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Factorization Properties (1/9)

Notations

o Let M'=(Xy,...,X,_1) be the maximal ideal of K(X7y,..., X,,—1).

o letp=Xt+a1 X1+ 4a, e K(Xy,..., X, 1)[Xn] bea
Weierstrass polynomial of degree k. Thus aq,...,a; € M’ holds.

Proposition 4

The following properties are equivalent
(i) k=0,

(71) pisaunitin K(X1,..., X,—1)[X,],

(731) pis a unit in K(Xq,..., X1, Xy).

Proof
@ The equivalence (i) <= (iii) is trivial.

@ The equivalence (i) <= (ii) follows from k = deg(p, X,),
1 =lc(p, X,,) and the fact that K(X1,..., X,_1) is integral.




Factorization Properties (2/9)

Proposition 5
Let f,9,h € K(Xy,...,X,—1)[Xy] be polynomials s. t. f = gh. Then
(7) if g, h are Weierstrass polynomials then so is f,

(71) if f is a Weierstrass polynomial, then there exist units
A€ (X, ..., Xp—1)s. t. Ag and ph are Weierstrass polynomials.

v

Proof

e Claim (1) is clear.

o To prove (ii), we write g = by X% +---+byand h = co X + -+ c.
We observe that cgbg = 1 holds. So we choose A = ¢g and p = by.

o W.lo.g. we assume ¢y = by = 1. Thus, each of the following power
series belongs to M’

beCm, becm—1 + bo—16m, becm—2 + by_1¢m—1 + bo—oCm, - . .

@ Since M’ is a prime ideal then each coefficient

bi,ba,...,bp,c1,c9, -, cm belong to M’




Factorization Properties (3/9)

Lemma 2

Let A be a commutative ring and let f = 3% ja,X*, g =% b; X" and
h= Z;”ZOCJ-Xj be polynomials s.t. ag, by, cg units of A and f = gh holds.
Let P be a prime ideal s.t. aq,...,ar € P Then, we have
bi,...,bp,c1,...,cm €P.

Proof (1/2)
o Consider a rectangular grid G where the points are indexed by the
Cartesian Product {0,...,¢} x {0,...,m}.

@ The point of G of coordinates (4, j) is mapped to b;c; such that the
sum of all points along a line ¢ + j = ¢ equal ay.

@ There exists at least one such “line” consisting of a unique point.
bz‘Cj.




Factorization Properties (4/9)

Proof (2/2)

@ If there is only one such point then, this is (0,0) and G reduces to
that point and we are done.

@ If there are two such points, then for one of them, either ¢ > 0 or
j > 0 holds. Consider a point of that latter type. Since P is prime,
either b; € P (provided i > 0) or ¢; € P (provided j > 0) holds.
W.l.o.g., assume b; € P and erase from G all points of the form
b;-something.

e If G is not empty, we go back two steps above.

@ It is not hard to see that this procedure will erase all rows
b1,bo,...,bp and all columns c1,co, ..., ¢y, which proves the lemma.




Factorization Properties (5/9)

Lemma 3
For the Weierstrass polynomial

p=XF4a X1+ ap e K(Xy,..., X, 1)[X,] the following
properties are equivalent

(1) pis irreducible in K(X1,..., X,—1)[Xx],
(27) p irreducible in K(X1,..., Xp—1, Xpn).

Proof of (i) = (i7) (1/2)

@ We proceed by contradiction. Assume that p reducible in
K(X1,...,Xpn-1,Xn).

e So let fi, fo € K(Xy,..., X1, X,) be non-units s. t. p = fi fo.

@ Since p is general in X, (thatis, p Z 0 mod M) we can assume
that both f1, fo are general in X,.

@ Applying the preparation theorem, we have f| = a1q1 and fo = aaqo,
where aq, ao are units and g1, g2 are Weierstrass polynomials.




Factorization Properties (6/9)

Proof of (i) = (ii) (2/2)

@ Thus, p = ajazqi1qe. Observe that ¢1gs is a Weierstrass polynomial.

@ Uniqueness from the preparation theorem implies e = 1 and
P = q1q2, which is a factorization of p in K(X1,..., X,_1)[X,].

@ Recall that we assume that p irreducible in K(X7,..., X, 1)[X,] and
that we aim at contradicting p reducible in K(X1, ..., X,—1, X,,).

@ So, one of the polynomials ¢; must be a unit in K(X1,..., X,,—1)[X}]
This would imply ¢; = 1, that is, f; = «;. A contradiction.

Proof of (i) = (i)
@ We assume that p irreducible in K(X1,..., X,,—1, X,) and proceeding
by contradiction, we assume p reducible in K(X1,..., X,—1)[X5].
Thus let p1,p2 € K(X,..., X,,—1)[X,] such that p = p1ps holds.

@ We know that p1, po are Weierstrass polynomials of positive degree.
Thus p is reducible in K(X7, ..., X,_1, X,,), a contradiction.




Factorization Properties (7/9)

Theorem 7
The ring K(X1,..., X,—1,X,) is a unique factorization domain (UFD).

v

Proof of the Theorem (1/3)

The proof is by induction on n.

For n = 0, this is clear since any field is a UFD.

By induction hypothesis, we assume that K(Xy,...,X,,_1) is a UFD.
It follows from Gauss Theorem that K(Xy,..., X,_1)[X,] is a UFD
as well.

Next, we show that every f € K(Xy,...,X,—1,Xy) has a
factorization into irreducibles, unique up to order and units.

We may assume that f is general in X,,. By the preparation theorem,
we have f = ap with o a unit and p € K(X1,..., X,,—1)[X,] a
Weierstrass polynomial.




Factorization Properties (8/9)

Proof of the Theorem (2/3)
@ Since K(X1,...,X,,—1)[X,] is a UFD, there is a factorization

bPp=p1-Dr
into irreducible elements, which is unique up to order, after p1,...,p:
have been normalized to be Weierstrass polynomials.
@ By the previous lemma,
f = apl te .p’l‘
is a factorization into irreducibles of K(X7,..., X,,_1, X,,).
o Let f = f1--- fs be another such factorization into irreducibles of
K(X1,...,Xn—1,Xn).
@ We apply the preparation theorem to f1,..., fs, leading to fi = a;q1,

..., fs = asqs, where oy, ..., a4 are units and ¢, ..., qs are
Weierstrass polynomials of positive degrees.




Factorization Properties (9/9)

Proof of the Theorem (3/3)
@ By uniqueness in the preparation theorem, we have
b1 -"Pr=4q1"""(s-
e Finally, since K(Xy,..., X, 1)[Xy] is a UFD, we deduce r = s and
{p1,-- ey ={ar, - g5}

Remarks

o Following the techniques of the above proof and using the preparation
theorem, one can prove that K(Xy,..., X)) is a Noetherian ring.

@ One can prove the preparation theorem in K[[ X1, ..., X,]] (instead of
K(X1,...,Xpn)).

@ As a result, the results of this section can also be established in
K[[X1,...,Xy]] (instead of K(X1,...,X,)).

@ In particular, one can prove that K[[X1,...,X,]] is a UFD.




Weierstrass preparation theorem for formal power series (1/8)

Lemma 4

Assume n > 2. Let f,g,h € K[[X1,..., X,—_1]] such that f = gh holds.
Let M be the maximal ideal of K[[X1,..., X,_1]]. We write
F=>720 firg=220 gi and h = > h;, where

fi, gir hi € M*\ M1 holds for all i > 0, with fo, go, ho € K. We note
that these decompositions are uniquely defined. Let » € N. We assume
that fo = 0 and hg # 0 both hold. Then the term g, is uniquely
determined by f1,..., fr, ho,..., hr—1.

Proof (1/2)
@ Since goho = fo = 0 and hg # 0 both hold, the claim is true for
r=0.
@ Now, let 7 > 0. By induction hypothesis, we can assume that
9o, - - -, gr—1 are uniquely determined by f1,..., fr—1,ho,. .., hr_o.

@ Observe that for determining g,, it suffices to expand f = gh modulo
ML




Weierstrass preparation theorem for formal power series (2/8)

Proof (2/2)

@ Modulo M1, we have

fitfot o+ fr =

@ The conclusion follows.

(g1 +92+-+g) ho+hi+-+h)
grho+
g2ho + g1h1+

grho + gr—1h1 4+ -+ g1hr—1




Weierstrass preparation theorem for formal power series (3/8)

Notations

@ Assume n > 1. Denote by A the ring K[[X7, ..., X,—_1]] and by M
be the maximal ideal of A.

o Note that n = 1 implies M = (0).
o Let f € A[[X,]], written as f = > a; X} with a; € A for all i € N.

v

Theorem 8
We assume f # 0 mod M[[X,]]. Then, there exists a unit v € A[[X,,]],
an integer d > 0 and a monic polynomial p € A[X,,] of degree d such that
we have
QO p= Xff—l—bd_ng_l + - 4+ b1 X, +bg, for some by_1,...,b1,bp € M,
@ f=ap

Further, this expression for f is unique.




Weierstrass preparation theorem for formal power series (4/8)

Proof (1/5)

Let d > 0 be the smallest integer such that ag € M. Clearly d exists
since we assume that f # 0 mod M[[X,]] holds.

If n =1, then writing f = aX? with a = 3%, a; 14X}, proves the
existence of the claimed decomposition.

From now on, we assume n > 2.

Let us write v = Y %0 ¢; X with ¢; € A for all i € N.

Since we require « to be a unit, we have ¢y € M. Note that ¢g is
also a unit modulo M.




Weierstrass preparation theorem for formal power series (5/8)

Proof (2/5)

We must solve for by_1,...,b1,b9,c0,¢1,...,¢4,...s. t. forall m >0 we
have
a bng
al boCl + blco
a2 boca + bier + bacy
ag—1 bocg—1 +bicgo+ -+ ---+bgoc1 +bg_100

aq
Ad+1

Qd+m

boca +brea—t + -+ -+ baorer + ¢
bocd+1 +bicg+ -4+ bag—1c2 + 1

bocdym + bicigrm—1 + -+ -+ bi—1Cmi1 + Cm




Weierstrass preparation theorem for formal power series (6/8)

Proof (3/5)

@ We will compute each of by_1,...,b1,b0,c0,c1,...,¢q,... modulo
each of the successive powers of M, that is, M, M2, ... . M", ...

@ We start by solving for each of bg_1,...,b1,b0,c0,C1,---,Cqy---
modulo M.

@ By definition of d, the left hand sides of the first d equations above
are all =0 mod M.

@ Since ¢g is a unit modulo M, these first d equations taken modulo
M imply that each of by, b1,...,b4_1 is =0 mod M.

o Plugging this into the remaining equations we obtain ¢, = ag+m
mod M, for all m > 0.

@ Therefore, we have solved for each of
bdfl, ey bl, b(], COsCly.--sCdy--- modulo M.




Weierstrass preparation theorem for formal power series (7/8)

Proof (4/5)
@ Let r > 0 be an integer. We assume that we have inductively

determined each of by_1,...,b1,bg,co,c1,...,¢q,... modulo each of
M, ..., M". We wish to determine them modulo M"*1.

o Consider the first equation, namely ag = bgcg, with ag, by, co € A.
Recall that ag € M and ¢y € M both hold. By assumption, by and
co are known modulo each of M, ..., M". In addition, ag is known
modulo each of M, ..., M", M"*1. Therefore, the previous lemma
applies and we can compute by modulo M"™ 1.

o Consider the second equation, that we re-write a1 — bgc1 = bicg. A
similar reasoning applies and we can compute b; modulo M1

@ Continuing in this manner, we can compute each of by, b1, ...,b4_1
modulo M™ ! using the first d equations.

o Finally, using the remaining equations determine ¢,, mod M", for all
m > 0.




Weierstrass preparation theorem for formal power series (8/8)

Proof (5/5)
@ The induction is complete, and the existence of a factorization of f as

claimed is proved.

@ The uniqueness is obvious, because d is uniquely determined by f,
and the unit « is uniquely determined as the coefficient of X2 in any
two such factorizations.

o Finally, equating the coefficients of X941 ..., X,,, XY in any two
such factorizations determine p uniquely.

Remark

@ The assumption of the theorem, namely f # 0 mod M][[X,,]], can
always be assumed. Indeed, one can reduce to this case by a suitable
linear change of coordinates.

@ From this Weierstrass preparation theorem for formal power series,
one can show that K[[X1,..., X,,—1]] is a UFD and a Noetherian ring.




Germs of curves (1/8)

Definition

Let D :={x = (z1,...,2,) € K" | |z;] < p;} be a polydisk and let
M C D. We say that M is a principal analytic set if there exists
feK(Xy,...,X,) that converges throughout D and satisfies

M =Vp(f) where Vp(f):={xze€D | f(x)=0}.

Given f, the set Vp(f) may be empty or not, depending on D.

Definition

Let D; and Dy be two polydisks of K”. Let M C Dy and My C D5 be
two principal analytic sets. We say that M7 and Ms are equivalent if there
exists a polydisk D C Dy N Dy such that we have

MiND = My N D.

An equivalence class of principal analytic sets is called a germ of a
principal analytic set, or, when n = 2, a germ of a curve.




Germs of curves (2/8)

Notation for a germ

Given two equivalent principal analytic sets M, = Vp, (f1) and
My = Vp,(f2) there exists a polydisk D such that we have

{CEEDl | fl(CL‘)ZO}ﬂD = {I‘GDQ | fz(x)IO}ﬂD

Therefore fi = f2 holds and we simply write V' (f) for the equivalent class
of My and M. Indeed, if the set of zeros of an analytic function f has an
accumulation point inside the domain of f, then f is zero everywhere on
the connected component containing the accumulation point.

The empty germ

It follows that V' (f) = () means that 0 & Vp(f) for any representative
Vb(f) € V(f). This implies f(0) # 0, that is, f is a unit in
K(Xi,...,Xn). The converse is clearly true, so we have

V(f)=0 < f#0 mod M.




Germs of curves (3/8)

Binary operations on germs

An inclusion V(f1) C V(f2) between two germs means that there exist

representatives Vp, (f1) € V(f1) and Vp,(f2) € V(f2) together with a
polydisk D C D; N D3y such that we have

Vp,(fi) N D C Vp,(f2) N D.
We define V(f1) N V(f2) and V(f1) U V(f2) similarly.

Proposition 6

e Forall f,g € K(Xq,...,X,) st f divides g, we have V(f) C V(g).

e Forall f, f1,...,fr e K(X1,...,Xy) st. f=f1--fr holds we have
V(f) =V(fi) U---UV(f)

v



Germs of curves (4/8)

Lemma (Study’s Lemma)

Let f,g € K(X1,...,X,) with f irreducible. If the germs V' (f),V(g)
satisfy V(f) € V(g) then f divides g in K(X71,...,X,,).

Proof of Study’s Lemma (1/3)

@ We proceed by induction on n.

@ The case n = 0 is trivial.

@ Next, by induction hypothesis, we assume that the lemma holds in
K(X1,...,Xn-1)

@ By definition of V(f) C V(g) and thanks to the preparation
theorem, we can assume that f, g are Weierstrass polynomials in
K(X1,...,Xn-1)[Xn]. Thus we have

f=Xr+ar Xty o vap g = X+ X5+ + by,
where k,/ > 1 and each of ay,...,ax, b1,...,by is zero modulo M’
where (as usual) M’ is the maximal ideal of K(X7,..., X, _1).




Germs of curves (5/8)

Proof of Study’s Lemma (2/3)

Since K(X1,...,X,_1) is a UFD, it follows from resultant theory
that f and g have a common divisor of positive degree ii and only if
the resultant res(f, g) is not zero.

Since f is also irreducible in K(X7,..., X,,_1)[X,], proving
res(f, g) # 0 would do what we need.

Let D = {z = (z1,...,2,) € K" | |z;] < py be a polydisk
throughout which f and g are convergent.

Define D' = {x = (1,...,7n_1) E K" 1 | |z5] < pi}.

For each 2/ € D', we denote by f,/ and g,/ the univariate polynomials
of K[X,,] obtained by specializing X1,...,X,,—1 to 2’ into f,g.

In particular, we have fo = X* and g = Xf;, SO

V(fo) = V(go) = {0}.




Germs of curves (6/8)

Proof of Study’s Lemma (3/3)

@ Since the roots of f,» and g, depends continuously on 2, one can
choose the polydisk D = {x = (21,...,2,) € K" | |z;| < p;} (and
thus D’) such that for all 2’ € D’ each root z;, of f,» and g, satisfies
[Zn| < pn.-

@ For the same continuity argument, and since V(f) CV
polydisk D can be further refined such that V(f,/) CV
all 2’ € D'.

@ Hence, for all 2’ € D', the univariate polynomials f,, and g,/ have a
common prime factor, that is, res(f,/, g»») = 0.

(g) holds, the
(g2) holds for

@ Finally, using the specialization property of the resultant, we conclude
that res(f, g)(«’) = 0 holds for all 2/ € D',

.




Germs of curves (7/8)

Definition

A germ of a principal analytic set V(f) is called reducible if there exist two
germs of a principal analytic set V(f1) and V(f3) such that we have

V() =V(fi) UV(f), V(1) #0, V(f2) # 0 and V(f1) # V(f2).
Otherwise, V(f) is called irreducible.

Lemma 5

A germ of a principal analytic set V(f) is irreducible if and only if there
exists g € K(X1,...,X,,) and k € N* such that f = g* holds.

Theorem 9

Let V(f) be a germ of a principal analytic set. Then, V(f) admits a
decomposition

V() =V(fi)U--UV(f)

where V(f1),...,V(f.) are irreducible. This decomposition is unique up
to the order in which the components appear.




Germs of curves (8/8)

Definition

We call a series f € K(X1,...,X,) minimal if every prime factor f; of f
occurs only once, thatis, f = f1--- fi.

@ Then, for a curve (that is n = 2) the sets V(f1),...,V(f) are called
the branch of the curve at the origin.

@ This notion can be translated at any point of the curve by an
appropriate change of coordinates.

e If f is minimal, we call

Ord(V(f)) = ord(f)

the order of the germ.
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