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Plan

Zero-dimensional regular chains



How triangular decompositions look like?

For the following input polynomial system:
+y+z=1
F:{ x+ y2 +z=1
x+y+z2=1
One possible triangular decompositions of the solution set of F is:
2242z-1=0

z=0 z=0 z=1
y=1 U{ y=0 U< y=0 U y=z
x=0 x=1 x=0 X=z
Another one is:
z=0 22+22-3z=-1
y2-y=0 U 2y+22=1
2x+2z2=1



An example in positive dimension

e Every prime ideal P = (F) in a polynomial ring K[x,...,x,] may be
represented by a triangular set T encoding the generic zeros of P.

ax+ by —-c gx+hy—i
F={ dc<+ey-f ~T={ (hd-eg)y—id+fg
gx+hy—i (ie—fh)a+ (ch—ib)d+(fb-ce)g

e All the common zeros of every polynomial system can be
decomposed into finitely many triangular sets.

dx + ey —f gx+hy—i
- hy—i (ha—bg)y—ia+cg
VP) = WMUWY e myas(mib+ch)d YWY hd-eg
p e~ fh

—ce
g

x ax + by — ¢

. hy —i

uw{ g’d g)y—id+fe uW[ d U
ie—fh e fh

where W(T) denotes the generic zeros of T. We have : W(T) cV(T).



How to compute triangular decompositions?

e Consider again solving the system F for x >y > z:

+y+z=1
F: x+y2+Z=l
x+y+z2=1

y2 4+ (-1+22%)y - 272 +z+z =0
y2+z-y-22=0

e Eliminating y? and then y we can arrive to r(z) = 0 with

r(z) =28 - 42°+ 425 - 2.

e Factorizing r(z) leads to z*(z? + 2z -1)(z-1)?> =0 and thus to z =0,

z=1o0r z2+2z =1. In each case, it is easy to conclude either by

substitution, or by GCD computation in (Q[z]/(z% + 2z - 1))[y].

e Alternatively, one can directly perform GCD computation in

(Q[z]/{r(2))[y]- But this is unusual since Q[z]/(r(z)) is not a field!

Let us see this now.

e Eliminating x leads to {



Computing a polynomial GCD over a ring with
zero-divisors (1)

e Let us consider again the polynomials
=y +(222-1)y-222+z+7*
h=y?+z-y-27?
e Let us compute their GCD in L[y] with L = Q[z]/(s(z)) where
s(z) = z(z? +2z - 1)(z - 1) is the squarefree part of r(z). (Replacing
r(z) with s(z) makes the story simpler.)
e We proceed as if L were a field and run the
Euclidean Algorithm in L[y]. Of course, before dividing by an element
of I we check whether it is a zero-divisor. We pretend we are not aware

of the factorization of s(z).

e Dividing f; by f5 is no problem since £, is monic. We obtain: )il );2
3

with f3 = 22%y — 22 + 22% - z.



Computing a polynomial GCD over a ring with
zero-divisors (1)

e In order to divide £, by f3, we need to check whether 222 divides zero in
L. This is done by computing gcd(s(z),222) in Q[z], which is z.

e Hence s(z) writes z(z> + z% =3z + 1) and we split the computations
into two cases: z=0and 2>+ 22 -3z=1

OThen f;=0and f, = y? -y is the GCD.

3

o |Case 23+ 22 - 32 = -1.| Since S(z) is square-free, 222 has an inverse
in this case, namely i(z) = —(3/2)z% -2z + 4.

e Thus, the polynomial = i(z)f; = y + (1/2)z% - (1/2) is monic. So, we
f i

0 [y - (D2 -2

e Finally gcd(f1, f,L[y]) ={ oy

can compute

if z=0

2y +z2-1 if 28+22-3z=-1



How those triangular sets look like? (1)

Y24+ (-1+222)y 222 +z+2*=0

e Let us consider again the system { V2az—y—22=0

e Let o and a be the roots of z% + 2z — 1 = 0. After dropping
multiplicities, we obtain (z,y) € {(0,0),(0,1), (a1, 1), (a2, a2),(1,0)}.

y




How to pass from one triangular decomposition to

another?
z=0 z=0 z=1 722+22z-1=0
y=1 Uq{y=0 Ujy=0 U y=z
x=0 x=1 x=0 X=z
| CRT |



From a lexicographical Grobner basis to a triangular
decomposition (1)

e Let us consider again (last time) the polynomials
fi=y?+(222-1)y-222+z+ 2*
h=y tz-y-2
e It is natural to ask how we could obtain a triangular decomposition
from the reduced lexicographical Grobner basis of {f;, f,} for y > z. This
g1 =20 474473 -2
basis is: { g» =22%y + z* - 22
g=y'-y-2"+z
e We initialize T := {g1}. We would add g» into T provided that
le(go,y) is a unit.



From a lexicographical Grobner basis to a triangular
decomposition (I1)

e So, we compute gcd(22%, g1,Q[z]) = z2. This shows
g1 = 2%(z* -~ 4z% + 4z - 1) and splits the computations into two cases.

e | Case z2 = 0. | In this case g» vanishes and g3 = y? - y + z, leading to

TH={z%y*-y+z}
. ‘ Case z* —472% + 4z - 1. ‘ In this case lc(gz,y) has
223+ (1/2)z2 -8z +6 for inverse. Multiplying g» by this inverse leads to
B =y+(1/2)z% - (1/2). Then, we observe that

g | &

0 [y-(1/2)2-(1/2)
T2:={z* -4z +4z-1,2y +12° - 1}.
e For more details: (Gianni, 1987), (Kalkbrener, 1987), (Lazard,
1992).

leading to a second component



Some notations before we start the theory (1)

Notation
Throughout the talk, we consider a field K and an ordered set
X =xy << x, of n variables. Typically K will be

- a finite field, such as Z/pZ for a prime p, or

- the field Q of rational numbers, or

- a field of rational functions over Z/pZ or Q.

We will denote by K the algebraic closure of K.

Notation

We denote by K[x1,...,xn] the ring of the polynomials with coefficients in K
and variables in X. For F c K[x1,...,x,], we write (F) and \/(F) for the
ideal generated by F in K[x1,...,x,] and its radical, respectively.

Notation
For F c K[x,...,xn], we are interested in

V(F)={CeK" | (YfeF) f(¢) =0},
the zero-set of F or algebraic variety of F in K"

Remark ., B
In some circumstances K~ will be denoted A"(K), especially when we
consider several n at the same time.



Some notations before we start the theory (Il)

Notation

Let i and j be integers such that 1< i <j<n and let V ¢ A"(K) be a variety
over K. We denote by ﬂJl the natural projection map from A/ (K) to A(K),
which sends (x1,...,x;) to (x1,...,x;). Moreover, we define V; =x!(V).
Often, we will restrict ﬂJl from V; to V;.

Notation .

The algebraic varieties in K defined by polynomial sets of K[xi,...,x,] form
the closed sets of a topology, called Zariski Topology. For a subset

W c K", we denote by W the closure of W for this topology, that is, the
intersection of the V/(F) containing W, for all F c K[x1,...,Xs].

Notation _
For W c K", we denote by I(W) the ideal of K[x,...,x,]| generated by the
polynomials vanishing at every point of W.

Remark
When K =K and W = V(F), for some F c K[xq,...,x,], recall the Hilbert

Theorem of Zeros:
VIF) = 1(V(F)).



Lazard triangular sets
Definition
(Lazard, 1992) A subset
T ={T,... Ty} c K[xg << xp]
is a Lazard triangular set if for i =1---n

T = 1xf'i+ad,.,1xidi’1+~~-+alxi+ao

with

ad;—-1y---,d1,d0 € k[Xl, e 7X,',1:|.
reduced w.r.t {Ty,..., T;_1) in the sense of Grobner bases.
Theorem

A family T of n polynomials in K[x; < -+ < x,] is a
Lazard triangular set if and only it is the
reduced lexicographical Grobner basis of a zero-dimensional ideal.



How those triangular sets look like? (I1)

Notation
Let T = {T1,...To} ¢ K[x,...,xy] be a Lazard triangular set. Let V be
its variety in A"(K). Let dy =deg(T1,x1),...,d, =deg(Tpn,Xn).

Notation
For1<i<j<n, recall that

. vo— v,
o, x) > (X, x)

where V; =7 (V) and V; = 7] (V).

Proposition
For a point M € V; the fiber (i.e. the pre-image) (m})*(M) has cardinality
dis1---d;, that is

(7)) H(M)| = disr--d.



Equiprojectable varieties

Definition o
Let / and j be integers such that 1 <i<j < nand let V ¢ A(K) be a variety
over K. The set V is said

(1) equiprojectable on V;, its projection on A'(K), if there exists an
integer ¢ such that for every M € V; the cardinality of ()™ (V;) is c.
(2) equiprojectable if V is equiprojectable on Vi,..., Vj_;.

Theorem

(Aubry & Valibouze, 2000) Assume K is perfect and let V c A"(K) be

finite. Assume that there exists F c K[x,...,x,] such that V = V(F).

Then, the following conditions are equivalent:

(1) V is equiprojectable,

(2) There exists a Lazard Triangular set T c K[xq,...,x,} whose zero-set in
A"(K) is exactly V.

Proof.

For proving (1) = (2) one can use the interpolation formulas of (Dahan
& Schost, 2004) to construct a Lazard triangular set in K[xg,...,x,]. To
conclude, one uses the hypothesis K perfect, V = V(F) together with the
Hilbert Theorem of Zeros. O



The interpolation formulas: sketch (1)

o Let V c A"(K) be (finite and) equiprojectable. Let K be a field, with

K ¢ K ¢ K such that every point of V has its coordinates in K.

e We have Ty =[]y, (X1 — ). Let 1 <£ < n. We give interpolation formulas
for Ty,1 from the coordinates (in K) of the points of Vi, for 1 <4< n.

o let a=(ay,...,ap) € Vy. We define the varieties
Vi ={ B=(B1:---, B¢, Bes1) € Virr | Br#ai}
V2 ={ B=(a,B- B Be1) € Ven | Bazas}
Ve ={ B=(on,...,001,B0,B01) € Ver | Be#ag}
A B=(0a,...,00B01) € Vo }

The sets V2, V2 V3 .. VE VI form a partition of Viy;.
e The intermediate goal is to build Ty rr1 = Ti(a1, ..., xee1) € K[xe1].



The interpolation formulas: sketch (1)

e We consider also the projections

vy = mH(VY) = {(B)eVr | Bi#ai}
vio= meti(V2) = {(a1,82) e Vo | Bo#as}
vi o= mN (V) = (o, B) e Ve | Bt ag)

e For 1<i </, define ey, = [Igey; (xi—Bi) € K[x] and

’ Eo =Tlicict €a,i € K[x,...,xc]. ‘
e Then, we have:

T = Tlgeven (Xes1 = Besr)
EaTo 041
T = Xaev, E(ay

e Related work: (Abbot, Bigatti, Kreuzer & Robbiano, 1999), ...



Direct product of fields, the D5 Principle (1)

Proposition

Let f € K[x] be a non-constant and square-free univariate polynomial.
Then L = K[x]/(f) is a direct product of fields (DPF).

Proof.

The factors of f are pairwise coprime. Then, apply the

Chinese Remaindering Theorem. (If f = ff; then

L~ K[x]/(f1) x K[x]/{f). O
PrINCIPLE. (Della Dora, Dicrescenzo & Duval, 1985) If L is a DPF,

then one can compute with L as if it were a field: it suffices to split the

computations into cases whenever a zero-divisor is met.

Proposition

Let I be a DPF and f € L[x] be a non-constant monic polynomial such that
f and its derivative generate L[x], that is, (f,f') = L[x]. Then L[x]/(f) is
another DPF.

Proof.

It is convenient to establish the following more general theorem: A
Noetherian ring is isomorphic with a direct product of fields if and only if
every non-zero element is either a unit or a non-nilpotent zero-divisor. O



Direct product of fields, the D5 Principle (I1)

Proposition
Let T cK[xy,...,x,] be a Lazard triangular set such that (T) is radical.
Then, we have

> K[x, ..., x]/(T) is a DPF,

» ifK is perfect then K[xy,...,x,]/(T) is a DPF.

Remark

Recall the trap! Consider F = Z/pZ(t), for a prime p. Consider the
polynomial f = xP — t € F[x] and F an algebraic closure of F.

Since f is not constant, it has a root ac€ F and we have

f=xP-t=xP-aPf =(x-a)Pf (1)

in ﬁ[x], which is clearly not square-free. However f is irreducible, and thus
squarefree, in F[x].



Polynomial GCDs over DPF, quasi-inverses (I)

Definition
(M. & Rioboo, 1995) Let L be a DPF. The polynomial heL[y] is a GCD
of the polynomials f, g € L[y] if the ideals (f,g) and (h) are equal.

Remark

Another trap! Even if f,g are both monic, there

may not exist a monic polynomial h in L[y] such that (f,g) = (h) holds.
Consider for instance f =y + a“ (assuming that 2 is invertible in ) and
g=y+1 Whereae]Lsat/sf/esa =a,a+0anda+1.

Remark
In practice, polynomial GCDs over DPF are computed via the D5 Principle.
Moreover, only monic GCDs are useful. So, we generalize:

Definition
Let L be a DPF and f,g € L[y]. A GCD of f,g in L[y] is a sequence of
pairs ((h;,L;),1<i<s) such that
> IL; is a DPF, for all 1 </ <s and the direct product of Ly,...,Ls is
isomorphic to L,
» h; is a null or monic polynomial in L;[y], for all 1<i<s,
> h; is a GCD (in the above sense) of the projections of f,g to L;[y], for
all1<i<s.



Polynomial GCDs over DPF, quasi-inverses (Il)

Definition
Let L be a DPF and let f e L. A quasi-inverse of f is a sequence of pairs
((gi,L;j),1<i<s) such that
» IL; is a DPF, for all 1 </ <s and the direct product of Ly,...,Ls is
isomorphic to L
» giel;, forall 1<i<s,
> let f; be the projection of f to IL;; either f; = g; =0 or f;,g; = 1 hold, for
all1<i<s.

Proposition

Let T cK[xy,...,x,]| be a Lazard triangular set such that (T) is radical.

We define L = K[xq, ..., x,]/(T).

(1) Forall f e K[x1,...,xn] (reduced w.r.t. T) one can compute a
quasi-inverse in L of f (regarded as an element of ).

(1) For all f,gelL]y] one can compute a GCD of f and g in L[y].



Equiprojectable decomposition

Remark
Not every variety is equiprojectable, for instance V = {(0,1),(0,0),(1,0)}.

Definition o
Let V c A"(K) be finite. Consider the projection 7: V — K which
forgets x,. To every x € V we associate

N(x) = #r (n(x)).

We write V = G u--U Cy where C;={x €V | N(x)=i}. This splitting
process is applied recursively to all varieties Gy, ..., Cy.

In the end, we obtain a family of pairwise disjoint, equiprojectable varieties,
whose reunion equals V. This is the equiprojectable decomposition of V.

Proposition
Let V(F) c A"(K) be finite with F c K[xy,...,x,]. There exist Lazard
triangular sets T*,..., T° c K[xy,...,x,] such that

VIF)=V(TH u-~u V(T®) and i#j = V(T n V(T) =0

They form a triangular decomposition of V(F).



Equiprojectable variety definition (1/3)




Equiprojectable variety definition (2/3)




Equiprojectable variety definition (3/3)
















Generalizing Lazard triangular sets

Remark
Let T={T1,...,Ta} cK[x1,...,xn] be a Lazard triangular set. Let
Z:=(T). We have shown that given p e K[xi, ..., ],

o one can decide whether p € Z. Indeed T is a Grébner basis of T.
o assuming T radical, one can decide whether p~* mod T exists. Indeed
K[x1,...,%.]/Z is a DPF.

We aim at:
» first, relaxing the hypothesis 1c(T;,x;) =1, for all 1 < i< n,
> second, relaxing the as many polynomials as variables constraint.

while preserving a triangular shape together with the above
algorithmic properties.



Zero-dimensional regular chains

Definition

Asubset C = {Cy,...,C} c K[xg < <x,]isa
zero-dimensional regular chain if for all / = 1---n we have

(1) C,' € K[Xl, . 7X,':|,

(2) deg(C,-,x,-) >0,

(3) hi:=1c(Ci,x;) is invertible modulo the ideal (Cy,..., Ci1).

Proposition

Let C cK[xi,...,x;] be a zero-dimensional regular chain. There exists a
Lazard triangular set T c K[xq,...,x;] such that (C) =(T).

Proof.

By induction on n.

- For n=1 we have Ty = 1c(C1)71C1 and the claim follows clearly.
- For n>1 we compute h, the inverse of h, modulo (T1,..., Th-1) and
observe R
(T17 R Tn—la hnCn) = <T17 teey Tn—17 Cn)



The Dahan-Schost Transform (1)

Proposition
Consider T ={T1,..., T,} a Lazard triangular set. Assume T generates a
radical ideal. Let D; =1 and Ny = Ty. For 2 </ < n, define

Dg = ngigé—l% mOd(Tl,...,Tg,1>
Ng = Dng mOd(Tl,...,Tg_1>

Then N ={Ni,...,N,} is a zero-dimensional regular chain with (T) = (N}).

Remark
The results of (Dahan & Schost, 2004) ‘“essentially” show that the height
(or “size") of each coefficient in N is upper bounded by
> the height of V(T) if K=Q, that is the minimum size of a data set
encoding VV(T),
» the degree of V(TV) if K is a field k(ty,...,tn) of rational functions
and TV is T regarded in k[ti,..., tm X1,...,Xn].
See the authors’ article for precise statements.



The Dahan-Schost Transform (11)
 Consider the system F (Barry Trager)
X +y® -3y -1=5y*-3=20x+y-2z=0

We solve it for z <
« V(FY is cauiprojactable and its Lazard triangular et is

e oo
B ADA167255600 3677060419555 2103072377 18310061 6013730 6104 316 1673205215037 07 1500203686402 A 150489360510 390 128642032 01E2220ASA0EA7300000000000000,

aII05T 372000 BT 303045001 DL RSSO0 01 302 A4S 290030510601 TSSO 342740000 AD A1 S60081 442973080 HLHIREL1801 100007 28 8GRI 309104 94240312551 i
e TG 35 474450 01T 0T o 51 260 553 o T mosr oot -,

1mmwmsmzxmmwsmw|smm«m|7&4mzmsxxAsm:«2wxJsmnmsmwnwmzwxmzsmw|mummmzuwswmnmzmw|mwsmssmmwxmmmrAszamznsamuz‘

7»15&2mnmst&vmsmmnmsmmxstm«s&wmmvw:7m7m117nsasm7mu1ms52ynsmmma:«zmb«wAmzmmw@lmzmmﬂwm«szzmsummysanm:m:mxImmmsm\mnsumi
T T 08T a4 BA LT84 B30 0301 2008 SO E IS 013102183 G000 09331600000

177nmsusanm2snmmswsnnﬂsv&uwimmwummmswsmnmw1mzwu&sm50xsmzmummnmwzmmnsmmmmm7mﬂMmlmzmwwzmzwmmnw”
:s’nsnwaqswzmmsmumxszmsmmw‘mﬂmmumwm1s'nzmsmvsmwmnwzmmnnmum1wmmwm\mouzmzmwssanmwxnnmmsmmnmsmmz“;’E

uw06Buvuumswzuzummnmmwsmmwmmnmmaums:mamszu&smsmmwsmm1wvmnmumx07vﬂmv2752mxzwnmmvmwnm|mAmmmwﬂmnmsvsnux

15231xJ:«wssuvmw:«mwswmznszumumma«mmm1wxAm1Am;eusxsuawsmzmmzwswuﬂ|Axvboa51uwmwmmzmmvmwsm1wrmvnnsmmmnmmmnmm‘“»v
D001 005072997 665453600211 2503524003 245858751 112792300171 TOA0 24531631 DDOAS 30045690 T5010904635 .yxmmmmmm:nmmssmzmmzgmm‘smmnwsmnammmgg

1mnm-ssﬂsmzmwsanmummzammmssszmwmm7Aw1mx%vmnmnummmxzo«mmvmzmmnszxusn17xvz«mzm2m1693wzm2msmmmxz7957:7mvo%mssmzmzmmnm'

310 A0S 006 38T T30 OB 1T 3604150007148 TOO T LSOO LA BB TOBOTSE SO0 STE L35+
T T TSR 234001232639 4831 2T 558 83503511 AT TS50
L0 SSRONRTSE 14745022 20000000: 05 20KE00000002S 9000000000000

T sz comon - 0ROt -

« Applying the transformation of Dahan and Schost leads to 1787 characters.

> 09 1 (-a8e1%) 1 (-192000000514) + (- BOTB/) 511+ (-5451200000719) 1 614400000000000:% +

v

Jvulwwnmmw}w:zwnm“ + muqnw.” + mwnwm“ (= wmqun,“'y - IMEAWET!EMQDD:‘! +
| e e mmmmwmmn
L S P it

« 0 N
» 220+ (-3l + (-12000000:15) + (~(3228599982/5):12) + (~4s0200000s11) + 61430000000000:10 +

)e .

« One can do better! Here's the regular chain produced by the
Triangularize algorithm of the RegularChains library, counting 963
characters.

eciyer

(o ot s
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Plan

Pseudo-division, subresultants and division-free Euclidean algorithms



» Throughout this section, we consider a commutative ring A with
identity element, a symbol x and the ring A[x] of the univariate
polynomials in x with coefficients in A.

*» Let a, b e A[x] be univariate polynomials such that b has a positive
degree w.r.t. x.

Definition

We say that a polynomial q € A[x] (resp. r € A[x]) is a pseudo-quotient
(resp. pseudo-remainder) of a by b if there exists a non-negative integer
e and a polynomial r € A[x] (resp. g € A[x]) such that we have

le(b)a=gb+r and (r=0 or deg(r)<deg(b)). (2)

Proposition

Assuume that the leading coefficient of is regular. We define

e =min(0,deg(a) —deg(b) +1). Then there exists a unique couple (q,r)
of polynomials in A[x] such that q and r are a pseudo-quotient and a
pseudo-remainder of a by b. The polynomial q (resp. r) is called the the
pseudo-quotient (the pseudo-remainder) of a by b and denoted by
prem(a, b) (pquo(a, b)). The map (a,b) — (q,r) is called the
pseudo-division of a by b. In addition, the following algorithm computes
this couple.



Input: a,be A[x] with b ¢ A.

Output: g, r € A[x] satisfying Relation (2) with
e =min(0,deg(a) — deg(b) +1).

r:=a

qg:=0

e := max(0,deg(a) — deg(b) + 1)

while r 0 or deg(r) > deg(b) repeat
d:= deg(r) deg(b)

t:=lc(r)y?

g :=le(b)g+t

r:=le(b)r-tb

e=e-1

= le(b)°r
=le(b)°q

return (q,r)




Proposition
Let T be an ideal of A and d € A a regular element. Let a, b, q, r € A[x]
be univariate polynomials such that the following properties are satisfied:

(i) b has a positive degree w.r.t. y and lc(b) is not a zero-divisor in A,
(if) g and r are the pseudo-quotient and pseudo-remainder of a w.r.t. b
in A[x],
(iii) aeZI[x] holds,

Them we have:
geZI[x] and reZ[x].



Resultant (recall 1/2)

Let P, Q € A[x] be two non-zero polynomials of respective degrees m and n
such that n,m > 0. Suppose that

P=a,x"+-+a;x+ag and Q= b,x"+--+ bix+ by.

The Sylvester matrix of P and @ is the square matrix of order n+ m with
coefficients in R, denoted by sylv(P, Q,x) and defined by

Ca, b, S
am-1 am bs-1 by
am bl
SylV(Pv Q»X) = 3"3_1 & b b
: : : (] n
do b,,,l
ao : :
| ao by

whose determinant, denoted by res(P, Q, x), is the resultant of P and Q.



Resultant (recall 2/2)

Proposition

If A is a unique factorization domain (UFD), then gcd(P, Q) is
nonconstant in A[x] if and only if res(P,Q,x) =0 in A.

Example

Let P = ax?+ bx + ¢ and let Q = 2ax + b be the derivative of P w.r.t x.
Then the Sylvester matrix of P and @ w.r.t x is

a 2a 0
S=| b b 2a
c 0 b

whose determinant is det(S) = a(4ac — b%). Whenever 2+ 0, P and @
have a common solution (or equivalently, P = 0 has a solution of
multiplicity 2) if and only if the resultant res(P, Q, x) is zero.



Definition (Determinantal polynomial)

Let m < n be positive integers. Let M be a m x n matrix with coefficients in A.
Let M; be the square submatrix of M consisting of the first m—1 columns of M
and the i-th column of M, for i = m---n; let det M; be the determinant of M;. The
determinantal polynomial of M, denote by dpol(M), is a polynomial in A[x],
given by

dpol(M) = det Mppx"™™ + det M1 x™ ™1 + o + det M,,.

If dpol(M) is not zero then its degree is at most n— m.

Notation
Let P1,..., Py be polynomials of A[x] of degree less than n. We denote by
mat(Py,. .., Pn) the mx n matrix whose i-th row contains the coefficients of P;,

sorting in order of decreasing degree, and such that P; is treated as a polynomial
of degree n—1. We denote by dpol(P4,..., Py) the determinantal polynomial of
mat(Pl, ey Pm)

Example

Let n=4, m=2, P; = azx®

+ayx? + a1x + ag and Py = box? + byx + by. Then

YR

with
a a as  ao

_| a3 a _ _
MQ—[O b2:|,M3—|:O bl],andM4—[o b():|

Consequently, we have dpol(P1, Py) = asbyx? + azbyx + asby.



The notion of subresultants is a refinement of that of resultant. To define
subresultants of two polynomials we need the following definition.
Definition

Let P, Q € A[x] be non-constant polynomials of respective degrees m, n
with m < n. Let k be an integer with 0 < k < m. Then the k-th
subresultant of P and Q, denoted by Sx(P, Q), is

Sk(P, Q) = dpol(x"* 1P xnk=2p . P x™k1Q,.... Q).

» Observe that if Sx(P, Q) is not zero then its degree is at most k.
Indeed the underlying matrix has m+ n— 2k rows and m+n -k
columns. Nence Sk(P,Q) has (m+n—-k)—-(m+n-2k)+1=k+1
terms.

» When S¢(P, Q) has degree k, then it is said regular; when
Sk(P,Q) #0 and deg(Sk (P, Q)) < d, Sk(P, Q) is said defective.

It is easy to show that Sp(P, Q) is res(P, Q, x), the resultant of P and Q.



Example
Let P = bpx® + byx + by and Q = asx® + ayx? + a1x + ag. Then

by by by
by by by
So(P, Q) = dpol(x*P,xP, P,xQ, Q) = dpol( by by by |)

a3 d a1 4o
a d a1 Ado
= bpa2b? - 2b3asb b2asby + b3a2 + 3b b1by — bybparasby — by b3
= D2ay by — £D3a200d0 — a20pazb1 + byag + 5b2a0a3 D100 — D1D2a13200 — D1Dya1a0

+ b2ajazbg + baasbZag — asbiag + bob3a® — 2byaashi + a3 by

and

by by by
51(P, Q) =dpol(xP, P, Q) = dpol( by b1 by |)
dz dp 41 ao
= (b%al - bga3b0 - bgazbl + a3bf)x - b222b0 + bgao + a3b1bo.

In particular, when P = x(x —3) =x?-3x and Q = x(x - 1)(x+1) = x3 - x2,
we have So(P, Q) =0 and S;(P, Q) = 6x, which in fact reflects

ged(P, Q) = x.



Proposition

Assume A is a UFD and let P, Q be polynomials in A[x] with degrees m
and n. If for some 0 < k < min(m, n), we have S,(P, Q) # 0 and
Si(P,Q) =0 for all i < k, then deg(gcd(P, Q)) = k holds.

In fact, Sk(P, Q) is similar to gcd(P, Q) in the sense that there exist
nonzero constants « and (3 in A such that o gcd(P, Q) = 8 Sk(P, Q)
holds.

According to the above proposition, Sy is a regular subresultant, and we
usually call it the /ast nonzero subresultant of P, Q.



Plan

Division-free Euclidean algorithms



Notations
We review the previous notions with a couple variable renaming.
> Let B be another commutative ring with identity and let m < n be
positive integers.
> Let P, Q € B[y] be non-constant polynomials of respective degrees p, q
with g < p. Let d be an integer with 0 < d < q.
> Then the d-th subresultant of P and Q, denoted by Sy4(P, Q), is

S4(P, Q) = dpol(ya=4tP, ya=4=2p . P yP1Q,. ... Q).

> For convenience, we extend the definition to the g-th subresultant as
follows:

v(Q)Q, if p> g and lc(Q) € B is regular
undefined, otherwise

SQ(P*Q) :{

where v(Q) =1c(Q)P~91. Note that when p equals g, then
Sq(P, Q) =1c(Q)7Q is in fact a polynomial over the total fraction ring
of B.

We call specialization property of subresultants the following statement.

Proposition

Let A be another commutative ring with identity and W a ring
homomorphism from B to A such that W(1c(P)) # 0 and W(lc(Q)) # 0. Then

Sa(V(P),W(Q)) = W(S4(P, Q).

This property will play a central role later.



Divisibility relations of subresultants: integral domain case
Subresultants Sg_1(P, Q), Sq—2(P, Q). ..., So(P, Q) satisfy relations which
induce an Euclidean-like algorithm for computing them.

Following (Ducos, 1998) we first assume that B is an integral domain. For
convenience, we simply write Sy instead of Sy(P, Q) for each d. We write
A~ B for A, B € B[y] whenever they are associates over Fr(B) (the field of
fractions of B) that is, equal up to a non-zero element of Fr(B). Then for
d=qg-1,...,1, we have:

(rg-1) Sq-1=prem(P,-Q), the pseudo-remainder of P by -Q,

(reg-1) if Sq-1 # 0, with e = deg(S4-1), then the following holds:

prem(Q,-54-1) =1c(Q) (P=a)(a-e)+1 Se-1,

(re) if Sg-1 #0, with e =deg(Sy-1) < d -1, thus Sy_1 is defective, then we
have
(1) deg(Sq) =d, thus Sy is non-defective,
(2) Sg-1~Se and lc(Sd_l)d_e_ISd_l = s,97¢71S,, thus S. is non-defective,
(3) Sg—2=S4-3="+=8e41=0,
(re-1) if both Sy and S4-1 are nonzero, with respective degrees d and e then
we have prem(Sy, —Sg_1) =1¢(S4)* " Sey.



Convention. 1f p = deg(P) > deg(Q) = g. then 5, =le(Q)" 9 'Q where le is the lead-
ing coefficient. OF course, if p= g, the coefficients of S, belong to Frac(R), but the
leading coefficient s, =le(Q)” ™ always belongs to R.

Subresultant algorithm. (see 2, 3. 8] or [12])
Inputs: PO = RIX] deg(FP) = deg() = 1
Output: List of non-zero subresultants of & and Q

&+ empty list
§ e Lo QyEeF I dn0)
A O Be—prem(P.—Q)
loop
d — deg(d);e — deg(B)
— here, A~ Sy if d = deg(Q) —
— here, A=5,;  if d< dep(() —
— here, B=58, yi=le(8) for d < dep(Q) —
if #=0 then return 5
S [BlUS
— here, §=[8;_ 5. 8...] —
d—d—e
if 41 then C—
else C— 8
— here, C=58,,8=[8,..] —
if ¢ =10 then retun §
B'_prem{A,—B}
LlefA)
— here, B=5,, —
A4—C
5 le(d)
end loop

G 1
—l‘:{‘;’ Eseicus




Divisibility relations of subresultants: non-integral domain
case

We consider now the case where B is an arbitrary commutative ring,
following Theorem 4.3 in (El Kahoui, 2003). If Sy, S4-1 are nonzero, with
respective degrees d and e and if sy is regular in B then we have

1C(5d_1)d_e_15d_1 = de_e_lse.
Moreover, there exists Cy € B[y] such that
(—1)d71 lC(Sd_l)Sesd + Cde_l = IC(Sd)zse_l.

In addition Sy_» = Sy_3 = -+ = S¢41 = 0 also holds.
From these formula we derive the following observation to which we will refer
as the block structure of subresultants.

Proposition
Let S;, 5, Sk be three non-zero subresultants with indices g >i>j >k >0.
Assume that forall ¢ =i-1,...,j+1,j-1,...,k+1 we have Sy =0. Assume

that S; is defective. Then S; is non-defective and we have j =i —1. Moreover
Sk is non-defective and we have S; ~ Si. Observe also that the non-zero
subresultant Sy of smallest index d, sometimes called the last subresultant of
P and Q and denoted by Isr(P, Q), is a non-defective subresultant.



Plan

Computing regular GCDs



Regular GCD (recall)

> Let B again be a commutative ring with units. Let P, Q € B[y] be
non-constant with regular leading coefficients.

» We say that G € B[y] is a r egular GCD of P, Q if we have:
(i) 1e(G,y) is a regular element of B,

(if) Ge(P,Q)inB[y],
(iii) deg(G,y)>0 = prem(P,G,y)=prem(Q,G,y)=0.
» In practice B =K[xq,...,x,]/Sat(T), with T being a regular chain.

> Such a regular GCD may not exist. However, we shall see that one
can compute Z; = Sat(T;) and non-zero polynomials G; such that

VT = NS oVZ and G; regular GCD of P,Q mod Z;



Regularity test

> R egularity test is a fundamental operation:
Regularize(p,Z) — (Za,...,Ze)
such that:
VI = NZoVZ; and peZ; or p regular modulo Z;

> Regularity test reduces to r egular GCD computation.



v

v

v

v

Regular GCDs (1/6)

Let P, Q € K[x][y] with mvar(P) = mvar(Q) = y.
Define R =res(P, Q,y).

Let T c K[xi,...,x,] be a regular chain such that
> ReSat(T),
> init(P) and init(Q) are regular modulo Sat(T).

A=K[x,...,x,] and B=K[xy,...,x,]/Sat(T).

For 0 <j <mdeg(Q), we write S; for the j-th subresultant of P, Q in
Aly].



Regular GCDs (2/6)

» Let 1< d < g such that SjeSat(T) forall 0<j<d.
Proposition
Iflc Sq,y is regular modulo Sat(T), then Sy is non-defective over K[x].

» Consequently, Sy is the last nonzero subresultant over B, and it is
also non-defective over B.

» If 1c(S4,xn) is not regular modulo Sat( T) then Sy may be defective
over BB.



Regular GCDs (3/6)

» Let 1< d < g such that SjeSat(T) forall 0<j<d.

Proposition
Iflc Sy, y is in Sat(T), then Sy is nilpotent modulo Sat(T).

» Up to sufficient splitting of Sat(T), Sy will vanish on all the
components of Sat(T).

> The above two lemmas completely characterize the last non-zero
subresultant of P and @ over B.



Regular GCDs (4/6)

Example

» Consider P and Q in Q[x1,x][y]:

P:x22y2—x{1 and Q:X12y2—x4

» We have:

Si=x?-x§ and R=(x{-x5)%
» Let T ={R}. Then we observe:

>

The | ast subresultant of P, Q modulo Sat(T) is S1, which is a
defective one.

S1 is n ilpotent modulo Sat(T).

>

» P and Q do not admit a regular GCD over Q[xy, x2]/Sat(T).



Regular GCDs (5/6)

» Let 1<d<qsuchthat SjeSat(T) forall0<j<d.

Proposition
Assume

> 1cSq, y is regular modulo Sat(T),
> Sat(T) is radical.

Then, S4 is a regular GCD of P, @ modulo Sat(T).



Regular GCDs (5/6)

» Let 1<d<qsuchthat SjeSat(T) forall0<j<d.

Proposition
Assume
> 1cSq, y is regular modulo Sat(T),
> Sat(T) is radical.
Then, S4 is a regular GCD of P, @ modulo Sat(T).
Recall that Sy regular GCD of P, Q modulo Sat(T) means

(i) 1c(Sq,y) is a regular element of B,
(i) Sa€(P,Q)inB[y],
(i) deg(S4,y)>0 = prem(P,Sy4,y)=prem(Q,Sq,y) = 0.



Regular GCDs (5/6)

» Let 1<d<qsuchthat SjeSat(T) forall0<j<d.

Proposition
Assume

> 1cSq, y is regular modulo Sat(T),
> Sat(T) is radical.

Then, S4 is a regular GCD of P, @ modulo Sat(T).

Proposition
Assume

> 1cSq, y is regular modulo Sat(T),
> for all d < k < q, coeff(Sk, y*) is either O or regular modulo Sat(T).

Then, S4 is a regular GCD of P, @ modulo Sat(T).



Regular GCDs (6/6)

» Assume that the subresultants S; for 1 < j < g are computed.

» Then one can compute a regular GCD of P, @ modulo Sat(T) by
performing a bottom-up search.




Plan

Regular chains in arbitrary dimension



Triangular sets and auto-reduced sets
Definition
A subset Bc K[X]\K is

- a triangular set if for all f,g € B we have f #+ g = mvar(f) # mvar(g),
- auto-(pseudo-)reduced if all b€ B is pseudo-reduced w.r.t. B~ {b}.

Proposition
Every auto-reduced set is finite and is a triangular set.

Notation

Let f e K[X] and B c K[X] \ K an auto-reduced set. If B = @ we write
prem(f, B) = f. Otherwise let b € B with largest main variable; we write
prem(f, B) = prem(prem(f, b), B~ {b}). For AcK[X] write

prem(A, B) = {prem(a, B) | a€ A}.

Example
For instance, with T3 = {x;(x1 = 1), x1x2 —= 1} and p = x3 + x;x + x?, we have

prem(p, T) = prem(prem(p, Ty,), Tx) = plrem(xf1 + X12 +1, T)=2x +1.

where T, =x1(x1—1) and T,, =x1x2 - 1.



The saturated ideal of a triangular set (1/3)

Definition
Let T c K[X] be a triangular set. The set

Sat(T) ={feK[X] | (3eeN) h5-fe(T)}
is the saturated ideal of T. ( Clearly Sat(T) is an ideal.)

Proposition
Let T c K[X] be a triangular set and f € K[X]. We have

prem(f, T)=0 = feSat(T).
Remark
The converse is false. Consider n>2 and
T=0a(a-1),xx -1}
Consider p= (x1 —1)(xax0 = 1) and g = —=(x1 — 1)x1x2. We have:
prem(p, T) = prem(q, T) = 0.

However, we have p+q=1-x, prem(p+q, T)+0 but p+qeSat(T),
since Sat(T) is an ideal. Note that Sat(T) = (x3 - 1,x —1).



The saturated ideal of a triangular set (2/3)

e Consider again for x>y >a>b>c>d>e>f>g>h>|

ax+ by —c gx+hy —i
F={ dc<+ey—f and T={ (hd-eg)y—id+fg
gx+hy—i (ie—fh)a+(ch—ib)d+(fb—ce)g

e Using Grobner basis computations, one can check the following
assertions for this example:

Sat(T) = (F).

Sat(T) is an ideal stricly larger than (T).

- Infact (T) c Sat(T) n (g, h,i),

- and none of Sat(T) or (g, h,i) contains the other.



The quasi-component of a triangular set

Definition
Let T c K[X] be a triangular set. Let ht be the product of the initials of
T. The set ’ W(T)=V(T)~V({{ht}) ‘ is the quasi-component of T.

Remark

Clearly W(T) may not be variety. Consider n=2 and T = {xyx;}. We have
ht =x1 and W(T) is the line xo =0 minus the point (0,0).

Observe that Sat(T) = (x2).

Proposition
For any triangular set T c K[X] we have

W(T) =V (Sat(T)).

Remark
Consider
T =3 —x1,x18 — 2x0x3 + 1, (xax3 — 1)xg + X2 }.

We have W(T) =2 =V(T).



Regular chains

Definition

Let Z be a proper ideal of K[X]. We say that a polynomial p e K[X] is
regular modulo Z if for every prime ideal P associated with Z we have p ¢ P,
equivalently, this means that p is neither null modulo Z, nor a zero-divisor
modulo 7.

Definition

Let T={Ty,..., Ts} be a triangular set where polynomials are

sorted by increasing main variables.

The triangular set T is a regular chain if for all i = 2---s the initial of T; is
regular modulo the saturated ideal of T;,... T;_;.

Proposition

If T is a regular chain then Sat(T) is a proper ideal of K[ X] and, thus,
W(T) = 2.



The saturated ideal of a triangular set (3/3)

Theorem
(Aubry, Lazard & M., 1997) Let C c K[X] be an
auto-(pseudo- )reduced set. Then, we have

Sat(C) = {p | prem(p,C) =0}

C regular chain



Reduction to dimension zero (1/2)

Theorem

(Chou & Gao, 1991), (Kalkbrener, 1991), (Aubry, 1999), (Boulier,
Lemaire & M., 2006) Let T = {Tg441,..., Tn} be a triangular set. Assume
that mvar(T;) = x; for all d +1 < i< n and assume Sat(T) is a proper ideal
of K[X]. Then, every prime ideal P associated with Sat(T) has dimension d
and satisfies

P N K[xl,...,xd] = <0)

Corollary

With T as above. Consider the localization by K[xi,...,x4] ~ {0}; in other
words, we map our polynomials from K[x,...,x,] to

K(X1,y -y Xd)[Xda1s-- -5 Xn]-

Let Ty be the image of T. Let p e K[x1,...,xn] and pg its image in
K(x1,...,%d)[Xd+1s- - -+ Xn]. Assume p non-zero modulo Sat(T). Then, the

following conditions are equivalent:

(1) p is regular w.r.t. Sat(T),
(2) po is invertible w.r.t. Sat(Tp).

In particular T is a regular chain iff Ty is a (zero-dimensional) regular chain.



Reduction to dimension zero (2/2)

Remark

Consequently, we can generalize to positive dimension our computations of
polynomial GCDs defined previously over zero-dimensional regular chains.
(Indeed, It is also possible to relax the condition Sat(Ty) radical.)

Notation

Let T is a regular chain and F c K[ X] be a polynomial set. We denote by
Z(F, T) the intersection V(F)nW(T), that is the set of the zeros of F that
are contained in the quasi-component W(T). If F = {p}, we write Z(p, T)
for Z(F,T).

Proposition

Let T be a regular chain. If p is regular modulo Sat(T), then Z(p, T) is
either empty or it is contained in a variety of dimension strictly less than the
dimension of W(T).




Plan

Incremental solving



Notations

» polynomial ring R =K[x; < -+ < x,]
> polynomial pe R
» mvar(p) : largest variable appearing in p

» init(p) : leading coefficient of p w.r.t. mvar(p)

> a polynomial set T c R\ K

» T is a triangular set if mvar(p) # mvar(q) forall p£qe T
» init(T): the product of the initials of polynomialsin T

» Sat(T):=(T):init(T)"

> an element p # 0 of a ring A is regular if p is not a zerodivisor in A

» atriangular set T = {t1,...,ts} is a regular chain if {t1,...,ts_1} is
a regular chain and init(t;) is regular in R/Sat(ty,...,ts-1)



Example

T { ty = (x% +x0)x3% +xg + 1
t1=x1°— 2.

Under the order x3 > x» > x1,
» mvar(ty) = x3 and init(t) = x1 + x2
» init(t) is regular(neither zero or zerodivisor) modulo (t1) : 1%° = (#;)
» T is a regular chain

init( T) := init(tp)init (1)

Sat(T):=(T):init(T)"

» quasi-component of T: W(T)=V(T)~ V(init(T)).

v

v



Triangular decomposition of an algebraic variety

Kalkbrener triangular decomposition

Let F c K[x]. A family of regular chains Ty,..., T, of K[x] is called a
Kalkbrener triangular decomposition of V/(F) if

V(F) = uiaW(Ti).

Lazard-Wu triangular decomposition

Let F c K[x]. A family of regular chains Ty,..., T, of K[x] is called a
Lazard-Wu triangular decomposition of V/(F) if

V(F) = U, W(T,).



Incremental algorithm and intersect operation

Intersect operation
» Let R=K[x1 < < Xp].
» Let pe R and T be a regular chain of R.
» Intersect(p, T, R) returns regular chains Ty,..., T, ¢ R such that

V(ip)nW(T)c W(T)u-—-uW(Te) < V(p)n W(T).

Triangularize(F, R)

» if F={} then return {@}
» Choose a polynomial p € F with maximal rank
» for T € Triangularize(F ~ {p}, R) do
output Intersect(p, T, R)
end



Specialization properties of subresultants

Theorem
Let H be a homomorphism from a ring R to a field L. Let p,t € R[y].

Let j be the smallest integer s.t. H(s;) # 0. Then
H(Sj) = ged(H(p), H(1)).



Properties of Regular GCD (1)

> Let R:=K[xq,...,xk-1], where 1 < k < n.
» Let T c K[xy,...,xk-1] be a regular chain.

» Let p,t, g € R[xx] be polynomials with main variable x.

Proposition
Assume T u{t} is a regular chain and g is a regular GCD of p and t in
R[xk]/\/Sat(T). We have:

V(p)n W(T ut) W(Tug)u V({p,hg})nW(Tut)

V(p) n W(T Ut).

N N



Properties of Regular GCD (lI)

» Let R:=K[xy,...,Xxk-1], where 1 < k <n.
» Let T cK[xy,...,xk1] be a regular chain.

> Let p,t,g € R[xk] be polynomials with main variable x.
Theorem
There exists finitely many regular chains Ty u gy,..., Te U ge such that
Vip)nW(Tut)cul W(T;ug)cV(p)nW(Tut),
where g; is a regular GCD of p and t in R[xx]/\/Sat(T;).

Remark
Note that for all T;, the regular GCD of p and t in R[xk]//Sat(T;) can
be computed by t he same subresultant chain of p and t.
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