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The ring of Puiseux series (1/9)

Definition

For m ≥ 1, there is an injective homomorphism

C[[X]]→ C[[T ]], X 7→ Tm.

We regard this as a ring extension

C[[X]] ⊆ C[[T ]] ≡ C[[X
1
m ]]

If m = kn, there are injections

C[[X]]→ C[[T ]]→ C[[S]],
X 7→ Tn. T 7→ Sk,
X 7→ (Sk)n = Sm.

which can be regarded as inclusions

C[[X]] ⊆ C[[X
1
n ]] ⊆ C[[X

1
m ]].

Continuing in this way, we define

C[[X∗]] =
⋃∞

n=1 C[[X
1
n ]].

This is an integral domain that contains all formal Puiseux series.



The ring of Puiseux series (2/9)

Definition

For a fixed ϕ ∈ C[[X∗]], there is an n ∈ N such that ϕ ∈ C[[X
1
n ]]. Hence

ϕ =
∑∞

m=0 amX
m
n , where am ∈ C.

and we call order of ϕ the rational number defined by

ord(ϕ) = min{mn | am 6= 0} ≥ 0.



The ring of Puiseux series (3/9)

Notation

We denote by C((X∗)) the quotient field of C[[X∗]].

Definition

Let ϕ ∈ C[[X∗]] and n ∈ N minimum with the property that ϕ ∈ C[[X
1
n ]]

holds. We say that the Puiseux series ϕ is convergent if we have
ϕ ∈ C〈X〉. Convergent Puiseux series form an integral domain denoted by
C〈X∗〉 and whose quotient field is denoted by C(〈X∗〉).



The ring of Puiseux series (4/9)

Proposition

For every element ϕ ∈ ((X∗)), there exist n ∈ Z, r ∈ N>0 and a sequence
of complex numbers an, an+1, an+2, . . . such that

ϕ =
∑∞

m=n amX
m
r and an 6= 0.

and we define ord(ϕ) = n
r .

Proof

The proof, easy, uses power series inversion.



The ring of Puiseux series (5/9)

Remark

Formal Puiseux series can be defined over an arbitrary field K.

One essential property of Puiseux series is expressed by the following
theorem, attributed to Puiseux for K = C but which was implicit in
Newton’s use of the Newton polygon as early as 1671 and therefore
known either as Puiseux’s theorem or as the NewtonPuiseux theorem.

In its modern version, this theorem requires only K to be algebraically
closed and of characteristic zero. See corollary 13.15 in D. Eisenbud’s
Commutative Algebra with a View Toward Algebraic Geometry.



The ring of Puiseux series (6/9)

Theorem (Nowak’s formulation of Puiseux’ Theorem)

If K is an algebraically closed field of characteristic zero, then the field
K((X∗)) of formal Puiseux series over K is the algebraic closure of the
field of formal Laurent series over K. Moreover, if K = C, then the field
C(〈X∗〉) of convergent Puiseux series over C is algebraically closed as well.

Proof of the Theorem (1/3)

We restrict the proof to the case K = C. Hence, we prove that
C((X∗)) and C(〈X∗〉) are algebraically closed. We follow the elegant
and short proof of K. J. Nowak which relies only on Hensel’s lemma.

It suffices to prove that any monic polynomial f ∈ C((X∗))[Y ] (resp.
f ∈ C(〈X∗〉)[Y ])

f(X,Y ) = Y n + a1(X)Y n−1 + · · ·+ an(X)

of degree n > 1 is reducible.



The ring of Puiseux series (7/9)

Proof of the Theorem (2/3)

Making use of Tschirnhausen transformation Ỹ = Y − 1
na1(X), we

can assume that the coefficient a1(X) is identically zero. W.l.o.g., we
assume an(X) not identically zero.

For each k = 1, . . . , n, define rk = ord(ak(X)) ∈ Q, unless ak is
identically zero.

Define r := min{rk/k}. Obviously, we have rk/k − r ≥ 0, with
equality for at least one k.

Take a positive integer q so large that all Puiseux series ak(X) are of
the form fk(X1/q) for fk ∈ C[[Z]] (resp. fk ∈ C〈Z〉). Let r := p/q
for an appropriate p ∈ Z.

After the transformation of variables X = wq, Y = U · wp, we get

f(X,Y ) = wnp ·Q(w,U), where

Q(w,U) = Un+b2(w)Un−2+ · · ·+bn(w) and bk(w) = ak(wq)w−kp.



The ring of Puiseux series (8/9)

Proof of the Theorem (3/3)

Observe that ord(bk(w)) ∈ Z and satisfies in fact

ord(bk(w)) = q · rk − k · p = q · k(rk/k − r) ≥ 0.

Therefore Q(w,U) is a polynomial in C[[w]][U ] (resp. C〈w〉[U ]).

Furthermore we have ord(bk(w)) = 0 for at least one k. Thus, for
every such k, we have bk(0) 6= 0.

Therefore, the complex polynomial

Q(0, U) = Un + b2(0)Un−2 + · · ·+ bn(0) 6≡ (U − c)n

for any c ∈ C.

Hence, Q(0, U) is the product of two coprime polynomials in C[U ].

By Hensel’s lemma, Q(w,U) is the product of two polynomials
Q1(w,U) and Q2(w,U) in C[[w]][U ] (resp. C〈w〉[U ]).

Finally, we have

f(X,Y ) = Xnr ·Q1(X
1/q, X−rY ) ·Q2(X

1/q, X−rY ).



The ring of Puiseux series (9/9)

Remark

Nowak’s formulation of Puiseux’ Theorem yields an algorithm
provided that for each coefficient a1(X), . . . , an(X), one can
compute its order. This is the case if each of a1(X), . . . , an(X) is a
rational function in X.

Since the input polynomial f belongs to C((X∗))[Y ], we can always
reduce to the case where f is monic provided that the leading
coefficient a0(X) is also a rational function in X.

Because Nowak’s algorithm makes two recursive calls on polynomial
of Y -degrees n1 and n2, with n1 + n2 = n, it is easy to check that
the main cost is the “first” call to Hensel’s lemma. Therefore, the
cost of Nowak’s algorithm is essentially that of Hensel’s lemma.

Corollary

Every monic polynomial of C〈X〉[Y ] splits into linear factors in C[[X∗]][Y ].



Implicit function theorem and local parametrization

Definition

Let f ∈ K〈X,Y 〉 be minimal, with f(0, 0) = 0. The branch V (f) is called
smooth if we have

gradf :=

(
∂f

∂X
(0),

∂f

∂Y
(0)

)
6= (0, 0).

Remark

If ∂f/∂Y 6= 0, the implicit function theorem gives us a local
parametrization x 7→ Φ(x) = (x, ϕ(x)) of V (f). That is, there exists a
convergent power series ϕ ∈ K〈X〉 such that f(x, ϕ(x)) = 0 holds in a
neighborhood of the origin.



Motivating the notion of Puiseux series

Example

Let f := X3 − Y 2. The implicit function theorem does not apply to f .
However, there is a parametrization:

t 7→ Φ(t) = (t2, ϕ(t)), where ϕ(t) = t3.

Setting t = x1/2, we obtain a parametrization of the cuspidal cubic with
fractional exponents

x 7→
(
x, x

3
2

)
.

Remark

We will show that locally any branch of a curve has a parametrization of
the form

t 7→ (tn, ϕ(t)) or x 7→
(
x, ϕ(x

1
n )
)
,

for some power series ϕ ∈ C〈T 〉. Such ϕ are called Puiseux Series.



Theorem on Puiseux Series

Definition

Let f(X,Y ) ∈ C[[X,Y ]] be with f(0, 0) = 0. A pair (ϕ1, ϕ2) of series in
C[[T ]] is called a formal parametrization of f if we have:

1 (ϕ1, ϕ2) 6= (0, 0),
2 ϕ1(0) = ϕ2(0) = 0 and
3 f(ϕ1(T ), ϕ2(T )) = 0 holds in C[[T ]].

Here, the substitution is the sense of power series composition.

Puiseux’s Theorem (algebraic version)

Let the series f ∈ C[[X,Y ]] be general in Y of order k ≥ 1. Then there
exists a natural number n ≥ 1 and ϕ ∈ C[[T ]] such that ϕ(0) = 0 and
f(Tn, ϕ(T )) = 0 hold in C[[T ]]. Moreover, if f is convergent, then so is ϕ.

Proof (skipping the “Moreover”)

We apply Weierstrass Preparation Theorem so as to reduce to the case
where f is a monic polynomial in Y .
We apply Nowak’s formulation of Puiseux’ Theorem,



Proving convergence of the power series in Puiseux Theorem

Remark

In the special case of the implicit function theorem, the convergence
of ϕ can be derived easily from convergence of f , as a corollary of
Weierstrass Preparation Theorem.

The general case is more complicated.

Remark

The proof (to be presented hereafter) combines

methods from complex analysis and topology to prove the existence
of sufficiently many “convergent solutions”, and

an algebraic trick to show that the formally constructed series is equal
to one of the convergent solutions.

Thus ϕ must be convergent.



Discriminant (recall)

Notation

Let A be a commutative ring and f ∈ A[Y ] a non-constant polynomial.
We denote by Df the discriminant of f .

Proposition

Let U ⊂ C be a domain, let A := O(U) be the ring of holomorphic
functions in U . For f ∈ A[Y ] monic and x ∈ U , we write

fx := Y k + a1(x)Y k−1 + · · ·+ ak(x) ∈ C[Y ].

Then fx has a multiple root in C if and only if Df (x) = 0 holds.

Proof

By the specialization property of resultants, we have Df (x) = Dfx .

Then, the assertion follows from definition of discriminants of Dfx .



Geometric Version of Puiseux’s Theorem

Puiseuxs Theorem (geometric version)

Let f(X,Y ) = Y k + a1(X)Y k−1 + · · ·+ ak(X) ∈ C〈X〉[Y ], k ≥ 1 be an
irreducible Weierstrass polynomial. (Note that f could have irreducible
factors that are not Weierstrass polynomials.) Let ρ > 0 be chosen such
that

a) a1, . . . , ak converge in U := {x ∈ C | |x| < ρ},
b) Df (x) 6= 0 in U∗ := U \ {0}.

Furthermore, let

V := {t ∈ C | |t| < ρ
1
k },

C := {(x, y) ∈ U × C : f(x, y) = 0}.

Then, there exists a series ϕ ∈ C〈T 〉 that converges in V and has the
following properties:

i) we have f(tk, ϕ(t)) = 0 for all t ∈ V ;

ii) the map Φ : V → C, t 7→ (tk, ϕ(t)), is bijective.



Illustration of the geometric version Puiseux’s Theorem

The situation for k = 3 and ρ = 1 is illustrated in the following sketch.
Only the real component of the Y -direction is drawn.

pk : V → U is given by t 7→ tk,
π : U × C→ U , (x, y) 7→ x, is projection.



Factoring Weierstrass polynomials (1/3)

Notations and hypotheses (recall)

Let f = Y k + a1(X)Y n−1 + · · ·+ ak(X) ∈ C〈X〉[Y ] be an
irreducible Weierstrass polynomial, with degree k ≥ 1.

Let ρ > 0 be chosen such that the series a1, . . . , ak converge in the
open set U := {x ∈ C | |x| < ρ}.
The discriminant discrim(f, Y )(x) is not zero for all x ∈ U \ {0}.
Let V := {t ∈ C | |t| < ρ

1
k }.

Let C := {(x, y) ∈ U × C | f(x, y) = 0}.
From the geometric version of Puiseux’s theorem, there exists a power
series φ ∈ C〈T 〉 that converges in V and has the following properties:

1 for all t ∈ V , we have f(tk, φ(t)) = 0,
2 Ψ : V → C, t 7−→ (tk, φ(t)) is bijective.



Factoring Weierstrass polynomials (2/3)

Proposition

Let ζ = exp(2πı/k) be a k-th primitive root of unity. For all i = 1, . . . , k,
we define

ϕi = ϕ(ζit) and Φi := (tk, ϕi(t))

Then, Φ1, . . . ,Φk are distinct parametrizations of C, that is, the series
ϕ1, . . . , ϕk are distinct.

Proof

The maps V → V, t 7−→ ζit are bijective. Moreover, they are distinct.

Hence, the bijective maps Φ1, . . . ,Φk are distinct.

Remark

From a geometric point of view, the maps Φ1, . . . ,Φk differ from each
other by permutations of the sheets of the covering map π∗ : C∗ → U∗.
Thus, the roots of unity act as “covering transformations”.



Factoring Weierstrass polynomials (3/3)

Remark

The parametrizations ϕ1, . . . , ϕk can be used to extend each factorization

fx(Y ) = (Y − c1) · · · (Y − cn), where ci ∈ C

for x ∈ U \ {0}, to the entire U .

Corollary

Let (T k, ϕ(T )) be a parametrization given by the geometric version of
Puiseux’s theorem. Let ζ, ϕ1, . . . , ϕk be as in the previous proposition.
Then, the following holds in C〈T 〉[Y ]

f(T k, Y ) = (Y − ϕ1(T )) · · · (Y − ϕk(T )).

Proof

Each of ϕ1, . . . , ϕk is a distinct root in C〈T 〉 of the polynomial
f(T k, Y ) ∈ C〈T 〉[Y ].



Complement on the algebraic version Puiseux’s theorem (1/3)

Notations

Let f ∈ C〈X,Y 〉 be general in Y .

Let n ∈ N and ϕ(S) ∈ C[[S]] be defining a solution to the algebraic
version Puiseux’s theorem, that is, f(Sn, ϕ(S)) = 0 holds in C[[S]].

By the preparation theorem, there exist a unit α ∈ 〈X,Y 〉 and
irreducible Weierstrass polynomials p1, . . . , pr ∈ C〈X〉[Y ] so that
f = αp1 · · · pr

Observations

Since α(Sn, ϕ(S)) 6= 0, there exists j ∈ {1, . . . , r} such that
pj(S

n, ϕ(S)) = 0 holds.

Therefore, w.l.o.g. one can assume that f is an irreducible Weierstrass
polynomial of C〈X〉[Y ] of degree k and of which ϕ is a formal
solution in the sense of the algebraic version Puiseux’s theorem.



Complement on the algebraic version Puiseux’s theorem (2/3)

Observations

From the previous corollary, there exist ϕ1, . . . , ϕk ∈ C〈T 〉 such that
we have in C〈T 〉[Y ]

f(T k, Y ) = (Y − ϕ1(T )) · · · (Y − ϕk(T )).

In the algebraic of version Puiseux’s theorem, the denominator n can
be as large as desired. Thus we can assume n = `k, for some `.

Therefore, we have in C[[S]][Y ]

f(Sn, Y ) = (Y − ϕ1(S
`)) · · · (Y − ϕk(S`)).

Since ϕ ∈ C[[S]] is also a zero of f(Sn, Y ) and since C[[S]][Y ] is an
integral domain, we have ϕi = ϕ, for some i. Hence ϕ is convergent.

Corollary

If f ∈ C〈X,Y 〉 is an irreducible power series, general in Y of order k, then
there exists a convergent power series φ ∈ C〈T 〉 such that
f(T k, φ(T )) = 0 holds in C〈T 〉.



Complement on the algebraic version Puiseux’s theorem (3/3)

Corollary

If f ∈ C〈X,Y 〉 is irreducible in C〈X,Y 〉, then it is also irreducible in
C[[X,Y ]]. (Thus, for power series, there is no change in the divisibility
theory in passing from convergent to formal power series.)

Proof of the corollary

We may assume that f is a Weierstrass polynomial of degree k.

Since it is irreducible in C〈X,Y 〉, the geometric version of Puiseux’s
theorem applies. Thus, there exist convergent power series ϕ1, . . . , ϕk

such that we have

f(T k, Y ) = (Y − ϕ1(T )) · · · (Y − ϕk(T )).

Since each factor on the right hand side of the above equality belongs
to C〈X,Y 〉 and since C[[X,Y ]] is a unique factorization domain, it
follows that all possible formal factor of f are necessarily convergent
power series. This yields the conclusion.
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