate functions
Proof of the main lemma

4 Computations of tangent cones and intersection multiplicities
Tangent Cones
Iintersection Multiplicities



Plan

1 From Formal to Convergent Power Series
2 Polynomials over Power Series

Weierstrass Preparation Theorem
Properties of Power Series Rings
Puiseux Theorem and Consequences
Algebraic Version of Puiseux Theorem
Geometric Version of Puiseux Theorem
The Ring of Puiseux Series
The Hensel-Sasaki Construction: Bivariate Case
Limit Points: Review and Complement

3 Limits of Multivariate Real Analytic Functions
At isolated poles for bivariate functions
Limit along a semi-algebraic set
At isolated poles for multivariate functions
Proof of the main lemma

4 Computations of tangent cones and intersection multiplicities
Tangent Cones
Iintersection Multiplicities



Tangent cones of space curves

Previous Works

1 An algorithm to compute the equations of tangent cones (Mora
1982):
• Based on Groebner basis (in fact Standard basis) computations

Our Contribution

1 A Standard Basis Free Algorithm for Computing the Tangent Cones
of a Space Curve (P. Alvandi, M. Moreno Maza, É. Schost, P. Vrbik CASC
2015)
• Based on computation of limit of secant lines



Tangent cones of space curves
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The command LimitPoints for computing limit points corresponding to
regular chains can be used to compute the limit of secant lines, as well.



Tangent cones of space curves

Answer

The command LimitPoints for computing limit points corresponding to
regular chains can be used to compute the limit of secant lines, as well.



Tangent cones of space curves: example

C = W (R) a curve with R := {2x2
3 + x1 − 1, 2x2

2 + 2x2
1 − x1 − 1}

Let p = (x1, x2, x3) be a singular point on C, e.g. (1, 0, 0).

Compute the tangent cone of C at p

1 Let q = (y1, y2, y3) be a point on a secant line through p

2 When q is close enough to p, one of x1 − y1, x2 − y2 or x3 − y3 does
not vanish, say x1 − y1

3 Hence, when q is close enough to p, ~v = (s1, s2, s3) leads (pq) with

s1 := 1, s2 := x2−y2

x1−y1
, s3 := x3−y3

x1−y1

4 Viewing s2, s3 as new variables, consider T := R ∪R′ with

R′ = {(xi − y1)s2 − (x2 − y2), (xi − y1)s3 − (x3 − y3)}
5 T is a regular chain for s2 > s3 > x3 > x2 > x1

6 Computing the limit points of W (T ) around x1 − y1 = 0 yields the
limits of the slopes s2 and s3, and thus the tangent cone.



Tangent cones of space curves: example
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> F :=
[
(x2 + y2)2 + 3x2y − y3, (x2 + y2)3 − 4x2y2

]
:

> plots[implicitplot](Fs, x = −2..2, y = −2..2) :

> R := PolynomialRing ([x, y], 101) :
> TriangularizeWithMultiplicity(F,R);[[

1,

{
x− 1 = 0
y + 14 = 0

]]
,

[[
1,

{
x+ 1 = 0
y + 14 = 0

]]
,

[[
1,

{
x− 47 = 0
y − 14 = 0

]]
,[[

1,

{
x+ 47 = 0
y − 14 = 0

]]
,

[[
14,

{
x = 0
y = 0

]]
(14)

The command RegularChains:-TriangularizeWithMultiplicity computes the
intersection multiplicities for each point of V (F ).



TriangularizeWithMultiplicity

We specify TriangularizeWithMultiplicity:

Input f1, . . . , fn ∈ C[x1, . . . , xn] such that V (f1, . . . , fn) is
zero-dimensional.

Output Finitely many pairs [(T1,m1) , . . . , (T`,m`)] where T1, . . . , T`
are regular chains of C[x1, . . . , xn] such that for all p ∈ V (Ti)

I(p; f1, . . . , fn) = mi and V (f1, . . . , fn) = V (T1)]· · ·]V (T`).

TriangularizeWithMultiplicity works as follows

1 Apply Triangularize on f1, . . . , fn,

2 Apply IMn(T ; f1, . . . , fn) on each regular chain T .

IMn(T ; f1, . . . , fn) works as follows

1 if n = 2 apply Fulton’s algorithm extended for working at a regular
chains instead of a point (S. Marcus, M., P. Vrbik; CASC 2013),

2 if n > 2 attempt a reduction from dimension n to n− 1 (P. Alvandi,
M., É. Schost, P. Vrbik; CASC 2015),



Fulton’s Properties

The intersection multiplicity of two plane curves at a point satisfies and is

uniquely determined by the following.
(2-1) I(p; f, g) is a non-negative integer for any C, D, and p such that C

and D have no common component at p. We set I(p; f, g) =∞ if C
and D have a common component at p.

(2-2) I(p; f, g) = 0 if and only if p /∈ C ∩D.

(2-3) I(p; f, g) is invariant under affine change of coordinates on Å2.

(2-4) I(p; f, g) = I(p; g, f)

(2-5)
I(p; f, g) is greater or equal to the product of the multiplicity of p
in f and g, with equality occurring if and only if C and D have no
tangent lines in common at p.

(2-6) I(p; f, gh) = I(p; f, g) + I(p; f, h) for all h ∈ k[x, y].

(2-7) I(p; f, g) = I(p; f, g + hf) for all h ∈ k[x, y].



Fulton’s Algorithm

Algorithm 1: IM2(p; f, g)

Input: p = (α, β) ∈ Å2(C) and f, g ∈ C[y � x] such that
gcd(f, g) ∈ C

Output: I(p; f, g) ∈ N satisfying (2-1)–(2-7)
if f(p) 6= 0 or g(p) 6= 0 then

return 0;

r, s = deg (f(x, β)) , deg (g(x, β)) ; assume s ≥ r.

if r = 0 then
write f = (y − β) · h and
g(x, β) = (x− α)m (a0 + a1(x− α) + · · ·);

return m+ IM2(p;h, g);

IM2(p; (y − β) · h, g) = IM2(p; (y − β), g) + IM2(p;h, g)

IM2(p; (y − β), g) = IM2(p; (y − β), g(x, β)) = IM2(p; (y − β), (x− α)m) = m

if r > 0 then

h← monic (g)− (x− α)s−rmonic (f);
return IM2(p; f, h);



Reducing from dim n to dim n− 1: using transversality

The theorem again:

Theorem

Assume that hn = V (fn) is non-singular at p. Let vn be its tangent
hyperplane at p. Assume that hn meets each component (through p) of
the curve C = V (f1, . . . , fn−1) transversely (that is, the tangent cone
TCp(C) intersects vn only at the point p). Let h ∈ k[x1, . . . , xn] be the
degree 1 polynomial defining vn. Then, we have

I(p; f1, . . . , fn) = I(p; f1, . . . , fn−1, h).

How to use this theorem in practise?

Assume that the coefficient of xn in h is non-zero, thus h = xn − h′,
where h′ ∈ k[x1, . . . , xn−1]. Hence, we can rewrite the ideal
〈f1, . . . , fn−1, h〉 as 〈g1, . . . , gn−1, h〉 where gi is obtained from fi by
substituting xn with h′. Then, we have

I(p; f1, . . . , fn) = I(p|x1,...,xn−1 ; g1, . . . , gn−1).



Reducing from dim n to dim n− 1: a simple case (1/3)

Example

Consider the system

f1 = x, f2 = x+ y2 − z2, f3 := y − z3

near the origin o := (0, 0, 0) ∈ V (f1, f2, f3)

Figure: The real points of V (x, x− y2 − z2, y − z3) near the origin.



Reducing from dim n to dim n− 1: a simple case (2/3)

Example

Recall the system

f1 = x, f2 = x+ y2 − z2, f3 := y − z3

near the origin o := (0, 0, 0) ∈ V (f1, f2, f3).

Computing the IM using the definition

Let us compute a basis for O
Å3,o

/ <f1, f2, f3> as a vector space over k.

Setting x = 0 and y = z3, we must have z2(z4 + 1) = 0 in
O
Å3,o

= k[x, y, z](z,y,z).

Since z4 + 1 is a unit in this local ring, we see that

O
Å3,o

/ <f1, f2, f3>=<1, z>

as a vector space, so I(o; f1, f2, f3) = 2.



Reducing from dim n to dim n− 1: a simple case (3/3)

Example

Recall the system again

f1 = x, f2 = x+ y2 − z2, f3 := y − z3

near the origin o := (0, 0, 0) ∈ V (f1, f2, f3).

Computing the IM using the reduction

We have

C := V (x, x+ y2 − z2) = V (x, (y − z)(y + z)) = TCo(C)

and we have

h = y.

Thus C and V (f3) intersect transversally at the origin. Therefore, we have

I3(p; f1, f2, f3) = I2((0, 0);x, x− z2) = 2.
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