Polynomials over Power Series and their Applications to Limit Computations (tutorial version)

Marc Moreno Maza University of Western Ontario IBM Center for Advanced Studies

> CASC 2018 Tutorial Université de Lille Bâtiment M³ May 28, 2021

Plan

- 1 Polynomials over Power Series
 - Properties of Power Series Rings

Plan

- 1 Polynomials over Power Series
 - Properties of Power Series Rings

Plan

- 1 Polynomials over Power Series
 - Properties of Power Series Rings

Factorization Properties (1/9)

Notations

- Let $\mathcal{M}' = \langle X_1, \dots, X_{n-1} \rangle$ be the maximal ideal of $\mathbb{K}\langle X_1, \dots, X_{n-1} \rangle$.
- Let $p = X_n^k + a_1 X_n^{k-1} + \dots + a_k \in \mathbb{K}\langle X_1, \dots, X_{n-1}\rangle[X_n]$ be a Weierstrass polynomial of degree k. Thus $a_1, \dots, a_k \in \mathcal{M}'$ holds.

Proposition 4

The following properties are equivalent

- (i) k=0, (ii) p is a unit in $\mathbb{K}\langle X_1,\ldots,X_{n-1}\rangle[X_n]$.
- (iii) p is a unit in $\mathbb{K}\langle X_1,\ldots,X_{n-1},X_n\rangle$.

Proof

- The equivalence $(i) \iff (iii)$ is trivial.
- The equivalence $(i) \iff (ii)$ follows from $k = \deg(p, X_n)$, $1 = \operatorname{lc}(p, X_n)$ and the fact that $\mathbb{K}\langle X_1, \dots, X_{n-1} \rangle$ is integral.

Factorization Properties (2/9)

Proposition 5

Let $f, g, h \in \mathbb{K}\langle X_1, \dots, X_{n-1} \rangle [X_n]$ be polynomials s. t. f = gh. Then

- (i) if g,h are Weierstrass polynomials then so is f,
- (ii) if f is a Weierstrass polynomial, then there exist units $\lambda, \mu \in \langle X_1, \dots, X_{n-1} \rangle$ s. t. λg and μh are Weierstrass polynomials.

Proof

- Claim (i) is clear.
- To prove (ii), we write $g=b_0X_n^\ell+\cdots+b_\ell$ and $h=c_0X_n^m+\cdots+c_m$. We observe that $c_0b_0=1$ holds. So we choose $\lambda=c_0$ and $\mu=b_0$.
- W.l.o.g. we assume $c_0=b_0=1$. Thus, each of the following power series belongs to \mathcal{M}'

$$b_{\ell}c_m, b_{\ell}c_{m-1} + b_{\ell-1}c_m, b_{\ell}c_{m-2} + b_{\ell-1}c_{m-1} + b_{\ell-2}c_m, \dots$$

• Since \mathcal{M}' is a prime ideal then each coefficient $b_1, b_2, \dots, b_\ell, c_1, c_2, \dots, c_m$ belong to \mathcal{M}'

Factorization Properties (3/9)

Lemma 2

Let $\mathbb A$ be a commutative ring and let $f=\sum_{s=0}^k a_s X^s$, $g=\sum_{i=0}^\ell b_i X^i$ and $h=\sum_{j=0}^m c_j X^j$ be polynomials s.t. a_0,b_0,c_0 units of $\mathbb A$ and $f=g\,h$ holds. Let $\mathcal P$ be a prime ideal s.t. $a_1,\dots,a_k\in\mathcal P$ Then, we have $b_1,\dots,b_\ell,c_1,\dots,c_m\in\mathcal P.$

Proof (1/2)

- Consider a rectangular grid G where the points are indexed by the Cartesian Product $\{0,\ldots,\ell\}$ \times $\{0,\ldots,m\}$.
- The point of G of coordinates (i,j) is mapped to b_ic_j such that the sum of all points along a line i+j=q equal a_q .
- There exists at least one such "line" consisting of a unique point. $b_i c_j$.

Factorization Properties (4/9)

Proof (2/2)

- If there is only one such point then, this is (0,0) and G reduces to that point and we are done.
- If there are two such points, then for one of them, either i>0 or j>0 holds. Consider a point of that latter type. Since $\mathcal P$ is prime, either $b_i\in\mathcal P$ (provided i>0) or $c_j\in\mathcal P$ (provided j>0) holds. W.l.o.g., assume $b_i\in\mathcal P$ and erase from G all points of the form b_i -something.
- If G is not empty, we go back two steps above.
- It is not hard to see that this procedure will erase all rows b_1, b_2, \ldots, b_ℓ and all columns c_1, c_2, \ldots, c_m , which proves the lemma.

Factorization Properties (5/9)

Lemma 3

For the Weierstrass polynomial

 $p=X_n^k+a_1X_n^{k-1}+\cdots+a_k\in\mathbb{K}\langle X_1,\ldots,X_{n-1}\rangle[X_n]$ the following properties are equivalent

- (i) p is irreducible in $\mathbb{K}\langle X_1,\ldots,X_{n-1}\rangle[X_n]$,
- $(ii) \ \ p \ \ \text{irreducible in} \ \ \mathbb{K}\langle X_1, \dots, X_{n-1}, X_n \rangle.$

Proof of $(i) \Rightarrow (ii) (1/2)$

- We proceed by contradiction. Assume that p reducible in $\mathbb{K}\langle X_1,\ldots,X_{n-1},X_n\rangle$.
- So let $f_1, f_2 \in \mathbb{K}\langle X_1, \dots, X_{n-1}, X_n \rangle$ be non-units s. t. $p = f_1 f_2$.
- Since p is general in X_n (that is, $p \not\equiv 0 \mod \mathcal{M}'$) we can assume that both f_1, f_2 are general in X_n .
- Applying the preparation theorem, we have $f_1 = \alpha_1 q_1$ and $f_2 = \alpha_2 q_2$, where α_1, α_2 are units and q_1, q_2 are Weierstrass polynomials.

Factorization Properties (6/9)

Proof of $(i) \Rightarrow (ii) (2/2)$

- Thus, $p = \alpha_1 \alpha_2 q_1 q_2$. Observe that $q_1 q_2$ is a Weierstrass polynomial.
- Uniqueness from the preparation theorem implies $\alpha_1\alpha_2=1$ and $p=q_1q_2$, which is a factorization of p in $\mathbb{K}\langle X_1,\ldots,X_{n-1}\rangle[X_n]$.
- Recall that we assume that p irreducible in $\mathbb{K}\langle X_1,\ldots,X_{n-1}\rangle[X_n]$ and that we aim at contradicting p reducible in $\mathbb{K}\langle X_1,\ldots,X_{n-1},X_n\rangle$.
- So, one of the polynomials q_i must be a unit in $\mathbb{K}\langle X_1,\ldots,X_{n-1}\rangle[X_n]$ This would imply $q_i=1$, that is, $f_i=\alpha_i$. A contradiction.

Proof of $(ii) \Rightarrow (i)$

- We assume that p irreducible in $\mathbb{K}\langle X_1,\ldots,X_{n-1},X_n\rangle$ and proceeding by contradiction, we assume p reducible in $\mathbb{K}\langle X_1,\ldots,X_{n-1}\rangle[X_n]$. Thus let $p_1,p_2\in\mathbb{K}\langle X_1,\ldots,X_{n-1}\rangle[X_n]$ such that $p=p_1p_2$ holds.
- We know that p_1, p_2 are Weierstrass polynomials of positive degree. Thus p is reducible in $\mathbb{K}\langle X_1, \dots, X_{n-1}, X_n \rangle$, a contradiction.

Factorization Properties (7/9)

Theorem 7

The ring $\mathbb{K}\langle X_1,\ldots,X_{n-1},X_n\rangle$ is a unique factorization domain (UFD).

Proof of the Theorem (1/3)

- The proof is by induction on n.
- For n=0, this is clear since any field is a UFD.
- ullet By induction hypothesis, we assume that $\mathbb{K}\langle X_1,\dots,X_{n-1}\rangle$ is a UFD.
- It follows from Gauss Theorem that $\mathbb{K}\langle X_1,\ldots,X_{n-1}\rangle[X_n]$ is a UFD as well.
- Next, we show that every $f \in \mathbb{K}\langle X_1, \dots, X_{n-1}, X_n \rangle$ has a factorization into irreducibles, unique up to order and units.
- We may assume that f is general in X_n . By the preparation theorem, we have $f=\alpha p$ with α a unit and $p\in \mathbb{K}\langle X_1,\ldots,X_{n-1}\rangle[X_n]$ a Weierstrass polynomial.

Factorization Properties (8/9)

Proof of the Theorem (2/3)

ullet Since $\mathbb{K}\langle X_1,\ldots,X_{n-1}
angle[X_n]$ is a UFD, there is a factorization

$$p = p_1 \cdots p_r$$

into irreducible elements, which is unique up to order, after p_1, \ldots, p_r have been normalized to be Weierstrass polynomials.

By the previous lemma,

$$f = \alpha p_1 \cdots p_r$$

is a factorization into irreducibles of $\mathbb{K}\langle X_1,\ldots,X_{n-1},X_n\rangle$.

- Let $f = f_1 \cdots f_s$ be another such factorization into irreducibles of $\mathbb{K}\langle X_1, \dots, X_{n-1}, X_n \rangle$.
- We apply the preparation theorem to f_1, \ldots, f_s , leading to $f_1 = \alpha_i q_1$, \ldots , $f_s = \alpha_s q_s$, where $\alpha_1, \ldots, \alpha_s$ are units and q_1, \ldots, q_s are Weierstrass polynomials of positive degrees.

Factorization Properties (9/9)

Proof of the Theorem (3/3)

• By uniqueness in the preparation theorem, we have

$$p_1 \cdots p_r = q_1 \cdots q_s$$
.

• Finally, since $\mathbb{K}\langle X_1,\ldots,X_{n-1}\rangle[X_n]$ is a UFD, we deduce r=s and $\{p_1,\ldots,p_r\}=\{q_1,\ldots,q_s\}.$

Remarks

- Following the techniques of the above proof and using the preparation theorem, one can prove that $\mathbb{K}\langle X_1,\ldots,X_n\rangle$ is a Noetherian ring.
- One can prove the preparation theorem in $\mathbb{K}[[X_1,\ldots,X_n]]$ (instead of $\mathbb{K}\langle X_1,\ldots,X_n\rangle$).
- As a result, the results of this section can also be established in $\mathbb{K}[[X_1,\ldots,X_n]]$ (instead of $\mathbb{K}\langle X_1,\ldots,X_n\rangle$).
- In particular, one can prove that $\mathbb{K}[[X_1,\ldots,X_n]]$ is a UFD.

Weierstrass preparation theorem for formal power series (1/8)

Lemma 4

Assume $n\geq 2$. Let $f,g,h\in\mathbb{K}[[X_1,\ldots,X_{n-1}]]$ such that f=gh holds. Let \mathcal{M} be the maximal ideal of $\mathbb{K}[[X_1,\ldots,X_{n-1}]]$. We write $f=\sum_{i=0}^\infty f_i,\,g=\sum_{i=0}^\infty g_i$ and $h=\sum_{i=0}^\infty h_i$, where $f_i,g_i,h_i\in\mathcal{M}^i\setminus\mathcal{M}^{i+1}$ holds for all i>0, with $f_0,g_0,h_0\in\mathbb{K}$. We note that these decompositions are uniquely defined. Let $r\in\mathbb{N}$. We assume that $f_0=0$ and $h_0\neq 0$ both hold. Then the term g_r is uniquely determined by $f_1,\ldots,f_r,h_0,\ldots,h_{r-1}$.

Proof (1/2)

- Since $g_0h_0=f_0=0$ and $h_0\neq 0$ both hold, the claim is true for r=0.
- Now, let r > 0. By induction hypothesis, we can assume that g_0, \ldots, g_{r-1} are uniquely determined by $f_1, \ldots, f_{r-1}, h_0, \ldots, h_{r-2}$.
- \bullet Observe that for determining g_r , it suffices to expand f=gh modulo \mathcal{M}^{r+1}

Weierstrass preparation theorem for formal power series (2/8)

Proof (2/2)

• Modulo \mathcal{M}^{r+1} , we have

```
\begin{array}{rcl} f_1+f_2+\cdots+f_r &=& (g_1+g_2+\cdots+g_r)(h_0+h_1+\cdots+h_r)\\ &=& g_1h_0+\\ &&g_2h_0+g_1h_1+\\ &&\vdots\\ &&g_rh_0+g_{r-1}h_1+\cdots+g_1h_{r-1} \end{array}
```

The conclusion follows.

Weierstrass preparation theorem for formal power series (3/8)

Notations

- Assume $n \geq 1$. Denote by \mathbb{A} the ring $\mathbb{K}[[X_1, \dots, X_{n-1}]]$ and by \mathcal{M} be the maximal ideal of \mathbb{A} .
- Note that n=1 implies $\mathcal{M}=\langle 0 \rangle$.
- Let $f \in \mathbb{A}[[X_n]]$, written as $f = \sum_{i=0}^{\infty} a_i X_n^i$ with $a_i \in \mathbb{A}$ for all $i \in \mathbb{N}$.

Theorem 8

We assume $f \not\equiv 0 \mod \mathcal{M}[[X_n]]$. Then, there exists a unit $\alpha \in \mathbb{A}[[X_n]]$, an integer $d \geq 0$ and a monic polynomial $p \in \mathbb{A}[X_n]$ of degree d such that we have

Further, this expression for f is unique.

Weierstrass preparation theorem for formal power series (4/8)

Proof (1/5)

- Let $d \ge 0$ be the smallest integer such that $a_d \notin \mathcal{M}$. Clearly d exists since we assume that $f \not\equiv 0 \mod \mathcal{M}[[X_n]]$ holds.
- If n=1, then writing $f=\alpha X_n^d$ with $\alpha=\sum_{i=0}^\infty a_{i+d}X_n^i$ proves the existence of the claimed decomposition.
- From now on, we assume $n \geq 2$.
- Let us write $\alpha = \sum_{i=0}^{\infty} c_i X_n^i$ with $c_i \in \mathbb{A}$ for all $i \in \mathbb{N}$.
- Since we require α to be a unit, we have $c_0 \notin \mathcal{M}$. Note that c_0 is also a unit modulo \mathcal{M} .

Weierstrass preparation theorem for formal power series (5/8)

Proof (2/5)

We must solve for $b_{d-1}, \ldots, b_1, b_0, c_0, c_1, \ldots, c_d, \ldots$ s. t. for all $m \geq 0$ we have

```
a_0 = b_0 c_0
  a_1 = b_0 c_1 + b_1 c_0
  a_2 = b_0c_2 + b_1c_1 + b_2c_0
a_{d-1} = b_0 c_{d-1} + b_1 c_{d-2} + \cdots + \cdots + b_{d-2} c_1 + b_{d-1} c_0
  a_d = b_0 c_d + b_1 c_{d-1} + \cdots + b_{d-1} c_1 + c_0
a_{d+1} = b_0 c_{d+1} + b_1 c_d + \dots + b_{d-1} c_2 + c_1
        = b_0c_{d+m} + b_1c_{d+m-1} + \cdots + b_{d-1}c_{m+1} + c_m
```

Weierstrass preparation theorem for formal power series (6/8)

Proof (3/5)

- We will compute each of $b_{d-1}, \ldots, b_1, b_0, c_0, c_1, \ldots, c_d, \ldots$ modulo each of the successive powers of \mathcal{M} , that is, $\mathcal{M}, \mathcal{M}^2, \ldots, \mathcal{M}^r, \ldots$
- We start by solving for each of $b_{d-1}, \ldots, b_1, b_0, c_0, c_1, \ldots, c_d, \ldots$ modulo \mathcal{M} .
- By definition of d, the left hand sides of the first d equations above are all $\equiv 0 \mod \mathcal{M}$.
- Since c_0 is a unit modulo \mathcal{M} , these first d equations taken modulo \mathcal{M} imply that each of $b_0, b_1, \ldots, b_{d-1}$ is $\equiv 0 \mod \mathcal{M}$.
- Plugging this into the remaining equations we obtain $c_m \equiv a_{d+m} \mod \mathcal{M}$, for all $m \geq 0$.
- Therefore, we have solved for each of $b_{d-1}, \ldots, b_1, b_0, c_0, c_1, \ldots, c_d, \ldots$ modulo \mathcal{M} .

Weierstrass preparation theorem for formal power series (7/8)

Proof (4/5)

- Let r>0 be an integer. We assume that we have inductively determined each of $b_{d-1},\ldots,b_1,b_0,c_0,c_1,\ldots,c_d,\ldots$ modulo each of $\mathcal{M},\ldots,\mathcal{M}^r$. We wish to determine them modulo \mathcal{M}^{r+1} .
- Consider the first equation, namely $a_0 = b_0 c_0$, with $a_0, b_0, c_0 \in \mathbb{A}$. Recall that $a_0 \in \mathcal{M}$ and $c_0 \notin \mathcal{M}$ both hold. By assumption, b_0 and c_0 are known modulo each of $\mathcal{M}, \ldots, \mathcal{M}^r$. In addition, a_0 is known modulo each of $\mathcal{M}, \ldots, \mathcal{M}^r, \mathcal{M}^{r+1}$. Therefore, the previous lemma applies and we can compute b_0 modulo \mathcal{M}^{r+1} .
- Consider the second equation, that we re-write $a_1 b_0 c_1 = b_1 c_0$. A similar reasoning applies and we can compute b_1 modulo \mathcal{M}^{r+1} .
- Continuing in this manner, we can compute each of $b_0, b_1, \ldots, b_{d-1}$ modulo \mathcal{M}^{r+1} using the first d equations.
- Finally, using the remaining equations determine $c_m \mod \mathcal{M}^r$, for all $m \geq 0$.

Weierstrass preparation theorem for formal power series (8/8)

Proof (5/5)

- ullet The induction is complete, and the existence of a factorization of f as claimed is proved.
- The uniqueness is obvious, because d is uniquely determined by f, and the unit α is uniquely determined as **the** coefficient of X_n^d in any two such factorizations.
- Finally, equating the coefficients of $X_n^{d-1}, \ldots, X_n, X_n^0$ in any two such factorizations determine p uniquely.

Remark

- The assumption of the theorem, namely $f \not\equiv 0 \mod \mathcal{M}[[X_n]]$, can always be assumed. Indeed, one can reduce to this case by a suitable linear change of coordinates.
- From this Weierstrass preparation theorem for formal power series, one can show that $\mathbb{K}[[X_1,\ldots,X_{n-1}]]$ is a UFD and a Noetherian ring.

Germs of curves (1/8)

Definition

Let $D:=\{x=(x_1,\ldots,x_n)\in\mathbb{K}^n\mid |x_i|<\rho_i\}$ be a polydisk and let $M\subseteq D$. We say that M is a *principal analytic set* if there exists $f\in\mathbb{K}\langle X_1,\ldots,X_n\rangle$ that converges throughout D and satisfies

$$M = V_D(f)$$
 where $V_D(f) := \{x \in D \mid f(x) = 0\}.$

Given f, the set $V_D(f)$ may be empty or not, depending on D.

Definition

Let D_1 and D_2 be two polydisks of \mathbb{K}^n . Let $M_1 \subseteq D_1$ and $M_2 \subseteq D_2$ be two principal analytic sets. We say that M_1 and M_2 are *equivalent* if there exists a polydisk $D \subseteq D_1 \cap D_2$ such that we have

$$M_1 \cap D = M_2 \cap D.$$

An equivalence class of principal analytic sets is called a *germ of a* principal analytic set, or, when n=2, a germ of a curve.

Germs of curves (2/8)

Notation for a germ

Given two equivalent principal analytic sets $M_1=V_{D_1}(f_1)$ and $M_2=V_{D_1}(f_2)$ there exists a polydisk D such that we have

$$\{x \in D_1 \mid f_1(x) = 0\} \cap D = \{x \in D_2 \mid f_2(x) = 0\} \cap D.$$

Therefore $f_1=f_2$ holds and we simply write V(f) for the equivalent class of M_1 and M_2 . Indeed, if the set of zeros of an analytic function f has an accumulation point inside the domain of f, then f is zero everywhere on the connected component containing the accumulation point.

The empty germ

It follows that $V(f)=\emptyset$ means that $0\not\in V_D(f)$ for any representative $V_D(f)\in V(f)$. This implies $f(0)\neq 0$, that is, f is a unit in $\mathbb{K}\langle X_1,\dots,X_n\rangle$. The converse is clearly true, so we have

$$V(f) = \emptyset \iff f \not\equiv 0 \mod \mathcal{M}.$$

Germs of curves (3/8)

Binary operations on germs

An inclusion $V(f_1)\subseteq V(f_2)$ between two germs means that there exist representatives $V_{D_1}(f_1)\in V(f_1)$ and $V_{D_2}(f_2)\in V(f_2)$ together with a polydisk $D\subseteq D_1\cap D_2$ such that we have

$$V_{D_1}(f_1) \cap D \subseteq V_{D_2}(f_2) \cap D.$$

We define $V(f_1) \cap V(f_2)$ and $V(f_1) \cup V(f_2)$ similarly.

Proposition 6

- For all $f,g \in \mathbb{K}\langle X_1,\ldots,X_n \rangle$ s.t f divides g, we have $V(f) \subseteq V(g)$.
- For all $f, f_1, \ldots, f_r \in \mathbb{K}\langle X_1, \ldots, X_n \rangle$ s.t. $f = f_1 \cdots f_r$ holds we have $V(f) = V(f_1) \cup \cdots \cup V(f_r)$.

Germs of curves (4/8)

Lemma (Study's Lemma)

Let $f,g\in\mathbb{K}\langle X_1,\ldots,X_n\rangle$ with f irreducible. If the germs V(f),V(g) satisfy $V(f)\subseteq V(g)$ then f divides g in $\mathbb{K}\langle X_1,\ldots,X_n\rangle$.

Proof of Study's Lemma (1/3)

- We proceed by induction on n.
- The case n=0 is trivial.
- Next, by induction hypothesis, we assume that the lemma holds in $\mathbb{K}\langle X_1,\dots,X_{n-1}\rangle$.
- By definition of $V(f) \subseteq V(g)$ and thanks to the preparation theorem, we can assume that f,g are Weierstrass polynomials in $\mathbb{K}\langle X_1,\ldots,X_{n-1}\rangle[X_n]$. Thus we have

$$f=X_n^k+a_1X_n^{k-1}+\cdots+a_k,\ g=X_n^\ell+b_1X_n^{\ell-1}+\cdots+b_\ell,$$
 where $k,\ell\geq 1$ and each of $a_1,\ldots,a_k,b_1,\ldots,b_\ell$ is zero modulo $\mathcal{M}',$

where (as usual) \mathcal{M}' is the maximal ideal of $\mathbb{K}\langle X_1,\ldots,X_{n-1}\rangle$.

Germs of curves (5/8)

Proof of Study's Lemma (2/3)

- Since $\mathbb{K}\langle X_1,\ldots,X_{n-1}\rangle$ is a UFD, it follows from resultant theory that f and g have a common divisor of positive degree ii and only if the resultant $\operatorname{res}(f,g)$ is not zero.
- Since f is also irreducible in $\mathbb{K}\langle X_1,\ldots,X_{n-1}\rangle[X_n]$, proving $\operatorname{res}(f,g)\neq 0$ would do what we need.
- Let $D=\{x=(x_1,\ldots,x_n)\in\mathbb{K}^n\mid |x_i|<\rho\}$ be a polydisk throughout which f and g are convergent.
- Define $D' = \{x = (x_1, \dots, x_{n-1}) \in \mathbb{K}^{n-1} \mid |x_i| < \rho_i\}.$
- For each $x' \in D'$, we denote by $f_{x'}$ and $g_{x'}$ the univariate polynomials of $\mathbb{K}[X_n]$ obtained by specializing X_1, \ldots, X_{n-1} to x' into f, g.
- In particular, we have $f_0=X_n^k$ and $g=X_n^\ell$, so $V(f_0)=V(g_0)=\{0\}.$

Germs of curves (6/8)

Proof of Study's Lemma (3/3)

- Since the roots of $f_{x'}$ and $g_{x'}$ depends continuously on x', one can choose the polydisk $D=\{x=(x_1,\ldots,x_n)\in\mathbb{K}^n\mid |x_i|<\rho_i\}$ (and thus D') such that for all $x'\in D'$ each root x_n of $f_{x'}$ and $g_{x'}$ satisfies $|x_n|<\rho_n$.
- For the same continuity argument, and since $V(f)\subseteq V(g)$ holds, the polydisk D can be further refined such that $V(f_{x'})\subseteq V(g_{x'})$ holds for all $x'\in D'$.
- Hence, for all $x' \in D'$, the univariate polynomials $f_{x'}$ and $g_{x'}$ have a common prime factor, that is, $\operatorname{res}(f_{x'}, g_{x'}) = 0$.
- Finally, using the specialization property of the resultant, we conclude that $\operatorname{res}(f,g)(x')=0$ holds for all $x'\in D'$.

Germs of curves (7/8)

Definition

A germ of a principal analytic set V(f) is called *reducible* if there exist two germs of a principal analytic set $V(f_1)$ and $V(f_2)$ such that we have $V(f) = V(f_1) \cup V(f_2)$, $V(f_1) \neq \emptyset$, $V(f_2) \neq \emptyset$ and $V(f_1) \neq V(f_2)$. Otherwise, V(f) is called irreducible.

Lemma 5

A germ of a principal analytic set V(f) is irreducible if and only if there exists $g\in \mathbb{K}\langle X_1,\ldots,X_n\rangle$ and $k\in \mathbb{N}^*$ such that $f=g^k$ holds.

Theorem 9

Let ${\cal V}(f)$ be a germ of a principal analytic set. Then, ${\cal V}(f)$ admits a decomposition

$$V(f) = V(f_1) \cup \cdots \cup V(f_r).$$

where $V(f_1), \dots, V(f_r)$ are irreducible. This decomposition is unique up to the order in which the components appear.

Germs of curves (8/8)

Definition

We call a series $f \in \mathbb{K}\langle X_1, \dots, X_n \rangle$ minimal if every prime factor f_i of f occurs only once, that is, $f = f_1 \cdots f_r$.

- Then, for a curve (that is n=2) the sets $V(f_1),\ldots,V(f_r)$ are called the branch of the curve at the origin.
- This notion can be translated at any point of the curve by an appropriate change of coordinates.
- If f is minimal, we call

$$Ord(V(f)) = ord(f)$$

the order of the germ.