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Hardware acceleration technologies (multicore processors, graphics processing units (GPUs), field-
programmable gate arrays) provide vast opportunities for innovation in scientific computing. For tasks
involving well-structured communication patterns, general-purpose computation on graphics hardware
now allows several types of calculations (simulation, stock exchange data analysis, etc.) to satisfy the
constraints of real time computing.

This proposal aims at developing techniques that will permit mathematical software to take great
advantage of hardware acceleration technologies. Our focus is on heterogeneous GPU-multicore ar-
chitectures and their support for polynomial system solvers based on symbolic computation for which
specific features (intermediate expression swell, irregular data patterns, all of which leading to less
structured and predictable communication requirements) make this proposal even more challenging.

1 Recent Progress
SOLVING SYSTEMS OF NON-LINEAR, ALGEBRAIC OR DIFFERENTIAL POLYNOMIAL EQUATIONS, is
a fundamental problem in mathematical sciences. It has been studied for centuries and still stimulates
many research developments. Today, it is a driving subject for the area of symbolic computation,
also known as computer algebra. In each of the major computer algebra software packages (AXIOM,
MAGMA, MAPLE, MATHEMATICA, REDUCE, etc.) various commands aim at solving all types of
systems of equations relevant to symbolic computation. These symbolic solvers are powerful tools in
scientific computing: they are well suited for problems where the desired output must be exact and they
have been applied successfully in mathematics, physics, engineering, chemistry and education, with
important outcomes. See Chapter 3 in [21] for an overview of these applications. While the existing
computer algebra software packages have met with some practical success, symbolic computation is
still under-utilized in areas like mathematical modeling and computer simulation. Part of this is due
to the fact that much more complex computations are required - often beyond the scope of existing
software. The implementation of symbolic solvers is, indeed, an extremely difficult task and requires
techniques going far beyond the algebraic manipulation of equations; these include efficient memory
management and parallel processing. The present proposal deals precisely with these latter aspects,

IN LESS THAN A DECADE, multicore and GPU architectures have brought respectively paral-
lelism and supercomputing to the masses. Several areas of scientific computing (numerical linear
algebra [15, 30], digital signal processing [20, 36, 46], etc.) have capitalized on this technological
revolution. The commercialized software MATLAB (specialized in numerical linear algebra) with its
Parallel Computing Toolbox [1] provides programming support, including library functions, that takes
advantage of GPUs. This contrasts sharply with the state of affairs in symbolic computation. In fact,
the use of GPUs in a major computer algebra like MAPLE is very limited. Nevertheless, a few research
articles have been published on the subject: most of them are in the proceedings of PASCO’07 [40]
and PASCO’10 [39], both of which I co-organized.

THE RESULTS OF MY CURRENT DISCOVERY GRANT, as planned, have substantially contributed
to the interaction between high-performance computing and computer algebra. First, we have designed
fast algorithms (mainly low-level routines) in support of polynomial system solvers [32] together with
publicly available software packages implementing those algorithms [33]. Secondly, we have obtained,
for those algorithms, efficient parallel counterparts, with multicore implementation [44, 43]. We have
also investigated other implementation techniques, such as code generation [35] and code optimization
for data locality [24, 31]. Thirdly, we have improved high-level algorithms of polynomial system
solvers [11, 9]. As a result, the solve command of MAPLE relies today on those algorithms and their
implementation realized in my research group. We have reported applications of those solvers to the
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study of dynamical systems [10] and program verification [41].
WE HAVE ALSO OBTAINED UNANTICIPATED RESULTS, which are major tools for reaching high-

performance. My research group has investigated implementation techniques on GPUs for various
fundamental algorithms in symbolic computation: dense polynomial multiplication [37], the Euclidean
Algorithm [23], dense linear algebra [22] and bivariate polynomial system solving [38]. This latter
paper is a first step towards one of our objectives: developing polynomial system solvers capable of
harvesting the horsepower of hardware acceleration technologies, in particular GPUs.

AT THE END OF THIS FIVE-YEAR CYCLE, it became clear that multicores alone were not able to
support the parallelization of polynomial system solvers. Indeed, on multicore architectures, schedul-
ing costs are often a performance bottleneck on problems of small or average size, while those prob-
lems often occur as subproblems when solving polynomial systems. In fact, arithmetic operations on
polynomials have many opportunities for highly-threaded fine-grained parallelism which make them
more suitable for GPUs. I believe that the combination of GPUs (typically for dense polynomial arith-
metic) and multicores (typically for sparse polynomial arithmetic and high-level algorithms) is the right
platform to advance the efficiency of polynomial system solvers. This claim is supported by the pre-
liminary results obtained with our GPU-based bivariate solver [38] and the cumodp library [37, 23].

2 Objectives
Computer algebraists have utilized GPUs to perform low-level routines, namely arithmetic operations
on polynomials and matrices, with the most sophisticated level being bivariate system solving [5, 38].
In fact, bivariate system solving can be cast into the category of kernels for polynomials and matrices
since solving a bivariate system reduces to solving a linear system thanks to subresultant theory [50].

In geometrical terms, solving a bivariate system typically means describing the intersection of two
planar curves while solving a system in three variables typically means describing the intersection of
three space surfaces. Clearly this latter problem is much more complex than the former. In particular,
scheduling computer resources (usage of processors and memory) for solving a bivariate system can
essentially be done with the simple knowledge of the size of the input system (see [38]), thus statically.
In contrast, a complete algorithmic solution for solving a trivariate system will necessarily allocate
computer resources dynamically, due to the large variety of possible geometrical configurations.

Since implementing an application on GPU implies a decomposition of this application into a
series of kernel calls, most of the scheduling is done statically. Therefore, solving polynomial systems
in three or more variables on GPUs is an algorithmic challenge. Other features of GPU programming
(efficiently utilizing the large number of cores, managing the number of registers and amount of on-
chip memory, hiding global memory latency) make this task even more difficult. At the same time, this
task is a very attractive challenge since there is great hope that GPUs can allow symbolic solvers to
meet the constraints of real-time computing for many polynomial systems of practical interest.

These observations lead us to propose the first two projects below. The motivation of the third
one is twofold. First, it deals with classical applications of symbolic computation that more efficient
solvers will make successful. Secondly, it deals with program parallelization and program verification
which are important aspects of the other two projects.

In the sequel of this proposal, when discussing the programming, execution or memory models
of GPUs, we will use the terminology (kernel, thread block, streaming multi-processor, etc.) of the
Compute Unified Device Architecture (CUDA) [45]. By manycore, we mean either a GPU device or
the integration of a multicore processor with GPU devices (thus sharing memory). To emphasize the
latter case, we freely use the adjectives hybrid and heterogeneous.
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Project 1: A hybrid manycore computing model for symbolic computation. In the fork-join mul-
tithreaded programming model [6], work, span and cache complexity are well-understood complexity
measures for concurrent algorithms. However, capturing analytically the parallelism overheads (e.g.
scheduling costs) that a concurrency platform imposes on an executing program is a crucial question
which has received little attention in the literature. The objective of our first project is to develop
analytic tools for estimating parallelism overheads of algorithms targeting standard concurrency plat-
forms on multicore and manycore architectures. These tools will help with the type of static scheduling
required by the implementation of high-level algorithms on GPUs, such as those of Project 2.

Project 2: Solving polynomial systems on GPUs. The objective of our second project is to deliver
algorithms and code for polynomial system solvers that would perform all intensive computations on
the device (GPU) while the host (CPU) would only execute the top-level algorithms. Ultimately, those
solvers are aimed to exploit heterogeneous and distributed architectures.

Project 3: Program analysis. Two important application areas of symbolic computations are com-
puter program optimization and computer program verification. Techniques like quantifier elimination
(for instance, via the Fourier-Motzkin Algorithm in the linear case or via cylindrical algebraic decom-
position in the non-linear case) can support program transformation (like automatic parallelization)
and generation of polynomial loop invariants. Within the computer algebra system MAPLE, we have
initiated a framework, called ProgramAnalysis, targeting those operations. The objective of our
third project is to extend the functionality and improve the performance of this framework. We will
support non-linear parameters in the polyhedron model for program transformation (a clear need for
supporting GPU code) and treat them with advanced quantifier elimination techniques based on tri-
angular decompositions of semi-algebraic systems. On the program verification front, we will design
efficient algorithms (based on sparse interpolation) for generating equation and inequality invariants.
Last but not least, the ProgramAnalysis framework will be boosted by the GPU support obtained
by Project 2, while Project 2 will provide test cases for ProgramAnalysis. In the sequel of this
proposal, we focus on the automatic parallelization side of this project. However, a work plan for its
component on program verification, based on our papers [42, 41], appears in the Budget Justification.

3 Literature Review
In addition to the above references, we list other works which have inspired this proposal.

Project 1: A hybrid manycore computing model for symbolic computation. Several papers
present models for analyzing and improving the performances (w.r.t. memory access [19] or hardware
resource management [47]) of the GPU implementation of a given algorithm. As discussed below, our
first project brings performance analysis to a more abstract level as it aims at comparing algorithmic
solutions for a given operation on an abstract hybrid manycore machine. Moreover, as it takes into
account the heterogeneity of GPU-multicore architectures, our model is also closer to today’s main-
stream computer hardware than the PRAM model [29, 18] and systolic array model [48]. Since our
model deals with algorithm analysis, it is more abstract than the OpenCL [49] programming model.

Project 2: Solving polynomial systems on GPUs. A few solvers based on numerical methods have
been implemented on GPUs: see [51] for linear systems and [34] for non-linear ones. Numerical and
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symbolic methods share many ideas: GPU implementation techniques of Fast Fourier Transforms, like
the Stockham Algorithm, are an example; see [36] for the numerical case and [37] for the symbolic
one. Numerical and symbolic approaches have also their specific challenges: numerical instability
and intermediate expression swell, respectively. Symbolic solvers address this latter issue by means of
the so-called modular methods, which reduce computations with bignum arithmetic to computations
over finite fields, thus in fixed precision. Our paper [14] subscribes to this approach and we rely
on it for this project. Symbolic solvers may have different output specifications; we use triangular
decompositions, which are built on the mathematical notion of a regular chain [28]. Regular chains
have attractive properties. In particular, each regular chain is a compact encoding of the solutions it
represents; moreover its size can be sharply estimated [13], which is crucial in the design of efficient
modular methods. Finally, our algorithm [11] computes triangular decompositions incrementally, that
is, by solving one input equation after another. This feature plays a key role as explained below.

Project 3: Program analysis. The polyhedron model [16, 27, 3, 7, 2] is a powerful geometrical
tool for analyzing the relation (w.r.t. data locality or parallelization) of the iterations of nested loop
programs. Let us consider the case of parallelization. Once the polyhedron representing the iteration
space of a loop nest is calculated, techniques of linear algebra and linear programming, can transform
it into another polyhedron encoding the loop steps in a coordinate system based on time and space
(processors). From there, a parallel program can be generated. To be practically efficient, one should
avoid a too fine-grained parallelization; this is achieved by grouping loop steps into so-called tiles,
which are generally trapezoids [26]. It is also desirable for the generated code to depend on parameters
such as number of processors, cache sizes, etc. These extensions lead, however, to the manipulation
of system of non-linear polynomial equations and the use of techniques like quantifier elimination,
see [4]. Our project aims at advancing these techniques and the extensions of the polyhedron model.

4 Methodology
For each of the projects, we highlight a few techniques which are representative of this proposal.

Project 1: A hybrid manycore computing model for symbolic computation. In order to support
GPU-multicore architectures, we consider an abstract machine with two types of processors: stream-
ing multiprocessors (SMPs) and fast single-thread cores (FSTCs), both unlimited in numbers and all
sharing an unlimited global memory. Each SMP can execute one SIMD (Single instruction, multiple
data) program, with a fixed number of threads. Each FSTC has a cache memory and each SMP has
a local memory, both types of memory having a finite size. We modify the fork-join multithreaded
parallelism model [6] as follows. In the directed acyclic graph (DAG) representing the execution of a
multithreaded program, we allow each node to be either a sequence of serial instructions running on
one FSTC or a kernel call running on the SMPs. All thread blocks of a given kernel call start simulta-
neously and run concurrently on the SMPs. Moreover, data transfer between global memory and local
memories occur only at the beginning and at the end of the execution of a thread block. Work and span
are defined similarly to the fork-join parallelism model. Extending the ideas of [25] we call burden
(overhead) a migration cost either due to a fork statement or due to a kernel call. Then, we define the
burdened span as in [25], that is, the maximum length (burden) of a path in the burdened DAG.

We described a preliminary version of this model in [23] and applied it to the Euclidean Algorithm
for computing polynomial greatest common divisors (GCDs). In this model, the GCD of two polyno-
mials of degree n can be computed in time O(n), with work O(n2), as in the systolic array model [8].
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In addition, our implementation minimizes the burdened span such that we verified this linear time
experimentally, for n ≤ 10, 000. Of course, this latter value is hardware dependent.

Several enhancements of this model are planned. For instance integrating cache memory consid-
erations, thus extending the work of [17]. Another goal of this project is to revisit the fundamental
algorithms in computer algebra [50] within this manycore computing model. The ultimate goal is
to optimize those algorithms for implementation on manycore architectures. One way to do this is
via data reshaping, see [44], that is, by mapping the input data set to another data set depending on
a parameter, say s, and then choosing s such that it optimizes a complexity measure, like burdened
parallelism. Clearly this goal is related to the component on automatic parallelization of Project 3.

Project 2: Solving polynomial systems on GPUs. As mentioned before, the challenge of this
project is to select a solving algorithm which is suitable for GPU implementation. Ideally, the exe-
cution of such an algorithm should decompose into a series of steps, each of which to be efficiently
performed on the device. To this end, each step must have sufficient work and offer opportunities for
an SIMD parallelization. One should also be able to sharply estimate the minimum amount of memory
which is necessary to perform that step. Indeed, the memory space required by a kernel call should
be allocated before this kernel starts to execute. We argue in the following that our incremental algo-
rithm [11] has the desired properties. If f1 = 0, . . . , fm = 0 are the input equations and if, for some
1 ≤ i < m, the system consisting of the equations f1 = 0, . . . , fi = 0 has already been solved produc-
ing output solution components C1, . . . , Ce, then the incremented system f1 = 0, . . . , fi = 0, fi+1 = 0
is solved by applying a procedure called Intersect to each pair (fi+1, C1), . . . , (fi+1, Ce). Generically,
if the polynomials f1, . . . , fm have n variables, then performing the call Intersect(fi+1, Cj) is done
by executing at most n − 1 times a procedure which is essentially that of our GPU-based bivariate
solver [38]. Therefore, we claim that our algorithm [11] is suitable for a GPU implementation, when
coefficients are in a finite field. As mentioned, we will follow the modular method of [14]. Thus, other
operations must receive GPU support in order to obtain the real solutions of an input system with ratio-
nal number coefficients. These operations are Hensel lifting (for regular chains) and real root isolation,
for which GPU-suitable algorithmic solutions exist.

Project 3: Program analysis. As noticed before, the use of techniques from polynomial algebra, in
particular quantifier elimination (QE), is becoming an important research direction in automatic par-
allelization. The Authors of [4] observe, however, that classical algorithms for quantifier elimination
are not suitable, since they do not always produce conjunctions of atomic formulas, while this format
is required in order to generate code automatically. This issue is addressed by our recent algorithm for
computing cylindrical algebraic decomposition [12]. Indeed, this algorithm supports QE in a way that
the output of a QE problem has the form of a case discussion: this is appropriate for code generation.

5 Summary and Impact
We will design and deliver high-performance computing tools (model, algorithms, software packages)
for solving polynomial systems symbolically on heterogeneous GPU-multicore architectures. We will
apply these tools to program verification and automatic parallelization. The interaction between our
core project and these applications will bring overall efficiency and robustness. I believe that the tech-
nology and software generated by this project will be major advances in symbolic computation. They
will also provide high-performance scientific computing tools capable of tackling problems for which
no software solutions exist today. The proposed research has clear potential for industrial applications.
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