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ABSTRACT
A quantifier elimination algorithm by cylindrical algebraic
decomposition based on regular chains is presented. The
main idea is to refine a complex cylindrical tree until the
signs of polynomials appearing in the tree are sufficient to
distinguish the true and false cells. We report on an imple-
mentation of our algorithm in the RegularChains library in
Maple and illustrate its effectiveness by examples.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—Algebraic algorithms, Analysis of algorithms

General Terms
Algorithms, Experimentation, Theory

Keywords
quantifier elimination, cylindrical algebraic decomposition;
regular chains; triangular decomposition

1. INTRODUCTION
Quantifier elimination over real closed fields (QE) has

been applied successfully to many areas in mathematical sci-
ences and engineering. The following text books and journal
special issues [18, 12, 6, 3] demonstrate that QE is one of
the major applications of symbolic computation.

It is well known that the worst-case running time for real
quantifier elimination is doubly exponential in the number
of variables of the input formula, even if there is only one
free variable and all polynomials in the quantified input are
linear, see the paper [5]. It is also well-known that QE based
on Cylindrical Algebraic Decomposition (CAD) has a worst-
case doubly exponential running time, even when the num-
ber of quantifier alternations is constant, meanwhile other
QE algorithms are only doubly exponential in the number
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of quantifier alternations [20, 2]. Despite of these theoret-
ical results, the practical efficiency and the range of the
applications of CAD-based QE have kept improving regu-
larly since Collins’ landmark paper [10]. Today, CAD-based
QE is available to scientists and engineers thanks to differ-
ent software namely QEPCAD1, Mathematica2, REDLOG3,
SyNRAC4, RegularChains5.

In [9], together with B. Xia and L. Yang, we presented
a different way of computing CADs, based on triangular
decomposition of polynomial systems. Our scheme relies
on the concept of cylindrical decomposition of the complex
space (CCD), from which a CAD can be easily derived. Since
regular chains theory is at center of this new scheme, we call
it RC-CAD. Meanwhile, we shall denote by PL-CAD Collins’
projection-lifting scheme for CAD construction.

In [8], we substantially improved the practical efficiency of
the RC-CAD scheme by means of an incremental algorithm
for computing CADs; an implementation of this new algo-
rithm, realized within the RegularChains library, outper-
forms PL-CAD-based solvers on many examples taken from
the literature.

The purpose of the present paper is to show that RC-

CAD, supported by this incremental algorithm, can serve the
purpose of real QE. In addition, our implementation of RC-

CAD-based QE is competitive with software implementing
PL-CAD-based QE.

We turn our attention to the theoretical implication of
performing QE by RC-CAD. If extended Tarski formulae are
allowed, then deriving QE from a RC-CAD is a straightfor-
ward procedure, hence, we shall not discuss it here. In the
rest of this paper, for both input and output of QE prob-
lems, only polynomial constraints (with rational number co-
efficients) will be allowed, thus excluding the use of algebraic
expressions containing radicals.

In Collins’ original work, the augmented projection oper-
ator was introduced in order to find a sufficiently large set
of polynomials such that their signs alone could distinguish
true and false cells. In [17], Hong produced simple solution
formula constructions, assuming that the available polyno-
mials in a CAD are sufficient to generate output formulae.

In his PhD thesis [4], Brown then introduced ways to add

1QEPCAD: http://www.usna.edu/CS/~qepcad/B/QEPCAD.
html
2Mathematica: http://www.wolfram.com/mathematica/
3REDLOG: http://www.redlog.eu/
4SyNRAC: http://jp.fujitsu.com/group/labs/
techinfo/freeware/synrac/
5RegularChains: http://www.regularchains.org/
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polynomials in an incremental manner and proposed a com-
plete algorithm which can produce simple formulae.

It was desirable to adapt Brown’s ideas to the context of
CADs based on regular chains. However, the many differ-
ences between the PL-CAD and RC-CAD schemes were mak-
ing this adaptation challenging. In the PL-CAD scheme, the
CAD key data structure is a set P of projection factors,
called the projection factor set, meanwhile, in the RC-CAD

scheme, it is a tree T encoding the associated CCD (cylin-
drical decomposition of the complex space). Adding a poly-
nomial f to P corresponds to refining T w.r.t. f (as defined
by Algorithm 6 in [8]). The PL-CAD-concept of projection-
definable CAD [4] means, in the context of RC-CAD, that
the signs of polynomials in the tree T suffice to solve the
targeted QE problem,

Despite of the many differences between the PL-CAD and
RC-CAD schemes for constructing CADs, we manage in Sec-
tion 4 to adapt to the RC-CAD context Brown’s techniques
based on his notion of conflicting pair. Once a quantifier-free
formula is obtained, as in the PL-CAD scheme, simplification
strategies are needed. In Section 5, we explain how we do it
in the context of RC-CAD. We report on our implementation
of RC-CAD-based QE using a few examples and comparing
it with QEPCAD. Finally, an application of CAD-based QE
to automatic generation of parametrized parallel programs
is presented in Section 7.

2. PRELIMINARY
In this section, we review some necessary notions for stat-

ing the main results of this paper.

Zero sets of constraints. Let x = x1 ≺ · · · ≺ xn be a
sequence for ordered variables. Let F ⊂ Q[x] be finite. Let
σ1 be a map from F to {=, 6=} and σ2 be a map from F to
{=, 6=, <,>,≤,≥}. Let K be C or R. For f ∈ F we denote
by ZK(f) the zero set of f in Kn. Denote by ZC(f σ1(f) 0)
the zero set of f σ1(f) 0 in Cn and by ZR(f σ2(f) 0) the
zero set of f σ2(f) 0 in Rn.

Separation [9, 8]. Let C be a subset of Kn−1 and P ⊂
Q[x1 ≺ · · · ≺ xn] be a finite set of polynomials with the same
main variable xn. We say that P separates above C if for
each α ∈ C: (i) for each p ∈ P , the polynomial init(p) does
not vanish at α; (ii) the univariate polynomials p(α, xn) ∈
Q[xn], for all p ∈ P , are squarefree and pairwise coprime.

Complex cylindrical tree [9, 8]. Let T be a rooted tree
of height n where each node of depth i, for i = 1, . . . , n,
being labelled by a polynomial constraint of the type “any
xi” (with zero set defined as Cn), or p = 0, or p 6= 0, where
p ∈ Q[x1, . . . , xi]. For any i = 1, . . . , n, we denote by Ti
the induced subtree of T with depth i. Let Γ be a path of
T from the root to a leaf. Its zero set ZC(Γ) is defined as
the intersection of the zero sets of its nodes. The zero set
of T , denoted by ZC(T ), is defined as the union of zero sets
of its paths. We call T a complete complex cylindrical tree
(complete CCT) of Q[x1, . . . , xn] if it is defined recursively
as below:
• if n = 1, then either T has only one leaf which is

labelled “any x1”, or, for some s ≥ 1, it has s+1 leaves
labelled respectively p1 = 0, . . . , ps = 0,

∏s
i=1 pi 6= 0,

where p1, . . . , ps ∈ Q[x1] are squarefree and pairwise
coprime polynomials;
• if n > 1, then the induced subtree Tn−1 of T is a

complete CCT and for any given path Γ of Tn−1, either

its leaf V has only one child in T of type “any xn”, or,
for some s ≥ 1, V has s + 1 children labelled p1 =
0, . . . , ps = 0,

∏s
i=1 pi 6= 0, where p1, . . . , ps ∈ Q[x] are

polynomials which separate above ZC(Γ).
The set {ZC(Γ) | Γ is a path of T} is called a complex

cylindrical decomposition (CCD) of Cn associated with T .
Note that for a complete CCT, we have ZC(T ) = Cn. A
proper subtree rooted at the root node of T of depth n is
called a partial CCT of Q[x1, . . . , xn]. We use CCT to refer
to either a complete or partial CCT.

Let F ⊂ Q[x] be finite. Let Γ be a path of a CCT T .
Note that the polynomial constraints along Γ form a regular
system, called the associated regular system of Γ. Let p ∈ F .
We say p is sign-invariant on Γ if either ZC(Γ) ⊂ ZC(p) or
ZC(Γ) ∩ ZC(p) = ∅ holds. We say p is sign-invariant on T
if p is sign-invariant on every path of T . We say T is sign-
invariant w.r.t. F if each p ∈ F is sign-invariant on T . The
procedure CylindricalDecompose from [9, 8] takes F as input
and builds a CCT T which is sign-invariant w.r.t. F .

Example 1. The following tree T is a CCT.
r

x1 − 1 = 0

x2 = 0 x2 6= 0

x1 = 0

any x2

x1(x1 − 1) 6= 0

x2
2 + x1 − 1 = 0 x2

2 + x1 − 1 6= 0

Let p := x1(x2
2 + x1 − 1). Then p is sign-invariant on T .

The following theorem established in [9] allows one to
build a CAD from a complete CCT. The CAD can also be
organized naturally in a tree data structure. The procedure
MakeSemiAlgebraic in [9, 8] builds a CAD tree RT from a
complete CCT T .

Theorem 1. Let P = {p1, . . . , pr} be a finite set of poly-
nomials in Q[x1 ≺ · · · ≺ xn] with the same main variable
xn. Let S be a connected semi-algebraic subset of Rn−1. If
P separates above S, then each pi is delineable on S. More-
over, the product of the p1, . . . , pr is also delineable on S.

Quantifier elimination. Let f ∈ Q[x1 ≺ · · · ≺ xn]. Let
σ ∈ {<,>,≤,≥,=, 6=}. We call a formula of the form f σ 0
a (standard) atomic formula. Let FF (x1, . . . , xn) be a quan-
tifier free formula in disjunctive normal form (DNF). For an
integer k = 0, . . . , n− 1, let

PF := (Qk+1xk+1 · · ·Qnxn)FF (x1, . . . , xn)

be a prenex formula, where Qi ∈ {∃, ∀}, k + 1 ≤ i ≤ n. A
quantifier-free formula SF in Q[x1, . . . , xk] which is equiv-
alent to PF is called a solution formula of PF . A process
obtaining SF from PF is called quantifier elimination (QE).

3. THEORY
To present the algorithm, in this section, we revise the

concepts of projection factor set and projection definable,
which were originally introduced in [4].

Projection factor set. Let T be a complete CCT in Q[x].
Let V be a node in T , different from the root-node. Let
V1, . . . , Vs be all the siblings of V which are labelled by equa-
tional constraints; this includes V itself if it is labelled by an



equational constraint. Assume that Vi is of the form fi = 0.
The set {f1, . . . , fs} is called the projection factor set of V .
Let Γ be a path of T . The union of the projection factor
sets of all the nodes along Γ is called a projection factor set
of Γ. The projection factor set of T is then defined as the
union of projection factor sets of all its paths. Let RT be a
CAD tree derived from T .

Its projection factor set is defined as that of T . Let C be
a cell of RT derived from a path Γ of T . The projection
factor set of C is defined as that of Γ.

Projection definable. Let RT be a CAD tree attached with
truth values. We call a quantifier free formula SF a solution
formula for RT if SF defines the same semi-algebraic set
as the union of all cells of RT whose attached truth values
are true. The tree RT is called projection definable if there
exists a solution formula formed by the signs of polynomials
in its projection factor set. Let T be a complete CCT. Let
RT be the CAD tree derived from T . We say that T is
projection definable if RT is projection definable no matter
which truth values are attached to RT .

Remark. The concept of projection factor set has different
meanings for PL-CAD and RC-CAD. Let RT be a CAD tree
and P be its projection factor set. If P is a projection fac-
tor set in the PL-CAD sense, any polynomial in P is sign
invariant above any cell of RT . This is not necessarily true
for RC-CAD. Let T be the associated complex cylindrical
tree of RT and let Γ be a path of T . Let C be any CAD
cell derived from Γ. It is guaranteed that any polynomial in
the projection factor set PΓ of Γ is sign invariant above C.
However, it is possible that a polynomial of PΓ is not sign
invariant above the CAD cells derived from other paths of
T . See below for an example.

Example 2. Let T be the CCT in Example 1. Let RT be
a CAD tree derived from T . Let Γ be the right most path of
T . The projection factor set of Γ is {x1, x1−1, x2

2 +x1−1}.
The projection factor set of T and RT is {x1, x1 − 1, x2

2 +
x1 − 1, x2}. We notice that neither x2 nor x2

2 + x1 − 1 is
sign-invariant on the path of T consisting of nodes {r, x1 =
0, any x2}. Moreover, it is easy to verify that T and RT
are projection definable.

Let p := x2 − 2, whose zero set natually defines a CAD
tree RT of R1. Suppose that the only true cells of RT are
x = −

√
2 and x =

√
2. Then RT is not projection definable.

Definition 1. Let F be a set of nonconstant univariate
polynomials in R[x]. We say F is derivative closed (w.r.t.
factorization) if for any f ∈ F , where deg(f) > 1, der(f)
is a product of some polynomials in F and some constant
c ∈ R.

Let F ⊂ R[x] be finite. Let σ be a map from F to
{<,>,=}. Let Fσ := ∧f∈F f σ(f) 0. Define ZR(Fσ) :=
∩f∈FZR(f σ(f) 0).

Lemma 1 (Thom’s Lemma [11]). Assume that n = 1.
If F is derivative closed (w.r.t. factorization), then the set
defined by Fσ is either an empty set, a point or an open
interval.

Remark. The formulation of Thom’s lemma presented here
is slightly different from its original version [11], althrough
it can be proved using exactly the same arugments (by in-
duction on the number of polynomials in F ). Such a for-
mulation is often implicitly used in implementations related

to Thom’s Lemma. An explicit treatment can be found, for
example, in [4, 21].

Lemma 2. Let C be a region of Rn−1. let F be a set of
polynomials in Q[x1 ≺ · · · ≺ xn] with the same main variable
xn. We assume that F separates above C and that for each
point α of C, the set of univariate polynomials {p(α, xn) |
p ∈ F} is derivative closed (w.r.t. factorization). Then, the
set C×R1∩ZR(Fσ) is either empty, or a section, or a sector
above C.

Proof. Assume that C×R1∩ZR(Fσ) is not empty. Since
F separates above C, by Theorem 1, F is delineable above
C. Thus C × R1 ∩ ZR(Fσ) is either a union of sections or a
union of sectors. The former (resp. the latter) holds if and
only if there exist at least one (resp. no) equational formulae
in Fσ.

Let α be a point of C. Denote Fσ(α) := ZR(F (α)σ). Since
{p(α, xn) | p ∈ F} is derivative closed (w.r.t. factorization),
by Thom’s Lemma, the set Fσ(α) is either a point belonging
to a section or an open interval contained in a sector. If C
has no other points, the theorem clearly holds. If Fσ(α) is
a point belonging to a section S, it is enough to prove that
for any other given point of C, say β, Fσ(β) belongs to the
same section as Fσ(α). Assume that this does not hold, since
Fσ(β) is non-empty by delineability, then Fσ(β) belongs to
a sector or is contained in a different section, say S′. Since
S′ is a connected semi-algebraic set, there exists x∗n, x

∗∗
n ∈ R

such that (α, x∗n), (β, x∗∗n ) ∈ S′, and both F (α, x∗n)σ and
F (β, x∗∗n )σ are true. This contradicts to the fact that Fσ(α)
belonging to S. By similar arguments, we can prove that
the theorem also holds when Fσ(α) is an open interval.

4. ALGORITHM
In this section, we demonstrate how to do quantifier elim-

ination via RC-CAD. Algorithm 1 presents the main steps of
QE based on RC-CAD.

Algorithm 1: QuantifierElimination(PF )

Input: A prenex formula
PF := (Qk+1xk+1 · · ·Qnxn)FF (x1, . . . , xn).

Output: A solution formula of PF .
begin1

Let F be the set of polynomials appearing in FF ;2

T := CylindricalDecompose(F )6;3

RT := MakeSemiAlgebraic(T );4

AttachTruthValue(FF,RT );5

PropagateTruthValue(PF,RT );6

MakeProjectionDefinablek(PF,RT );7

SF := GenerateSolutionFormulak(RTk);8

end9

Recall that QE based on PL-CAD consists of three phases:
projection, stack construction, and solution formula con-
struction. The steps of Algorithm 1 can also be classified
into these three phases:

- Projection: Line 3 of Algorithm 1.
- Stack construction: Liness 4, 5, 6 of Algorithm 1.
- Solution formula construction: Liness 7, 8 of Algorithm 1.

6If FF is a pure conjunctive formula, the theory of [8] allows
F to be a set of polynomial constraints. The detail is omitted
here for simplicity.



Note that these phases do not map exactly to those of QE
based on PL-CAD. The projection here computes a complex
cylindrical tree instead of a projection factor set. For the
stack construction phase, its first step MakeSemiAlgebraic,
recalled in Section 2, is different from the real root isolation
routines used by PL-CAD. The other two steps AttachTruth-
Value and PropagateTruthValue are the same as their PL-

CAD counterparts. We recall them below.
The operation AttachTruthValue takes a DNF formula FF

and a CAD tree RT as input. For each path A of RT , it
assigns A.leaf.truthvalue the truth value of FF evaluated
at A.leaf.samplepoint.

The operation PropagateTruthValue takes a prenex for-
mula PF := (Qk+1xk+1 · · ·Qnxn)FF (x1, . . . , xn) and a CAD
tree RT , each leaf V of which is attached with a truth value
of FF evaluated at V.samplepoint, as input, and it outputs
the induced subtree RTk of RT in Q[x1, . . . , xk] such that
each leaf Vk of RTk is attached with a truth value of PF eval-
uated at Vk.samplepoint. The algorithm starts by checking
whether Qn is the universal quantifier ∀ or the existential
quantifier ∃. For each leaf V of RTn−1, if Qn is ∀, then
V.truthvalue is set to be true if and only if the truth values
of the children of V are all true; if Qn is ∃, then V.truthvalue
is set to be true if and only if the truth value of at least one
child of V is true. The algorithm then makes recursive call
with (Qk+1, . . . , Qn−1) and RTn−1 as input and terminates
when all Qi, i = k + 1, . . . , n, have been examined.

The third phase, namely solution formula construction,
is the main focus of this section. If the CAD tree RT is
projection definable, then the solution formula construction
is straightforward, see Algorithm 2. If RT is not projection

Algorithm 2: GenerateSolutionFormulak(RT )

Input: A projection definable CAD tree RT in
Q[x1 ≺ · · · ≺ xk] attached with truth values.

Output: A solution formula for RT .
begin1

D := ∅;2

for each cell c of RT whose truth value is true do3

let Pc be the projection factor set of c;4

evaluate polynomials in Pc at a sample point of5

c and determine their signs;
let Dc be the resulting conjunction formula;6

D := D ∪ {Dc}7

return the disjunction of conjunction formulae in D8

end9

definable, we will present two strategies to address this. The
first one, presented in Algorithm 5, is a theoretical solution.
This is an adaptation of the augmented projection, widely
used in PL-CAD, to RC-CAD. The second one, presented
in Algorithm 6 and used in our implementation, is a much
more practical solution. This is an adaptation of making
CAD projection definable, used in PL-CAD [4], to RC-CAD.
Our adaptation is based on the IntersectPath operation of [8].
This operation takes as input a polynomial p, a CCT T and
a path Γ of T , returning a refinement of T such that p is sign-
invariant on each path derived from Γ. Another operation
NextPathToDo from [8] is also used in our algorithm. It takes
a CCT T as input, for a fixed traversal order of T , returning
the first “ToDo” path Γ of T . To better state the algorithms,
we introduce the following notion.

Definition 2. Let Tk be a complete CCT of Q[x1, . . . , xk].
Let Tk−1 be the induced subtree of Tk in Q[x1, . . . , xk−1].
Let Γk−1 be a path of Tk−1. Let c1, . . . , cs be all the equa-
tion children of Γk−1.leaf in Tk. Assume that ci is of the
form fi = 0, i = 1, . . . , s. We say Γk−1 is derivative closed
if for any α ∈ ZC(Γk−1), the set of univariate polynomials
{fi(α, xk)} is derivative closed.

Algorithm 3: RefineNextChildk(Γk−1, T )

Input: A cylindrical tree T in Q[x1 ≺ · · · ≺ xn]. A
path Γk−1 of Tk−1 in Q[x1 ≺ · · · ≺ xn].

Output: If Γk−1 is derivative closed, return false.
Otherwise, some progress is made to guarantee that
Γk−1 becomes derivative closed after this algorithm is
called finitely many times.
begin1

V := Γk−1.leaf ;2

let S be the set of children of V in Tk such that:3

each c ∈ S is of the form f = 0, where deg(f) > 1
and c.derivative is undefined;
if S = ∅ then return false;4

let c ∈ S such that deg(f) is the smallest;5

let Γk be the subtree of Tk which induces Γk−1;6

while C := NextPathToDok(Γk \ (Γk−1 ∪ c)) do7

IntersectPathk(der(f, xk), C, Tk);8

c.derivative := der(f, xk);9

return true;10

end11

Algorithm 4: RefineTreek(T )

Input: A complete complex cylindrical tree T of
Q[x1 ≺ . . . ≺ xn].

Output: Refine T to make its induced subtree Tk
projection definable.

begin1

if k = 0 then return;2

while Γ := NextPathToDok−1(T ) do3

todo := true;4

while todo do5

todo := RefineNextChildk(Γ, T );6

RefineTreek−1(T );7

end8

Proposition 1. Algorithm 3 and 4 are as specified.

Proof. We prove Algorithm 4 by induction. A proof of
Algorithm 3 will be supplied in between. Algorithm 4 clearly
holds for k = 0. Assume that RefineTreek−1(T ) makes Tk−1

projection definable. Then it suffices to show that when
Algorithm 4 terminates, each path Γk−1 of Tk−1 is deriva-
tive closed. Equivalently, it is enough to prove that when
Algorithm 3 returns false, Γk−1 is derivative closed.

Before the first call to Algorithm 3 is made, for any child
c of Γk−1.leaf , c.derivative is unassigned. Each time when
Algorithm 3 is called, a vertex c of the form f = 0, where
c.derivative is unassigned and deg(f, xk) is the smallest, is
chosen. By calling the operation IntersectPath, the children
nodes of Γk−1 are refined into new ones, above each of which



der(f, xk) is sign invariant. Let c1, . . . , cs be all the equation
children of Γk−1.leaf . Assume that ci is of the form fi = 0.
The sign invariance of der(f, xk) above each ci implies that
for any α of Γk−1, der(f, xk)(α, xk) is a product of some
fi(α, xk) times a constant.

Since each time a vertex c is chosen such that c.derivative
turns assigned, while meantime for each new added ci into
the tree, der(fi, xk) is strictly less than deg(f, xk), we know
that Algorithm 3 will return false after being called finitely
many times. When false is returned, by Definition 2, Γk−1

is clearly derivative closed.

Note that Algorithm 4 may generate much more than enough
polynomials for the purpose of solution formula construc-
tion. Nevertheless, such an algorithm allows a simple solu-
tion for making a CAD tree projection definable, see Algo-
rithm 5.

Algorithm 5: MakeProjectionDefinablek(PF,RT, theoretical)

Input: PF := (Qk+1xk+1 · · ·Qnxn)FF (x1, . . . , xn) is
a prenex formula. An FF -invariant CAD tree RT of
Q[x1 ≺ · · · ≺ xn], each k-level cell of which is attached
with a truth value of PF .
Output: Refine RT to make its induced subtree RTk

projection definable.
begin1

Let T be the associated CCT of RT ;2

RefineTreek(T );3

RT := MakeSemiAlgebraic(T );4

AttachTruthValue(FF,RT );5

PropagateTruthValue(PF,RT );6

end7

To help present the practical strategy for making a CAD
tree projection definable, we revise the notion of “conflicting
pair”, which was initially introduced for PL-CAD in [4].

Definition 3. Conflicting pair. Let RTk be a CAD tree
of Rk attached with truth values. Let Tk be the associated
CCT of RTk. For 1 ≤ i ≤ k, we call two distinct i-level
cells Ci and Di in the same stack an i-level conflicting pair
if there exist k-level cells C and D such that

(CP1) Ci and Di are respectively the projections of C and D
onto Ri,

(CP2) C and D are derived from the same path of Tk,
(CP3) above C and D, every polynomial in their common pro-

jection factor set P has the same sign,
(CP4) C and D have opposite attached truth values.

Let C and D be two k-level cells satisfying (CP2), (CP3)
and (CP4). Let A be the lowest common ancestor of C and
D, that is the ancestor of C and D of the largest level, say
i− 1. Let Ci and Di be respectively the ancestor of C and
D of level i. Clearly Ci and Di share the same parent A and
form a conflicting pair. We call Ci and Di the conflicting
pair associated with C and D. We call C and D an extension
of Ci and Di. Note that for PL-CAD, only (CP1), (CP3)
and (CP4) are required. In [4], it was proved that a CAD is
projection definable if and only if it contains no conflicting
pairs. Motivated by this result, we propose Algorithm 6.

Theorem 2. Algorithm 6 constructs a projection defin-
able CAD tree.

Algorithm 6: MakeProjectionDefinablek(PF,RT, practical)

Input: Same as Algorithm 5.
Output: Same as Algorithm 5.
begin1

let CPS be the set of all conflicting pairs of RTk;2

while CPS 6= ∅ do3

let CP be a pair in CPS of highest level, say i;4

let T be the associated CCT of RT ;5

let Γ be the path of Ti, where CP is derived;6

call RefineNextChildi(Γi−1, T ) to refine T ;7

RT := MakeSemiAlgebraic(T );8

AttachTruthValue(FF,RT );9

PropagateTruthValue(PF,RT );10

let CPS be the set of all conflicting pairs of RT ;11

end12

Proof. It is enough to prove the following two claims:
(1) If CPS = ∅, then RTk is projection definable.
(2) CPS becomes empty after finitely many steps.

Note that CPS = ∅ implies that there does not exist cells
C and D which satisfy (CPi), i = 2, 3, 4. In other words, if
for any two cells C and D derived from the same complex
path, thus having the same projection factor set (say P ),
their attached true values are different, then the signs of
polynomials in P are sufficient to distinguish them. So (1)
is proved.

Let i be the highest level of conflicting pairs in RTk. To
prove (2), it suffices to prove the following three claims.
(2.1) Any Γi−1 will become projection definable after finitely

many steps.
(2.2) When all Γi−1 become projection definable, there will

exist no conflicting pairs of level i.
(2.3) When RT gets refined, no conflicting pairs of level

higher than i will be generated.
The correctness of (2.1) follows from Proposition 1. If (2.2)
does not hold, then there exist a path Γi−1 and two cells Ci,
Di such that Ci and Di are derived from some children of
Γi−1, and all i-level polynomials in their projection factor
set evaluate at Ci and Di into the same signs. This is a
contradiction to Lemma 2.

Next we prove (2.3). Assume that RT refines into a new
tree RT ′. Let C′j and D′j be a j-level conflicting pair in RT ′k.
Let C′ and D′ be their extension in RT ′k. Let C and D be
two cells of RTk such that C′ is derived from C and D′ is
derived from D. Note that C and D satisfy (CP2), (CP3)
and (CP4). Moreover, the projection of C and D onto Rj
must have the same parent. Thus there exists a conflicting
pair associated with C and D in RTk of level at least j.
Since the highest level of conflicting pairs in RTk is i, (2.3)
is proved.

We conclude this section by illustrating our algorithm with
a simple example. This example is modified from the one
in [16, 4], where it was used to demonstrate that PL-CAD

based QE may generate a CAD tree that is not projection
definable.

Example 3. Let PF := (∃x2) (x2
1 + x2

2 − 1 = 0) ∧ (x1 +
x2 < 0) ∧ (x1 > −1) ∧ (x1 < 1). The projection stage gener-
ates a CCT T :



r

x1 + 1 = 0

any x2

x1 − 1 = 0

any x2

2x2
1 − 1 = 0

x2 − x1 = 0 x2 − x1 6= 0

2x4
1 − 3x2

1 + 1
6= 0

x2
2 + x2

1 − 1 = 0 x2
2 + x2

1 − 1 6= 0

The stack construction stage computes a CAD tree RT
of Q[x1, x2]. The induced CAD tree of RT in Q[x1] has the

following cells (−∞,−1), −1, (−1,−
√

2
2

), −
√

2
2

, (−
√

2
2
,
√

2
2

),
√

2
2

, (
√

2
2
, 1), 1, and (1,+∞). Among them, the true cells are

the third, the fourth and the fifth cells. The cells −
√

2
2

and
√

2
2

is a conflicting pair. The two cells are derived from the

complex path Γ := [r, 2x2
1 − 1 = 0] of T1. Refine Γ w.r.t.

the derivative of 2x2
1−1 = 0 generates a projection definable

CCT, which allows us to obtain the solution formula of PF :

x1 = 0 ∨ (x1 < 0 ∧ 0 < x1 + 1) ∨ (0 < x1 ∧ 2x2
1 < 1).

5. CONSTRUCTION OF SIMPLE QFFS
In last section, a complete quantifier elimination algo-

rithm is provided. By “complete”, we mean that it can al-
ways generate a solution formula. In this section, we provide
some heuristic strategies to enhance Algorithm 2 such that
simpler solution formula can be generated with reasonable
cost.

Let RT be a CAD tree of Rn and let P be the associated
projection factor set of RT in the sense of PL-CAD. One key
reason why PL-CAD succeeds in generating simple solution
formula is that every polynomial in P is guaranteed to be
sign-invariant on each cell of RT (assume no partial CAD
tricks are used).

Let T be a CCT of Q[x] and let RT be a CAD tree deduced
from T . Let Γ be a path of T and let S be a subset of cells of
RT derived from Γ. Let PΓ be the projection factor set of Γ.
It is known that any polynomial p of PΓ is sign-invariant on
each cell of S, but p may not be sign-invariant on other cells
of RT . For instance, in Example 1, the polynomial x2 is not
sign-invariant on CAD cells derived from the third path of
the CCT.

On the other hand, let Γ be the right most path of T , we
observe that in many cases, the polynomials in PΓ are sign-
invariant on each path of T , and thus also sign-invariant
on every cell of RT (although counter examples exist, see
Example 1). Let P ′ be a subset of PΓ such that each p ∈ P ′
is sign-invariant on T . If RT is projection definable w.r.t.
P ′, then algorithms in [17, 4] can be used to generate simple
solution formula. If not, the cells of RT derived from the
same path of T are grouped together. For each group, they
have the same projection factor set. So algorithms in [17, 4]
can be used again to do the simplification. Let Φ be the
resulting formula. If Φ is not simple enough, we can gather
polynomials in Φ together into a set, say A, and compute
an sign-invariant CAD defined by A and apply algorithms
in [17, 4] to do the simplification.

Next we show how to test if p is sign-invariant on Γ.
By definition, a polynomial p is sign-invariant on Γ if and
only if either ZC(Γ) ⊂ ZC(p) or ZC(Γ) ∩ ZC(p) = ∅ holds.
Such tests boils down to set-theoretical operations on con-
structible sets. In particular, we have the following result
from [8] on the first test.

Lemma 3. Let Γ be a path of CCT . Let p ∈ Q[x]. Let
[R,H] be the associated regular system of Γ. Then ZC(Γ) ⊂
ZC(p) if and only if prem(p,R) = 0.

Remark 1. To test ZC(Γ) ∩ ZC(p) = ∅, it is equivalent
to test ZC(p,R,H) := ZC(p) ∩ ZC(R,H) = ∅. Efficient
operation exists for such test, see Lemma 6 of [7] for details.

Example 4. Let Dattel := z2 + 3y2 + 3x2 − 1. Let f :=
(∃z) Dattel = 0 be the input formula. A sign-invariant CCT
defined by p is described as below.

r

3x2 − 1 = 0

y = 0

z = 0 z 6= 0

y 6= 0

Dattel = 0 Dattel 6= 0

3x2 − 1 6= 0

3y2 + 3x2 − 1 = 0

z = 0 z 6= 0

3y2 + 3x2 − 1 6= 0

Dattel = 0 Dattel 6= 0

Algorithm 2 generates the following solution formula:

(3x2 < 1 ∧ 3y2 + 3x2 < 1) ∨ (3x2 − 1 = 0 ∧ y = 0)

∨ (3x2 < 1 ∧ 3y2 + 3x2 = 1).

The sign-invariance of 3y2 + 3x2 − 1 on the CCT allows us
to obtain a simpler output formula:

3y2 + 3x2 < 1 ∨ 3y2 + 3x2 = 1.

Example 5. Consider another input formula

(∃x1) 3x1 − u1(1 + x3
1) = 0 ∧ 3x2

1 − u2(1 + x3
1) = 0.

A variant of Algorithm 2 (removing redundant atomic for-
mula in each conjunction) generates:

(u2 < 0 ∧ u3
1 + u3

2 − 3u1u2 = 0) ∨ (u2 = 0 ∧ u1 = 0)
∨(u3

2 − 4 = 0 ∧ u1u2 − 2 = 0) ∨ (u3
2 − 4 = 0 ∧ u1u2 + 4 = 0)

∨(0 < u3
2 − 4 ∧ u3

1 + u3
2 − 3u1u2 = 0)

∨(0 < u2 ∧ u3
2 < 4 ∧ u3

1 + u3
2 − 3u1u2 = 0)).

Using ideas presented here, we obtain u3
1 + u3

2 − 3u1u2 = 0.

6. IMPLEMENTATION
We have implemented our algorithm in the RegularChains

library in Maple. For constructing simple solution formula,
the techniques of [17, 4] have not been integrated yet. In
this section, we illustrate different aspects of our implemen-
tation by examples. The experimental results are obtained
on a Ubuntu desktop (2.40GHz Intel Core 2 Quad CPU,
8.0Gb total memory).

There is no doubt that a user friendly interface is import
for the application of quantifier elimination. We have devel-
oped the interface of our QE procedure based on the Logic
package of Maple. The following example shows how to use
our procedure.

Example 6 (Davenport-Heintz). The interface:

f := &E([c]), &A([b, a]), ((a=d) &and (b=c))
&or ((a=c) &and (b=1)) &implies (a^2=b):

QuantifierElimination(f);
(d - 1 = 0) &or (d + 1 = 0)



In [8], we have shown that our RC-CAD implementation
is competitive to the state of art CAD implementation, such
as Qepcad and Mathematica. In particular, RC-CAD is
usually more efficient than them when there are more equa-
tional constraints to be exploited. For instance, neither
Qepcad nor Mathematica can solve the examples blood-
coagulation-2 and MontesS10 in 1-hour time limit. Our QE
implementation directly benefits from the efficiency of RC-

CAD. Here we provide the timing and output for three ex-
amples.

Example 7 (blood-coagulation-2). It takes about 6
seconds.

f := &E([x, y, z]), (1/200*x*s*(1 - 1/400*x)
+ y*s*(1 - 1/400*x) - 35/2*x=0)
&and (250*x*s*(1 - 1/600*y )*(z + 3/250) - 55/2*y=0)
&and (500*(y + 1/20*x)*(1 - 1/700*z) - 5*z=0);

QuantifierElimination(f);
true

Example 8 (MontesS10). It takes about 26 seconds.

f := &E([c2,s2,c1,s1]),
(r-c1+l*(s1*s2-c1*c2)=0) &and (z-s1-l*(s1*c2+s2*c1)=0)
&and (s1^2+c1^2-1=0) &and (s2^2+c2^2-1=0);

QuantifierElimination(f);

2 2 2
((((-r - z + l - 2 l + 1 = 0) &or

2 2 2 2 2 2
((l - r - z - 2 l < -1) &and (-r - z + l + 2 l + 1 = 0))) &or

2 2 2 2 2 2
((l - r - z - 2 l < -1) &and (0 < -r - z + l + 2 l + 1))) &or

2 2 2 2 2 2
((0 < -r - z + l - 2 l + 1) &and (l - r - z + 2 l < -1))) &or

2 2 2 2 2 2
((0 < -r - z + l - 2 l + 1) &and (-r - z + l + 2 l + 1 = 0))

Consider a new example on algebraic surfaces.

Example 9 (Sattel-Dattel-Zitrus). It takes about
3 seconds while Qepcad cannot solve it in 30 minutes.

Sattel := x^2+y^2*z+z^3;
Dattel := 3*x^2+3*y^2+z^2-1;
Zitrus := x^2+z^2-y^3*(y-1)^3;
f := &E([y, z]), (Sattel=0) &and (Dattel=0) &and (Zitrus<0);
QuantifierElimination(f);

The output is the inequality:

387420489x36 + 473513931x34 + 1615049199x32

−5422961745x30 + 2179233963x28 − 14860773459x26

+43317737551x24 − 45925857657x22 + 60356422059x20

−126478283472x18 + 164389796305x16 − 121571730573x14

+54842719755x12 − 16059214980x10 + 3210573925x8

−446456947x6 + 43657673x4 − 1631864x2 < 40328.

7. AUTOMATIC GENERATION OF PARA-
METRIZED PARALLEL PROGRAMS

The general purpose of automatic parallelization is to con-
vert sequential computer programs into multi-threaded or
vectorized code. We are interested in the following specific
question. Given a theoretically good algorithm (e.g. divide-
and-conquer matrix multiplication) and a given type of hard-
ware that depends on various parameters (e.g. a GPGPU

with amount S of the shared memory per streaming mul-
tiprocessor, maximum number P of threads supported by
each streaming multiprocessor, etc.) we aim at automati-
cally generate code that depends on the hardware parame-
ters (S, P , etc.) which, then, do not need to be known at
compile-time. In contrast, current technology requires the
knowledge of machine and program (size of a thread block,
etc.) parameters at the time of generating the GPGPU code,
see [15].

In order to clarify this question, we briefly provide some
background material. The polyhedron model [1] is a power-
ful geometrical tool for analyzing the relation (w.r.t. data
locality or parallelization) between the iterations of nested
for-loops. Once the polyhedron representing the iteration
space of a loop nest is calculated, techniques of linear alge-
bra and linear programming can transform it into another
polyhedron encoding the loop steps in a coordinate system
based on time and space (processors). From there, a parallel
program can be generated. For example, for the following
code computing the product of two univariate polynomials
a and b, both of degree n, and writing the result to c,

for(i=0; i<=n; i++) {c[i] = 0; c[i+n] = 0;}

for(i=0; i<=n; i++) {

for(j=0; j<=n; j++)

c[i+j] += a[i] * b[j];

}

elementary dependence analysis suggests to set t(i, j) = n−j
and p(i, j) = i + j, where t and p represent time and pro-
cessor respectively. Using Fourier-Motzkin elimination, pro-
jecting all constraints on the (t, p)-plane yields the following
asynchronous schedule of the above code:

parallel_for (p=0; p<=2*n; p++){

c[p]=0;

for (t=max(0,n-p); t<= min(n,2*n-p);t++)

c[p] = c[p] + a[t+p-n] * b[n-t];

}

To be practically efficient, one should avoid a too fine-grained
parallelization; this is achieved by grouping loop steps into
so-called tiles, which are generally trapezoids [14]. It is also
desirable for the generated code to depend on parameters
such as tile and cache sizes, number of processors, etc. These
extensions lead, however, to the manipulation of systems of
non-linear polynomial equations and the use of techniques
like quantifier elimination (QE). This was noticed by the
authors of [13] who observed also that work remained to
be done for adapting QE tools to the needs of automatic
parallelization.

To illustrate these observations, we return to the above
example and use a tiling approach: we consider a one-dimen-
sional grid of blocks where each block is in charge of updat-
ing at most B coefficients of the polynomial c. Therefore, we
introduce three variables B, b and u where the latter two rep-
resent a block index and an update index (within a block).
This brings the following additional relations: 0 ≤ b

o ≤ u < B
p = bB + u,

(1)



to the previous system
o < n

0 ≤ i ≤ n
0 ≤ j ≤ n
t = n− j
p = i+ j.

(2)

To determine the target program, one needs to eliminate
the variables i and j. In this case, Fourier-Motzkin elimi-
nation (FME) does not apply any more, due to the presence
of non-linear constraints. Using quantifier elimination code
presented in this paper, we obtain the following:

B > 0
n > 0

0 ≤ b ≤ 2n/B
0 ≤ u < B

0 ≤ u ≤ 2n−Bb
p = bB + u,

(3)

from where we derive the following program:

for (p=0; p<=2*n; p++) c[p]=0;

parallel_for (b=0; b<= 2 n / B; b++) {

for (u=0; u<=min(B-1, 2*n - B * b); u++) {

p = b * B + u;

for (t=max(0,n-p); t<=min(n,2*n-p) ;t++)

c[p] = c[p] + a[t+p-n] * b[n-t];

}

}

Of course, one could enhance FME with a case discussion
mechanism, but this enhancement would be limited to non-
linear constraints where all variables appear in degree zero
or one. (Otherwise an algorithm for solving semi-algebraic
systems needs to support FME, which cannot really be con-
sidered as FME anymore.) Moreover, this enhanced and
parametric FME would no longer be able to rely on numer-
ical methods for linear programming [19] thus loosing a lot
of practical efficiency.

For these reasons CAD-based QE becomes an attractive
alternative. In fact, for more advanced automatic paral-
lelization examples, such as the one of Fig. 5 in [13], our
QE code returns a disjunction of conjunctions of clauses,
where most conjunctions can be merged by the techniques
presented in Section 5. Each of the remaining conjunctions
of clauses leads to a specialized program corresponding to
particular configuration like n < B. These specialized pro-
grams are actually less expensive to evaluate than the one
of Fig. 5 in [13] since the bounds of the control variables are
defined by simpler max/min expressions.
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