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Factorization Properties (1/9)

Notations

Let M′ = 〈X1, . . . , Xn−1〉 be the maximal ideal of K〈X1, . . . , Xn−1〉.
Let p = Xk

n + a1X
k−1
n + · · ·+ ak ∈ K〈X1, . . . , Xn−1〉[Xn] be a

Weierstrass polynomial of degree k. Thus a1, . . . , ak ∈M′ holds.

Proposition 4

The following properties are equivalent

(i) k = 0,

(ii) p is a unit in K〈X1, . . . , Xn−1〉[Xn],

(iii) p is a unit in K〈X1, . . . , Xn−1, Xn〉.

Proof

The equivalence (i) ⇐⇒ (iii) is trivial.

The equivalence (i) ⇐⇒ (ii) follows from k = deg(p,Xn),
1 = lc(p,Xn) and the fact that K〈X1, . . . , Xn−1〉 is integral.



Factorization Properties (2/9)

Proposition 5

Let f, g, h ∈ K〈X1, . . . , Xn−1〉[Xn] be polynomials s. t. f = gh. Then

(i) if g, h are Weierstrass polynomials then so is f ,

(ii) if f is a Weierstrass polynomial, then there exist units
λ, µ ∈ 〈X1, . . . , Xn−1〉 s. t. λg and µh are Weierstrass polynomials.

Proof

Claim (i) is clear.

To prove (ii), we write g = b0X
`
n + · · ·+ b` and h = c0X

m
n + · · ·+ cm.

We observe that c0b0 = 1 holds. So we choose λ = c0 and µ = b0.

W.l.o.g. we assume c0 = b0 = 1. Thus, each of the following power
series belongs to M′

b`cm, b`cm−1 + b`−1cm, b`cm−2 + b`−1cm−1 + b`−2cm, . . .

Since M′ is a prime ideal then each coefficient
b1, b2, . . . , b`, c1, c2, · · · , cm belong to M′



Factorization Properties (3/9)

Lemma 2

Let A be a commutative ring and let f =
∑k

s=0asX
s, g =

∑`
i=0biX

i and
h =

∑m
j=0cjX

j be polynomials s.t. a0, b0, c0 units of A and f = g h holds.
Let P be a prime ideal s.t. a1, . . . , ak ∈ P Then, we have
b1, . . . , b`, c1, . . . , cm ∈ P.

Proof (1/2)

Consider a rectangular grid G where the points are indexed by the
Cartesian Product {0, . . . , `} × {0, . . . ,m}.
The point of G of coordinates (i, j) is mapped to bicj such that the
sum of all points along a line i+ j = q equal aq.

There exists at least one such “line” consisting of a unique point.
bicj .



Factorization Properties (4/9)

Proof (2/2)

If there is only one such point then, this is (0, 0) and G reduces to
that point and we are done.

If there are two such points, then for one of them, either i > 0 or
j > 0 holds. Consider a point of that latter type. Since P is prime,
either bi ∈ P (provided i > 0) or cj ∈ P (provided j > 0) holds.
W.l.o.g., assume bi ∈ P and erase from G all points of the form
bi-something.

If G is not empty, we go back two steps above.

It is not hard to see that this procedure will erase all rows
b1, b2, . . . , b` and all columns c1, c2, . . . , cm, which proves the lemma.



Factorization Properties (5/9)

Lemma 3

For the Weierstrass polynomial
p = Xk

n + a1X
k−1
n + · · ·+ ak ∈ K〈X1, . . . , Xn−1〉[Xn] the following

properties are equivalent

(i) p is irreducible in K〈X1, . . . , Xn−1〉[Xn],

(ii) p irreducible in K〈X1, . . . , Xn−1, Xn〉.

Proof of (i) ⇒ (ii) (1/2)

We proceed by contradiction. Assume that p reducible in
K〈X1, . . . , Xn−1, Xn〉.
So let f1, f2 ∈ K〈X1, . . . , Xn−1, Xn〉 be non-units s. t. p = f1f2.

Since p is general in Xn (that is, p 6≡ 0 mod M′) we can assume
that both f1, f2 are general in Xn.

Applying the preparation theorem, we have f1 = α1q1 and f2 = α2q2,
where α1, α2 are units and q1, q2 are Weierstrass polynomials.



Factorization Properties (6/9)

Proof of (i) ⇒ (ii) (2/2)

Thus, p = α1α2q1q2. Observe that q1q2 is a Weierstrass polynomial.

Uniqueness from the preparation theorem implies α1α2 = 1 and
p = q1q2, which is a factorization of p in K〈X1, . . . , Xn−1〉[Xn].

Recall that we assume that p irreducible in K〈X1, . . . , Xn−1〉[Xn] and
that we aim at contradicting p reducible in K〈X1, . . . , Xn−1, Xn〉.
So, one of the polynomials qi must be a unit in K〈X1, . . . , Xn−1〉[Xn]
This would imply qi = 1, that is, fi = αi. A contradiction.

Proof of (ii) ⇒ (i)

We assume that p irreducible in K〈X1, . . . , Xn−1, Xn〉 and proceeding
by contradiction, we assume p reducible in K〈X1, . . . , Xn−1〉[Xn].
Thus let p1, p2 ∈ K〈X1, . . . , Xn−1〉[Xn] such that p = p1p2 holds.

We know that p1, p2 are Weierstrass polynomials of positive degree.
Thus p is reducible in K〈X1, . . . , Xn−1, Xn〉, a contradiction.



Factorization Properties (7/9)

Theorem 7

The ring K〈X1, . . . , Xn−1, Xn〉 is a unique factorization domain (UFD).

Proof of the Theorem (1/3)

The proof is by induction on n.

For n = 0, this is clear since any field is a UFD.

By induction hypothesis, we assume that K〈X1, . . . , Xn−1〉 is a UFD.

It follows from Gauss Theorem that K〈X1, . . . , Xn−1〉[Xn] is a UFD
as well.

Next, we show that every f ∈ K〈X1, . . . , Xn−1, Xn〉 has a
factorization into irreducibles, unique up to order and units.

We may assume that f is general in Xn. By the preparation theorem,
we have f = αp with α a unit and p ∈ K〈X1, . . . , Xn−1〉[Xn] a
Weierstrass polynomial.



Factorization Properties (8/9)

Proof of the Theorem (2/3)

Since K〈X1, . . . , Xn−1〉[Xn] is a UFD, there is a factorization

p = p1 · · · pr
into irreducible elements, which is unique up to order, after p1, . . . , pr
have been normalized to be Weierstrass polynomials.

By the previous lemma,

f = αp1 · · · pr
is a factorization into irreducibles of K〈X1, . . . , Xn−1, Xn〉.
Let f = f1 · · · fs be another such factorization into irreducibles of
K〈X1, . . . , Xn−1, Xn〉.
We apply the preparation theorem to f1, . . . , fs, leading to f1 = αiq1,
. . . , fs = αsqs, where α1, . . . , αs are units and q1, . . . , qs are
Weierstrass polynomials of positive degrees.



Factorization Properties (9/9)

Proof of the Theorem (3/3)

By uniqueness in the preparation theorem, we have

p1 · · · pr = q1 · · · qs.
Finally, since K〈X1, . . . , Xn−1〉[Xn] is a UFD, we deduce r = s and
{p1, . . . , pr} = {q1, . . . , qs}.

Remarks

Following the techniques of the above proof and using the preparation
theorem, one can prove that K〈X1, . . . , Xn〉 is a Noetherian ring.

One can prove the preparation theorem in K[[X1, . . . , Xn]] (instead of
K〈X1, . . . , Xn〉).

As a result, the results of this section can also be established in
K[[X1, . . . , Xn]] (instead of K〈X1, . . . , Xn〉).

In particular, one can prove that K[[X1, . . . , Xn]] is a UFD.



Weierstrass preparation theorem for formal power series (1/8)

Lemma 4

Assume n ≥ 2. Let f, g, h ∈ K[[X1, . . . , Xn−1]] such that f = gh holds.
Let M be the maximal ideal of K[[X1, . . . , Xn−1]]. We write
f =

∑∞
i=0 fi, g =

∑∞
i=0 gi and h =

∑∞
i=0 hi, where

fi, gi, hi ∈Mi \Mi+1 holds for all i > 0, with f0, g0, h0 ∈ K. We note
that these decompositions are uniquely defined. Let r ∈ N. We assume
that f0 = 0 and h0 6= 0 both hold. Then the term gr is uniquely
determined by f1, . . . , fr, h0, . . . , hr−1.

Proof (1/2)

Since g0h0 = f0 = 0 and h0 6= 0 both hold, the claim is true for
r = 0.

Now, let r > 0. By induction hypothesis, we can assume that
g0, . . . , gr−1 are uniquely determined by f1, . . . , fr−1, h0, . . . , hr−2.

Observe that for determining gr, it suffices to expand f = gh modulo
Mr+1.



Weierstrass preparation theorem for formal power series (2/8)

Proof (2/2)

Modulo Mr+1, we have

f1 + f2 + · · ·+ fr = (g1 + g2 + · · ·+ gr)(h0 + h1 + · · ·+ hr)
= g1h0+

g2h0 + g1h1+
...
grh0 + gr−1h1 + · · ·+ g1hr−1

The conclusion follows.



Weierstrass preparation theorem for formal power series (3/8)

Notations

Assume n ≥ 1. Denote by A the ring K[[X1, . . . , Xn−1]] and by M
be the maximal ideal of A.

Note that n = 1 implies M = 〈0〉.
Let f ∈ A[[Xn]], written as f =

∑∞
i=0 aiX

i
n with ai ∈ A for all i ∈ N.

Theorem 8

We assume f 6≡ 0 mod M[[Xn]]. Then, there exists a unit α ∈ A[[Xn]],
an integer d ≥ 0 and a monic polynomial p ∈ A[Xn] of degree d such that
we have

1 p = Xd
n + bd−1X

d−1
n + · · ·+ b1Xn + b0, for some bd−1, . . . , b1, b0 ∈M,

2 f = αp.

Further, this expression for f is unique.



Weierstrass preparation theorem for formal power series (4/8)

Proof (1/5)

Let d ≥ 0 be the smallest integer such that ad 6∈ M. Clearly d exists
since we assume that f 6≡ 0 mod M[[Xn]] holds.

If n = 1, then writing f = αXd
n with α =

∑∞
i=0 ai+dX

i
n proves the

existence of the claimed decomposition.

From now on, we assume n ≥ 2.

Let us write α =
∑∞

i=0 ciX
i
n with ci ∈ A for all i ∈ N.

Since we require α to be a unit, we have c0 6∈ M. Note that c0 is
also a unit modulo M.



Weierstrass preparation theorem for formal power series (5/8)

Proof (2/5)

We must solve for bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . . s. t. for all m ≥ 0 we
have

a0 = b0c0
a1 = b0c1 + b1c0
a2 = b0c2 + b1c1 + b2c0

...
ad−1 = b0cd−1 + b1cd−2 + · · ·+ · · ·+ bd−2c1 + bd−1c0
ad = b0cd + b1cd−1 + · · ·+ · · ·+ bd−1c1 + c0

ad+1 = b0cd+1 + b1cd + · · ·+ · · ·+ bd−1c2 + c1
...

ad+m = b0cd+m + b1cd+m−1 + · · ·+ · · ·+ bd−1cm+1 + cm
...



Weierstrass preparation theorem for formal power series (6/8)

Proof (3/5)

We will compute each of bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . . modulo
each of the successive powers of M, that is, M,M2, . . . ,Mr, . . ..

We start by solving for each of bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . .
modulo M.

By definition of d, the left hand sides of the first d equations above
are all ≡ 0 mod M.

Since c0 is a unit modulo M, these first d equations taken modulo
M imply that each of b0, b1, . . . , bd−1 is ≡ 0 mod M.

Plugging this into the remaining equations we obtain cm ≡ ad+m

mod M, for all m ≥ 0.

Therefore, we have solved for each of
bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . . modulo M.



Weierstrass preparation theorem for formal power series (7/8)

Proof (4/5)

Let r > 0 be an integer. We assume that we have inductively
determined each of bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . . modulo each of
M, . . . ,Mr. We wish to determine them modulo Mr+1.

Consider the first equation, namely a0 = b0c0, with a0, b0, c0 ∈ A.
Recall that a0 ∈M and c0 6∈ M both hold. By assumption, b0 and
c0 are known modulo each of M, . . . ,Mr. In addition, a0 is known
modulo each of M, . . . ,Mr,Mr+1. Therefore, the previous lemma
applies and we can compute b0 modulo Mr+1.

Consider the second equation, that we re-write a1 − b0c1 = b1c0. A
similar reasoning applies and we can compute b1 modulo Mr+1.

Continuing in this manner, we can compute each of b0, b1, . . . , bd−1
modulo Mr+1 using the first d equations.

Finally, using the remaining equations determine cm mod Mr, for all
m ≥ 0.



Weierstrass preparation theorem for formal power series (8/8)

Proof (5/5)

The induction is complete, and the existence of a factorization of f as
claimed is proved.

The uniqueness is obvious, because d is uniquely determined by f ,
and the unit α is uniquely determined as the coefficient of Xd

n in any
two such factorizations.

Finally, equating the coefficients of Xd−1
n , . . . , Xn, X

0
n in any two

such factorizations determine p uniquely.

Remark

The assumption of the theorem, namely f 6≡ 0 mod M[[Xn]], can
always be assumed. Indeed, one can reduce to this case by a suitable
linear change of coordinates.

From this Weierstrass preparation theorem for formal power series,
one can show that K[[X1, . . . , Xn−1]] is a UFD and a Noetherian ring.



Germs of curves (1/8)

Definition

Let D := {x = (x1, . . . , xn) ∈ Kn | |xi| < ρi} be a polydisk and let
M ⊆ D. We say that M is a principal analytic set if there exists
f ∈ K〈X1, . . . , Xn〉 that converges throughout D and satisfies

M = VD(f) where VD(f) := {x ∈ D | f(x) = 0}.

Given f , the set VD(f) may be empty or not, depending on D.

Definition

Let D1 and D2 be two polydisks of Kn. Let M1 ⊆ D1 and M2 ⊆ D2 be
two principal analytic sets. We say that M1 and M2 are equivalent if there
exists a polydisk D ⊆ D1 ∩ D2 such that we have

M1 ∩ D = M2 ∩ D.

An equivalence class of principal analytic sets is called a germ of a
principal analytic set, or, when n = 2, a germ of a curve.



Germs of curves (2/8)

Notation for a germ

Given two equivalent principal analytic sets M1 = VD1(f1) and
M2 = VD1(f2) there exists a polydisk D such that we have

{x ∈ D1 | f1(x) = 0} ∩ D = {x ∈ D2 | f2(x) = 0} ∩ D.

Therefore f1 = f2 holds and we simply write V (f) for the equivalent class
of M1 and M2. Indeed, if the set of zeros of an analytic function f has an
accumulation point inside the domain of f , then f is zero everywhere on
the connected component containing the accumulation point.

The empty germ

It follows that V (f) = ∅ means that 0 6∈ VD(f) for any representative
VD(f) ∈ V (f). This implies f(0) 6= 0, that is, f is a unit in
K〈X1, . . . , Xn〉. The converse is clearly true, so we have

V (f) = ∅ ⇐⇒ f 6≡ 0 mod M.



Germs of curves (3/8)

Binary operations on germs

An inclusion V (f1) ⊆ V (f2) between two germs means that there exist
representatives VD1(f1) ∈ V (f1) and VD2(f2) ∈ V (f2) together with a
polydisk D ⊆ D1 ∩ D2 such that we have

VD1(f1) ∩ D ⊆ VD2(f2) ∩ D.

We define V (f1) ∩ V (f2) and V (f1) ∪ V (f2) similarly.

Proposition 6

For all f, g ∈ K〈X1, . . . , Xn〉 s.t f divides g, we have V (f) ⊆ V (g).

For all f, f1, . . . , fr ∈ K〈X1, . . . , Xn〉 s.t. f = f1 · · · fr holds we have
V (f) = V (f1) ∪ · · · ∪ V (fr).



Germs of curves (4/8)

Lemma (Study’s Lemma)

Let f, g ∈ K〈X1, . . . , Xn〉 with f irreducible. If the germs V (f), V (g)
satisfy V (f) ⊆ V (g) then f divides g in K〈X1, . . . , Xn〉.

Proof of Study’s Lemma (1/3)

We proceed by induction on n.

The case n = 0 is trivial.

Next, by induction hypothesis, we assume that the lemma holds in
K〈X1, . . . , Xn−1〉.
By definition of V (f) ⊆ V (g) and thanks to the preparation
theorem, we can assume that f, g are Weierstrass polynomials in
K〈X1, . . . , Xn−1〉[Xn]. Thus we have

f = Xk
n + a1X

k−1
n + · · ·+ ak, g = X`

n + b1X
`−1
n + · · ·+ b`,

where k, ` ≥ 1 and each of a1, . . . , ak, b1, . . . , b` is zero modulo M′,
where (as usual) M′ is the maximal ideal of K〈X1, . . . , Xn−1〉.



Germs of curves (5/8)

Proof of Study’s Lemma (2/3)

Since K〈X1, . . . , Xn−1〉 is a UFD, it follows from resultant theory
that f and g have a common divisor of positive degree ii and only if
the resultant res(f, g) is not zero.

Since f is also irreducible in K〈X1, . . . , Xn−1〉[Xn], proving
res(f, g) 6= 0 would do what we need.

Let D = {x = (x1, . . . , xn) ∈ Kn | |xi| < ρ} be a polydisk
throughout which f and g are convergent.

Define D′ = {x = (x1, . . . , xn−1) ∈ Kn−1 | |xi| < ρi}.
For each x′ ∈ D′, we denote by fx′ and gx′ the univariate polynomials
of K[Xn] obtained by specializing X1, . . . , Xn−1 to x′ into f, g.

In particular, we have f0 = Xk
n and g = X`

n, so
V (f0) = V (g0) = {0}.



Germs of curves (6/8)

Proof of Study’s Lemma (3/3)

Since the roots of fx′ and gx′ depends continuously on x′, one can
choose the polydisk D = {x = (x1, . . . , xn) ∈ Kn | |xi| < ρi} (and
thus D′) such that for all x′ ∈ D′ each root xn of fx′ and gx′ satisfies
|xn| < ρn.

For the same continuity argument, and since V (f) ⊆ V (g) holds, the
polydisk D can be further refined such that V (fx′) ⊆ V (gx′) holds for
all x′ ∈ D′.
Hence, for all x′ ∈ D′, the univariate polynomials fx′ and gx′ have a
common prime factor, that is, res(fx′ , gx′) = 0.

Finally, using the specialization property of the resultant, we conclude
that res(f, g)(x′) = 0 holds for all x′ ∈ D′.



Germs of curves (7/8)

Definition

A germ of a principal analytic set V (f) is called reducible if there exist two
germs of a principal analytic set V (f1) and V (f2) such that we have
V (f) = V (f1) ∪ V (f2), V (f1) 6= ∅, V (f2) 6= ∅ and V (f1) 6= V (f2).
Otherwise, V (f) is called irreducible.

Lemma 5

A germ of a principal analytic set V (f) is irreducible if and only if there
exists g ∈ K〈X1, . . . , Xn〉 and k ∈ N∗ such that f = gk holds.

Theorem 9

Let V (f) be a germ of a principal analytic set. Then, V (f) admits a
decomposition

V (f) = V (f1) ∪ · · · ∪ V (fr).

where V (f1), . . . , V (fr) are irreducible. This decomposition is unique up
to the order in which the components appear.



Germs of curves (8/8)

Definition

We call a series f ∈ K〈X1, . . . , Xn〉 minimal if every prime factor fi of f
occurs only once, that is, f = f1 · · · fr.

Then, for a curve (that is n = 2) the sets V (f1), . . . , V (fr) are called
the branch of the curve at the origin.

This notion can be translated at any point of the curve by an
appropriate change of coordinates.

If f is minimal, we call

Ord(V (f)) = ord(f)

the order of the germ.
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