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How triangular decompositions look like?

For the following input polynomial system:

F ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x2 + y + z = 1
x + y2 + z = 1
x + y + z2 = 1

One possible triangular decompositions of the solution set of F is:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

z = 0
y = 1
x = 0

⋃

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

z = 0
y = 0
x = 1

⋃

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

z = 1
y = 0
x = 0

⋃

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

z2 + 2z − 1 = 0
y = z
x = z

Another one is:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

z = 0
y2 − y = 0
x + y = 1

⋃

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

z3 + z2 − 3z = −1
2y + z2 = 1
2x + z2 = 1



An example in positive dimension

● Every prime ideal P = ⟨F ⟩ in a polynomial ring K[x1, . . . , xn] may be
represented by a triangular set T encoding the generic zeros of P.

F =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ax + by − c
dx + ey − f
gx + hy − i

≃ T =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

gx + hy − i
(hd − eg) y − id + fg
(ie − fh) a + (ch − ib)d + (fb − ce)g

● All the common zeros of every polynomial system can be
decomposed into finitely many triangular sets.

V(P) = W(T) ∪W

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

dx + ey − f
hy − i
(ie − fh) a + (−ib + ch) d
g

∪W

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

gx + hy − i
(ha − bg) y − ia + cg
hd − eg
ie − fh

∪W

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

x
(hd − eg) y − id + fg
fb − ce
ie − fh

∪W

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

ax + by − c
hy − i
d
g
ie − fh

∪ ⋯

where W(T ) denotes the generic zeros of T . We have : W(T ) ⊆ V(T ).



How to compute triangular decompositions?

● Consider again solving the system F for x > y > z :

F ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x2 + y + z = 1
x + y2 + z = 1
x + y + z2 = 1

● Eliminating x leads to {
y2 + (−1 + 2z2)y − 2z2 + z + z4 = 0

y2 + z − y − z2 = 0

● Eliminating y2 and then y we can arrive to r(z) = 0 with
r(z) = z8 − 4z6 + 4z5 − z4.
● Factorizing r(z) leads to z4(z2 + 2z − 1)(z − 1)2 = 0 and thus to z = 0,
z = 1 or z2 + 2z = 1. In each case, it is easy to conclude either by
substitution, or by GCD computation in (Q[z]/⟨z2 + 2z − 1⟩)[y].
● Alternatively, one can directly perform GCD computation in
(Q[z]/⟨r(z)⟩)[y]. But this is unusual since Q[z]/⟨r(z)⟩ is not a field!
Let us see this now.



Computing a polynomial GCD over a ring with
zero-divisors (I)

● Let us consider again the polynomials

{
f1 = y2 + (2z2 − 1)y − 2z2 + z + z4

f2 = y2 + z − y − z2

● Let us compute their GCD in L[y] with L = Q[z]/⟨s(z)⟩ where
s(z) = z(z2 + 2z − 1)(z − 1) is the squarefree part of r(z). (Replacing
r(z) with s(z) makes the story simpler.)
● We proceed as if L were a field and run the
Euclidean Algorithm in L[y]. Of course, before dividing by an element

of L we check whether it is a zero-divisor. We pretend we are not aware
of the factorization of s(z).

● Dividing f1 by f2 is no problem since f2 is monic. We obtain:
f1 f2
f3 1

with f3 = 2z2y − z2 + 2z2 − z .



Computing a polynomial GCD over a ring with
zero-divisors (II)

● In order to divide f2 by f3, we need to check whether 2z2 divides zero in
L. This is done by computing gcd(s(z),2z2) in Q[z], which is z .
● Hence s(z) writes z(z3 + z2 − 3z + 1) and we split the computations
into two cases: z = 0 and z3 + z2 − 3z = 1.
● Case z = 0. Then f3 = 0 and f2 = y2 − y is the GCD.

● Case z3 + z2 − 3z = −1. Since S(z) is square-free, 2z2 has an inverse
in this case, namely i(z) = −(3/2)z2 − 2z + 4.
● Thus, the polynomial f̃3 = i(z)f3 = y + (1/2)z2 − (1/2) is monic. So, we

can compute
f2 f̃3
0 y − (1/2)z2 − (1/2)

.

● Finally gcd(f1, f2,L[y]) = {
y2 − y if z = 0
2y + z2 − 1 if z3 + z2 − 3z = −1



How those triangular sets look like? (I)

● Let us consider again the system {
y2 + (−1 + 2z2)y − 2z2 + z + z4 = 0

y2 + z − y − z2 = 0

● Let α1 and α2 be the roots of z2 + 2z − 1 = 0. After dropping
multiplicities, we obtain (z , y) ∈ {(0,0), (0,1), (α1, α1), (α2, α2), (1,0)}.

y

z



How to pass from one triangular decomposition to
another?

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

z = 0
y = 1
x = 0

⋃

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

z = 0
y = 0
x = 1

⋃

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

z = 1
y = 0
x = 0

⋃

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

z2 + 2z − 1 = 0
y = z
x = z

↓ CRT ↓
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

z = 0
y2 − y = 0
x + y = 1

⋃

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

z = 1
y = 0
x = 0

⋃

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

z2 + 2z − 1 = 0
y = z
x = z

↓ CRT ↓
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

z = 0
y2 − y = 0
x + y = 1

⋃

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

z3 + z2 − 3z = −1
2y + z2 = 1
2x + z2 = 1



From a lexicographical Gröbner basis to a triangular
decomposition (I)

● Let us consider again (last time) the polynomials

{
f1 = y2 + (2z2 − 1)y − 2z2 + z + z4

f2 = y2 + z − y − z2

● It is natural to ask how we could obtain a triangular decomposition
from the reduced lexicographical Gröbner basis of {f1, f2} for y > z . This

basis is:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

g1 = z6 − 4z4 + 4z3 − z2

g2 = 2z2y + z4 − z2

g3 = y2 − y − z2 + z
● We initialize T ∶= {g1}. We would add g2 into T provided that
lc(g2, y) is a unit.



From a lexicographical Gröbner basis to a triangular
decomposition (II)

● So, we compute gcd(2z2,g1,Q[z]) = z2. This shows
g1 = z2(z4 − 4z2 + 4z − 1) and splits the computations into two cases.

● Case z2 = 0. In this case g2 vanishes and g3 = y2 − y + z , leading to
T 1 ∶= {z2, y2 − y + z}

● Case z4 − 4z2 + 4z − 1. In this case lc(g2, y) has
2z3 + (1/2)z2 − 8z + 6 for inverse. Multiplying g2 by this inverse leads to
g̃2 = y + (1/2)z2 − (1/2). Then, we observe that
g3 g̃2
0 y − (1/2)z2 − (1/2)

leading to a second component

T 2 ∶= {z4 − 4z2 + 4z − 1,2y + 1z2 − 1}.
● For more details: (Gianni, 1987), (Kalkbrener, 1987), (Lazard,
1992).



Some notations before we start the theory (I)

Notation
Throughout the talk, we consider a field K and an ordered set
X = x1 < ⋯ < xn of n variables. Typically K will be

- a finite field, such as Z/pZ for a prime p, or
- the field Q of rational numbers, or
- a field of rational functions over Z/pZ or Q.

We will denote by K the algebraic closure of K.

Notation
We denote by K[x1, . . . , xn] the ring of the polynomials with coefficients in K
and variables in X . For F ⊂ K[x1, . . . , xn], we write ⟨F ⟩ and

√
⟨F ⟩ for the

ideal generated by F in K[x1, . . . , xn] and its radical, respectively.

Notation
For F ⊂ K[x1, . . . , xn], we are interested in

V (F ) = {ζ ∈ K
n
∣ (∀f ∈ F ) f (ζ) = 0},

the zero-set of F or algebraic variety of F in K
n
.

Remark
In some circumstances K

n
will be denoted An(K), especially when we

consider several n at the same time.



Some notations before we start the theory (II)

Notation
Let i and j be integers such that 1 ≤ i ≤ j ≤ n and let V ⊆ An(K) be a variety

over K. We denote by πj
i the natural projection map from Aj(K) to Ai(K),

which sends (x1, . . . , xj) to (x1, . . . , xi). Moreover, we define Vi = π
n
i (V ).

Often, we will restrict πj
i from Vi to Vj .

Notation
The algebraic varieties in K

n
defined by polynomial sets of K[x1, . . . , xn] form

the closed sets of a topology, called Zariski Topology. For a subset
W ⊂ K

n
, we denote by W the closure of W for this topology, that is, the

intersection of the V (F ) containing W , for all F ⊂ K[x1, . . . , xn].

Notation
For W ⊂ K

n
, we denote by I (W ) the ideal of K[x1, . . . , xn] generated by the

polynomials vanishing at every point of W .

Remark
When K = K and W = V (F ), for some F ⊂ K[x1, . . . , xn], recall the Hilbert
Theorem of Zeros: √

⟨F ⟩ = I (V (F )).



Lazard triangular sets

Definition
(Lazard, 1992) A subset

T = {T1, . . .Tn} ⊂ K[x1 < ⋯ < xn]

is a Lazard triangular set if for i = 1⋯n

Ti = 1 xdi

i + adi−1 xdi−1
i +⋯ + a1 xi + a0

with
adi−1, . . . , a1, a0 ∈ k[x1, . . . , xi−1].

reduced w.r.t ⟨T1, . . . ,Ti−1⟩ in the sense of Gröbner bases.

Theorem
A family T of n polynomials in K[x1 < ⋯ < xn] is a
Lazard triangular set if and only it is the
reduced lexicographical Gröbner basis of a zero-dimensional ideal.



How those triangular sets look like? (II)

Notation
Let T = {T1, . . .Tn} ⊂ K[x1, . . . , xn] be a Lazard triangular set. Let V be
its variety in An(K). Let d1 = deg(T1, x1), . . . ,dn = deg(Tn, xn).

Notation
For 1 ≤ i < j ≤ n, recall that

πj
i ∶

Vj z→ Vi

(x1, . . . , xj) → (x1, . . . , xi)

where Vi = π
n
i (V ) and Vj = π

n
j (V ).

Proposition
For a point M ∈ Vi the fiber (i.e. the pre-image) (πj

i )
−1(M) has cardinality

di+1⋯dj , that is

∣(πj
i )
−1

(M)∣ = di+1⋯dj .



Equiprojectable varieties

Definition
Let i and j be integers such that 1 ≤ i < j ≤ n and let V ⊆ Aj(K) be a variety
over K. The set V is said

(1) equiprojectable on Vi , its projection on Ai(K), if there exists an

integer c such that for every M ∈ Vi the cardinality of (πj
i )
−1(Vi) is c .

(2) equiprojectable if V is equiprojectable on V1, . . . ,Vj−1.

Theorem
(Aubry & Valibouze, 2000) Assume K is perfect and let V ⊂ An(K) be
finite. Assume that there exists F ⊂ K[x1, . . . , xn] such that V = V (F ).
Then, the following conditions are equivalent:

(1) V is equiprojectable,
(2) There exists a Lazard Triangular set T ⊂ K[x1, . . . , xn} whose zero-set in

An(K) is exactly V .

Proof.
For proving (1)⇒ (2) one can use the interpolation formulas of (Dahan
& Schost, 2004) to construct a Lazard triangular set in K[x1, . . . , xn]. To
conclude, one uses the hypothesis K perfect, V = V (F ) together with the
Hilbert Theorem of Zeros.



The interpolation formulas: sketch (I)

● Let V ⊂ An(K) be (finite and) equiprojectable. Let K be a field, with
K ⊆ K ⊆ K such that every point of V has its coordinates in K.
● We have T1 =∏α∈V1

(x1 − α). Let 1 ≤ ` < n. We give interpolation formulas
for T`+1 from the coordinates (in K) of the points of V`+1, for 1 ≤ ` < n.
● Let α = (α1, . . . , α`) ∈ V`. We define the varieties

V 1
α = { β = (β1, . . . , β`, β`+1) ∈ V`+1 ∣ β1 ≠ α1}

V 2
α = { β = (α1, β2, . . . , β`, β`+1) ∈ V`+1 ∣ β2 ≠ α2}

⋯ ⋯ ⋯ ⋯ ⋯

V `
α = { β = (α1, . . . , α`−1, β`, β`+1) ∈ V`+1 ∣ β` ≠ α`}

V `+1
α = { β = (α1, . . . , α`, β`+1) ∈ V`+1 }

The sets V 1
α,V

2
α,V

3
α, . . . ,V

`
α,V

`+1
α form a partition of V`+1.

● The intermediate goal is to build Tα,`+1 = Ti(α1, . . . , α`, x`+1) ∈ K[x`+1].



The interpolation formulas: sketch (II)

● We consider also the projections

v1
α = π`+11 (V 1

α) = {(β1) ∈ V1 ∣ β1 ≠ α1}

v2
α = π`+12 (V 2

α) = {(α1, β2) ∈ V2 ∣ β2 ≠ α2}

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

v `α = π`+1` (V `
α) = {(α1, . . . , α`−1, β`) ∈ V` ∣ β` ≠ α`}

● For 1 ≤ i ≤ `, define eα,i ∶=∏β∈v i
α

(xi − βi) ∈ K[xi ] and

Eα ∶=∏1≤i≤` eα,i ∈ K[x1, . . . , x`].

● Then, we have:

Tα,`+1 = ∏β∈V `+1α
(x`+1 − β`+1)

T`+1 = Σα∈V`
EαTα,`+1
Eα(α)

● Related work: (Abbot, Bigatti, Kreuzer & Robbiano, 1999), . . .



Direct product of fields, the D5 Principle (I)

Proposition
Let f ∈ K[x] be a non-constant and square-free univariate polynomial.
Then L = K[x]/⟨f ⟩ is a direct product of fields (DPF).

Proof.
The factors of f are pairwise coprime. Then, apply the
Chinese Remaindering Theorem. (If f = f1f2 then
L ≃ K[x]/⟨f1⟩ ×K[x]/⟨f2⟩.

Principle. (Della Dora, Dicrescenzo & Duval, 1985) If L is a DPF,
then one can compute with L as if it were a field: it suffices to split the
computations into cases whenever a zero-divisor is met.

Proposition
Let L be a DPF and f ∈ L[x] be a non-constant monic polynomial such that
f and its derivative generate L[x], that is, ⟨f , f ′⟩ = L[x]. Then L[x]/⟨f ⟩ is
another DPF.

Proof.
It is convenient to establish the following more general theorem: A
Noetherian ring is isomorphic with a direct product of fields if and only if
every non-zero element is either a unit or a non-nilpotent zero-divisor.



Direct product of fields, the D5 Principle (II)

Proposition
Let T ⊂ K[x1, . . . , xn] be a Lazard triangular set such that ⟨T ⟩ is radical.
Then, we have

▸ K[x1, . . . , xn]/⟨T ⟩ is a DPF,
▸ if K is perfect then K[x1, . . . , xn]/⟨T ⟩ is a DPF.

Remark
Recall the trap! Consider F = Z/pZ(t), for a prime p. Consider the

polynomial f = xp − t ∈ F[x] and F an algebraic closure of F.
Since f is not constant, it has a root α ∈ F and we have

f = xp − t = xp − αp
= (x − α)p (1)

in F[x], which is clearly not square-free. However f is irreducible, and thus
squarefree, in F[x].



Polynomial GCDs over DPF, quasi-inverses (I)

Definition
(M. & Rioboo, 1995) Let L be a DPF. The polynomial h ∈ L[y] is a GCD
of the polynomials f ,g ∈ L[y] if the ideals ⟨f ,g⟩ and ⟨h⟩ are equal.

Remark
Another trap! Even if f ,g are both monic, there
may not exist a monic polynomial h in L[y] such that ⟨f ,g⟩ = ⟨h⟩ holds.

Consider for instance f = y + a+1
2

(assuming that 2 is invertible in L) and

g = y + 1 where a ∈ L satisfies a2 = a, a ≠ 0 and a ≠ 1.

Remark
In practice, polynomial GCDs over DPF are computed via the D5 Principle.
Moreover, only monic GCDs are useful. So, we generalize:

Definition
Let L be a DPF and f ,g ∈ L[y]. A GCD of f ,g in L[y] is a sequence of
pairs ((hi ,Li),1 ≤ i ≤ s) such that

▸ Li is a DPF, for all 1 ≤ i ≤ s and the direct product of L1, . . . ,Ls is
isomorphic to L,

▸ hi is a null or monic polynomial in Li [y], for all 1 ≤ i ≤ s,
▸ hi is a GCD (in the above sense) of the projections of f ,g to Li [y], for

all 1 ≤ i ≤ s.



Polynomial GCDs over DPF, quasi-inverses (II)

Definition
Let L be a DPF and let f ∈ L. A quasi-inverse of f is a sequence of pairs
((gi ,Li),1 ≤ i ≤ s) such that

▸ Li is a DPF, for all 1 ≤ i ≤ s and the direct product of L1, . . . ,Ls is
isomorphic to L

▸ gi ∈ Li , for all 1 ≤ i ≤ s,
▸ let fi be the projection of f to Li ; either fi = gi = 0 or figi = 1 hold, for

all 1 ≤ i ≤ s.

Proposition
Let T ⊂ K[x1, . . . , xn] be a Lazard triangular set such that ⟨T ⟩ is radical.
We define L = K[x1, . . . , xn]/⟨T ⟩.

(1) For all f ∈ K[x1, . . . , xn] (reduced w.r.t. T ) one can compute a
quasi-inverse in L of f (regarded as an element of L).

(1) For all f ,g ∈ L[y] one can compute a GCD of f and g in L[y].



Equiprojectable decomposition

Remark
Not every variety is equiprojectable, for instance V = {(0,1), (0,0), (1,0)}.

Definition
Let V ⊂ An(K) be finite. Consider the projection π ∶ V z→ K

n−1
which

forgets xn. To every x ∈ V we associate

N(x) = #π−1(π(x)).

We write V = C1 ∪⋯ ∪ Cd where Ci = {x ∈ V ∣ N(x) = i}. This splitting
process is applied recursively to all varieties C1, . . . ,Cd .
In the end, we obtain a family of pairwise disjoint, equiprojectable varieties,
whose reunion equals V . This is the equiprojectable decomposition of V .

Proposition
Let V (F ) ⊂ An(K) be finite with F ⊂ K[x1, . . . , xn]. There exist Lazard
triangular sets T 1, . . . ,T s ⊂ K[x1, . . . , xn] such that

V (F ) = V (T 1
) ∪ ⋯ ∪ V (T s

) and i ≠ j ⇒ V (T i
) ∩ V (T j

) = ∅.

They form a triangular decomposition of V (F ).



Equiprojectable variety definition (1/3)



Equiprojectable variety definition (2/3)



Equiprojectable variety definition (3/3)











Generalizing Lazard triangular sets

Remark
Let T = {T1, . . . ,Tn} ⊂ K[x1, . . . , xn] be a Lazard triangular set. Let
I ∶= ⟨T ⟩. We have shown that given p ∈ K[x1, . . . , xn],

○ one can decide whether p ∈ I. Indeed T is a Gröbner basis of I.
○ assuming I radical, one can decide whether p−1 mod I exists. Indeed
K[x1, . . . , xn]/I is a DPF.

We aim at:

▸ first, relaxing the hypothesis lc(Ti , xi) = 1, for all 1 ≤ i ≤ n,
▸ second, relaxing the as many polynomials as variables constraint.

while preserving a triangular shape together with the above
algorithmic properties.



Zero-dimensional regular chains

Definition
A subset C = {C1, . . . ,Cn} ⊂ K[x1 < ⋯ < xn] is a
zero-dimensional regular chain if for all i = 1⋯n we have

(1) Ci ∈ K[x1, . . . , xi ],
(2) deg(Ci , xi) > 0,
(3) hi ∶= lc(Ci , xi) is invertible modulo the ideal ⟨C1, . . . ,Ci−1⟩.

Proposition
Let C ⊂ K[x1, . . . , xi ] be a zero-dimensional regular chain. There exists a
Lazard triangular set T ⊂ K[x1, . . . , xi ] such that ⟨C ⟩ = ⟨T ⟩.

Proof.
By induction on n.

- For n = 1 we have T1 = lc(C1)
−1
C1 and the claim follows clearly.

- For n > 1 we compute h̃n the inverse of hn modulo ⟨T1, . . . ,Tn−1⟩ and
observe

⟨T1, . . . ,Tn−1, h̃nCn⟩ = ⟨T1, . . . ,Tn−1,Cn⟩.



The Dahan-Schost Transform (I)

Proposition
Consider T = {T1, . . . ,Tn} a Lazard triangular set. Assume T generates a
radical ideal. Let D1 = 1 and N1 = T1. For 2 ≤ ` ≤ n, define

D` = ∏1≤i≤`−1
∂Ti

∂xi
mod ⟨T1, . . . ,T`−1⟩

N` = D`T` mod ⟨T1, . . . ,T`−1⟩

Then N = {N1, . . . ,Nn} is a zero-dimensional regular chain with ⟨T ⟩ = ⟨N⟩.

Remark
The results of (Dahan & Schost, 2004) “essentially” show that the height
(or “size”) of each coefficient in N is upper bounded by

▸ the height of V(T ) if K = Q, that is the minimum size of a data set
encoding V(T ),

▸ the degree of V(T ↓) if K is a field k(t1, . . . , tm) of rational functions
and T ↓ is T regarded in k[t1, . . . , tm, x1, . . . , xn].

See the authors’ article for precise statements.



The Dahan-Schost Transform (II)

● Consider the system F (Barry Trager).

−x5 + y5
− 3y − 1 = 5y4

− 3 = −20x + y − z = 0

We solve it for z < y < x .
● V (F ) is equiprojectable and its Lazard triangular set is

▸

11474127946569256007468861967138822599454632253404776870051199476222619269004890144761853439484671057123097693465191381050813704562732917125293370932479130541598163953960078201654747916507320573574680356823040x−
1771260505008202862102854051702189834144507041921400912212854357946960933195335641858396501896935850288388698973423657024874890168951887006119520716403898588447265625000000000000z19+
6993494167255643877060419555161219397297718310661681373013610473433161675295215097739765468198629739368658992144459186504824936653303907728642932110182220458984375000000000000000z18+
46980330573720043696285723094038459435169014560960809457932826698816864853909365786661752359672134274602580990491031583381442373098978089863389116690573928381886816436810143422403125z17−
362457794998087226523064237197118238681455387434685379217170814307753153223785029557758914206492139656047158750881706208736371102082285270209948560334845112137055928302241429687500000z16+
1825588409831441292570286016853843732976447711290921201282663597873225040956392206905741146687704996955957543164892852708765201681735455663532400560561990184217739346093750000000000000z15+
15138417846066725118358222658899878896246722526651227781338839693046020627409354976198946514427454581361714047528896855158315263311055631123529796231583257599303710937500000000000000000z14−
44394335873903477558622382037619903399605543513019193984850811034401539767435244582975861827087564468519794770271434211676417079225209120663140736918184704321681411620260946061817664157500z13−
239889463831973885970439654459159240773157947028995584430781544269432684180568707791767576191787113033986469119189293532827387996841920408461551066623181822838810854143891280165251250000000z12+
2738339662798997128827712967353520807578712156161195412624338459316853569080754130154719452119622862823530609072130944805722667158059695598771740436061650119196713974446586975000000000000000z11−
15237133948658997778693395344596342126523231688102858941028295140149607477956051848066457333497202284356641427141996353739796250479018624174619989841534614074349477755996093750000000000000000z10+
48563913474106327770615609511108962756349408870293446119857242983280899281287041276597414703953142847110970543541965415369819771789164016371916892583484885932065222266474244223656870580763404750z9+
182770901475269211462030828375934181004032581754339209581456763239413822566355167569080400536438012882499416890307268474234594753941991910223913471336544588355841793697886482347774623132375000000z8+
309191296130950729973668595368021125635249693248658751381279239017170403224531631090451630403456902301090463541541208661015512101696917723097258264871336817986092045758275049045390250000000000000z7−
6838688396641645490945090868618366582490420637673970853279869471018348887091817749546675847593376908651767451450243404728169565283801174082247345442363224813502338696761842209062500000000000000000z6−
74815682380070752593065205631091355818115420146560706379886171073303776505335730603765529125626467971633284964641482528987570423158923499017031906462266550721041958679333491247172414080955401845651420z5−
154608045527569292338754337973797843824713701855230758768236174292780150592090630056630234512064066763987236066826571445077192641952424283276680662979283353386614928379571789390957015570270631450000000z4−
124695385819578642285275287975402015668994502200477065094640515598601115130175167063705343665239193213631330215705606292594773399242228508627801381881595789007869020418417852791444860110175000000000000z3−
66152659857188245320424888024222967738184293737891699176976594293187674688484864881423871033576765065422479234984449961643090211269389726039235842212801812250522818211946896210922615625000000000000000z2+
573598714920124956474610718803150703376812978417179178775576117319500000077857129232958889104193427114987500929833686714791341712743162700766075396541379832681132358445310329142895528887477470724804102079717z+
239787108649287987286424755607482454864690786827841184696976286133386057573817722098997859322480446751288360706756986017238407677469601203785469989972240351121714956603188344506951151541954650850823956500000

▸

573706397328462800373443098356941129972731612670238843502559973811130963450244507238092671974233552856154884673259569052540685228136645856264668546623956527079908197698003910082737395825366028678734017841152y−

1771260505008202862102854051702189834144507041921400912212854357946960933195335641858396501896935850288388698973423657024874890168951887006119520716403898588447265625000000000000z19+
6993494167255643877060419555161219397297718310661681373013610473433161675295215097739765468198629739368658992144459186504824936653303907728642932110182220458984375000000000000000z18+
46980330573720043696285723094038459435169014560960809457932826698816864853909365786661752359672134274602580990491031583381442373098978089863389116690573928381886816436810143422403125z17−
362457794998087226523064237197118238681455387434685379217170814307753153223785029557758914206492139656047158750881706208736371102082285270209948560334845112137055928302241429687500000z16+
1825588409831441292570286016853843732976447711290921201282663597873225040956392206905741146687704996955957543164892852708765201681735455663532400560561990184217739346093750000000000000z15+
15138417846066725118358222658899878896246722526651227781338839693046020627409354976198946514427454581361714047528896855158315263311055631123529796231583257599303710937500000000000000000z14−
44394335873903477558622382037619903399605543513019193984850811034401539767435244582975861827087564468519794770271434211676417079225209120663140736918184704321681411620260946061817664157500z13−
239889463831973885970439654459159240773157947028995584430781544269432684180568707791767576191787113033986469119189293532827387996841920408461551066623181822838810854143891280165251250000000z12+
2738339662798997128827712967353520807578712156161195412624338459316853569080754130154719452119622862823530609072130944805722667158059695598771740436061650119196713974446586975000000000000000z11−
15237133948658997778693395344596342126523231688102858941028295140149607477956051848066457333497202284356641427141996353739796250479018624174619989841534614074349477755996093750000000000000000z10+
48563913474106327770615609511108962756349408870293446119857242983280899281287041276597414703953142847110970543541965415369819771789164016371916892583484885932065222266474244223656870580763404750z9+
182770901475269211462030828375934181004032581754339209581456763239413822566355167569080400536438012882499416890307268474234594753941991910223913471336544588355841793697886482347774623132375000000z8+
309191296130950729973668595368021125635249693248658751381279239017170403224531631090451630403456902301090463541541208661015512101696917723097258264871336817986092045758275049045390250000000000000z7−
6838688396641645490945090868618366582490420637673970853279869471018348887091817749546675847593376908651767451450243404728169565283801174082247345442363224813502338696761842209062500000000000000000z6−
74815682380070752593065205631091355818115420146560706379886171073303776505335730603765529125626467971633284964641482528987570423158923499017031906462266550721041958679333491247172414080955401845651420z5−
154608045527569292338754337973797843824713701855230758768236174292780150592090630056630234512064066763987236066826571445077192641952424283276680662979283353386614928379571789390957015570270631450000000z4−
124695385819578642285275287975402015668994502200477065094640515598601115130175167063705343665239193213631330215705606292594773399242228508627801381881595789007869020418417852791444860110175000000000000z3−
66152659857188245320424888024222967738184293737891699176976594293187674688484864881423871033576765065422479234984449961643090211269389726039235842212801812250522818211946896210922615625000000000000000z2−
107682408337843898832379553790426595918634253059664726983856491630963372387378005133782870040125741167383743425882337749343515393483155498593150082576694398775839252693580939841866937888557953929915761435z+
239787108649287987286424755607482454864690786827841184696976286133386057573817722098997859322480446751288360706756986017238407677469601203785469989972240351121714956603188344506951151541954650850823956500000

▸ 3125z20 − 9375z16 − 40000000000z15 − 2015999988750z12 − 1560000000000z11 + 192000000000000000z10 −
12165125356800006750z8 − 14745602232000000000z7 − 6528000000000000000z6 − 409600000000000000000000z5 −
16986908639233347839997975z4 − 14155767152640302400000000z3 − 5898238732800000000000000z2 −
1228800000000000000000000z − 6195303619231982878732441600243

● Applying the transformation of Dahan and Schost leads to 1787 characters.

▸ (20z19 + (−48z15) + (−192000000z14) + (−(38707199784/5)z11) + (−5491200000z10) + 614400000000000z9 +

(−(778568022835200432/25)z7) + (−33030148999680000z6) + (−12533760000000000z5) + (−655360000000000000000z4) +

(−(2717905382277335654399676/125)z3) + (−13589536466534690304000z2) + (−3774872788992000000000z) −

393216000000000000000)x + 3200000z15 + 161280000z12 + 124800000z11 + (−30720000000000z10) + 1946419628544000z8 +

2359296178560000z7 + 1044480000000000z6 + 98304000000000000000z5 + 4076859878277227827200z4 +
3397384824422424192000z3 + 1415577397248000000000z2 + 294912000000000000000z + 1982496995079656780596195328

▸ (20z19 + (−48z15) + (−192000000z14) + (−(38707199784/5)z11) + (−5491200000z10) + 614400000000000z9 +

(−(778568022835200432/25)z7) + (−33030148999680000z6) + (−12533760000000000z5) + (−655360000000000000000z4) +

(−(2717905382277335654399676/125)z3) + (−13589536466534690304000z2) + (−3774872788992000000000z) −

393216000000000000000)y + (−12z16) + (−(9676799856/5)z12) + (−1996800000z11) + (−(194642219980800648/25)z8) +

(−14155781713920000z7)+(−8355840000000000z6)+(−(679471833416273049598704/125)z4)+(−9059676821914761216000z3)+

(−5662307155968000000000z2) + (−1572864000000000000000z) + (−2038432221757477324800972/625)

▸ z20 + (−3z16) + (−12800000z15) + (−(3225599982/5)z12) + (−499200000z11) + 61440000000000z10 +

(−(97321002854400054/25)z8) + (−4718592714240000z7) + (−2088960000000000z6) + (−131072000000000000000z5) +

(−(679476345569333913599919/125)z4) + (−4529845488844896768000z3) + (−1887436394496000000000z2) +
(−393216000000000000000z) + (−6195303619231982878732441600243/3125)

● One can do better! Here’s the regular chain produced by the
Triangularize algorithm of the RegularChains library, counting 963
characters.

▸ 20x − 1y + z
▸

((4375z12 + 52800011625z8 + 32000000000z7 + 110591902080002925z4 + 61439980800000000z3 + 12800000000000000z2 + 56623117271041036800027) y−

1875z13 − 9600010125z9 + 2000000000z8 − 7372714752004545z5 + 30720002400000000z4 + 12800000000000000z3 −
22118403456000135z + 23592963686400144000000

▸ 3125z20 − 9375z16 − 40000000000z15 − 2015999988750z12 − 1560000000000z11 + 192000000000000000z10 −
12165125356800006750z8 − 14745602232000000000z7 − 6528000000000000000z6 − 409600000000000000000000z5 −
16986908639233347839997975z4 − 14155767152640302400000000z3 − 5898238732800000000000000z2 −
1228800000000000000000000z − 6195303619231982878732441600243
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▸ Throughout this section, we consider a commutative ring A with
identity element, a symbol x and the ring A[x] of the univariate
polynomials in x with coefficients in A.

▸ Let a,b ∈ A[x] be univariate polynomials such that b has a positive
degree w.r.t. x .

Definition
We say that a polynomial q ∈ A[x] (resp. r ∈ A[x]) is a pseudo-quotient
(resp. pseudo-remainder) of a by b if there exists a non-negative integer
e and a polynomial r ∈ A[x] (resp. q ∈ A[x]) such that we have

lc(b)
e
a = qb + r and (r = 0 or deg(r) < deg(b)) . (2)

Proposition
Assuume that the leading coefficient of is regular. We define
e = min(0,deg(a) − deg(b) + 1). Then there exists a unique couple (q, r)
of polynomials in A[x] such that q and r are a pseudo-quotient and a
pseudo-remainder of a by b. The polynomial q (resp. r) is called the the
pseudo-quotient (the pseudo-remainder) of a by b and denoted by
prem(a,b) (pquo(a,b)). The map (a,b)z→ (q, r) is called the
pseudo-division of a by b. In addition, the following algorithm computes
this couple.



Input: a,b ∈ A[x] with b /∈ A.

Output: q, r ∈ A[x] satisfying Relation (2) with
e = min(0,deg(a) − deg(b) + 1).

r := a
q := 0
e ∶= max(0,deg(a) − deg(b) + 1)
while r ≠ 0 or deg(r) ≥ deg(b) repeat
d := deg(r) − deg(b)
t := lc(r)yd

q := lc(b)q + t
r := lc(b)r − tb
e := e − 1

r := lc(b)
e
r

q := lc(b)
e
q

return (q, r)



Proposition
Let I be an ideal of A and d ∈ A a regular element. Let a,b,q, r ∈ A[x]
be univariate polynomials such that the following properties are satisfied:

(i) b has a positive degree w.r.t. y and lc(b) is not a zero-divisor in A,

(ii) q and r are the pseudo-quotient and pseudo-remainder of a w.r.t. b
in A[x],

(iii) a ∈ I[x] holds,

Them we have:
q ∈ I[x] and r ∈ I[x].



Resultant (recall 1/2)
Let P,Q ∈ A[x] be two non-zero polynomials of respective degrees m and n
such that n,m > 0. Suppose that

P = amx
m
+⋯ + a1x + a0 and Q = bnx

n
+⋯ + b1x + b0.

The Sylvester matrix of P and Q is the square matrix of order n +m with
coefficients in R, denoted by sylv(P,Q, x) and defined by

sylv(P,Q, x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

am bn
am−1 am bn−1 bn
⋮ ⋮ ⋱ ⋮ ⋮ ⋱

⋮ ⋮ am b1 ⋮ ⋱

⋮ ⋮ am−1 b0 ⋮ ⋱

⋮ ⋮ ⋮ b0 bn
a0 ⋮ ⋮ ⋱ bn−1

a0 ⋮ ⋱ ⋮

⋱ ⋮ ⋱ ⋮

a0 b0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

whose determinant, denoted by res(P,Q, x), is the resultant of P and Q.



Resultant (recall 2/2)

Proposition
If A is a unique factorization domain (UFD), then gcd(P,Q) is
nonconstant in A[x] if and only if res(P,Q, x) = 0 in A.

Example
Let P = ax2 + bx + c and let Q = 2ax + b be the derivative of P w.r.t x .
Then the Sylvester matrix of P and Q w.r.t x is

S =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a 2a 0
b b 2a
c 0 b

⎤
⎥
⎥
⎥
⎥
⎥
⎦

whose determinant is det(S) = a(4ac − b2). Whenever a ≠ 0, P and Q
have a common solution (or equivalently, P = 0 has a solution of
multiplicity 2) if and only if the resultant res(P,Q, x) is zero.



Definition (Determinantal polynomial)
Let m ≤ n be positive integers. Let M be a m × n matrix with coefficients in A.
Let Mi be the square submatrix of M consisting of the first m − 1 columns of M
and the i-th column of M, for i = m⋯n; let detMi be the determinant of Mi . The
determinantal polynomial of M, denote by dpol(M), is a polynomial in A[x],
given by

dpol(M) = detMmx
n−m

+ detMm+1x
n−m−1

+⋯ + detMn.

If dpol(M) is not zero then its degree is at most n −m.

Notation
Let P1, . . . ,Pm be polynomials of A[x] of degree less than n. We denote by
mat(P1, . . . ,Pm) the m × n matrix whose i-th row contains the coefficients of Pi ,
sorting in order of decreasing degree, and such that Pi is treated as a polynomial
of degree n − 1. We denote by dpol(P1, . . . ,Pm) the determinantal polynomial of
mat(P1, . . . ,Pm).

Example
Let n = 4, m = 2, P1 = a3x

3 + a2x
2 + a1x + a0 and P2 = b2x

2 + b1x + b0. Then

mat(P1,P2) = [
a3 a2 a1 a0
0 b2 b1 b0

] ,

with

M2 = [
a3 a2
0 b2

] ,M3 = [
a3 a1
0 b1

] , and M4 = [
a3 a0
0 b0

] .

Consequently, we have dpol(P1,P2) = a3b2x
2 + a3b1x + a3b0.



The notion of subresultants is a refinement of that of resultant. To define
subresultants of two polynomials we need the following definition.

Definition
Let P,Q ∈ A[x] be non-constant polynomials of respective degrees m,n
with m ≤ n. Let k be an integer with 0 ≤ k < m. Then the k-th
subresultant of P and Q, denoted by Sk(P,Q), is

Sk(P,Q) = dpol(xn−k−1P, xn−k−2P, . . . ,P, xm−k−1Q, . . . ,Q).

▸ Observe that if Sk(P,Q) is not zero then its degree is at most k.
Indeed the underlying matrix has m + n − 2k rows and m + n − k
columns. Nence Sk(P,Q) has (m + n − k) − (m + n − 2k) + 1 = k + 1
terms.

▸ When Sk(P,Q) has degree k , then it is said regular; when
Sk(P,Q) ≠ 0 and deg(Sk(P,Q)) < d , Sk(P,Q) is said defective.

It is easy to show that S0(P,Q) is res(P, Q, x), the resultant of P and Q.



Example
Let P = b2x

2 + b1x + b0 and Q = a3x
3 + a2x

2 + a1x + a0. Then

S0(P,Q) = dpol(x2P, xP,P, xQ,Q) = dpol(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b2 b1 b0
b2 b1 b0

b2 b1 b0
a3 a2 a1 a0

a3 a2 a1 a0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

)

= b2a
2
2b

2
0 − 2b22a2b0a0 − a2b

2
0a3b1 + b32a

2
0 + 3b2a0a3b1b0 − b1b2a1a2b0 − b1b

2
2a1a0

+ b21a1a3b0 + b2a2b
2
1a0 − a3b

3
1a0 + b0b

2
2a

2
1 − 2b2a1a3b

2
0 + a23b

3
0

and

S1(P,Q) = dpol(xP,P,Q) = dpol(

⎡
⎢
⎢
⎢
⎢
⎢
⎣

b2 b1 b0
b2 b1 b0

a3 a2 a1 a0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

)

= (b22a1 − b2a3b0 − b2a2b1 + a3b
2
1) x − b2a2b0 + b22a0 + a3b1b0.

In particular, when P = x(x − 3) = x2 − 3x and Q = x(x − 1)(x + 1) = x3 − x2,
we have S0(P,Q) = 0 and S1(P,Q) = 6x , which in fact reflects
gcd(P,Q) = x .



Proposition
Assume A is a UFD and let P,Q be polynomials in A[x] with degrees m
and n. If for some 0 < k < min(m,n), we have Sk(P,Q) ≠ 0 and
Si(P,Q) = 0 for all i < k , then deg(gcd(P,Q)) = k holds.
In fact, Sk(P,Q) is similar to gcd(P,Q) in the sense that there exist
nonzero constants α and β in A such that α gcd(P,Q) = β Sk(P,Q)

holds.

According to the above proposition, Sk is a regular subresultant, and we
usually call it the last nonzero subresultant of P,Q.
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Notations
We review the previous notions with a couple variable renaming.

▸ Let B be another commutative ring with identity and let m ≤ n be
positive integers.

▸ Let P,Q ∈ B[y] be non-constant polynomials of respective degrees p,q
with q ≤ p. Let d be an integer with 0 ≤ d < q.

▸ Then the d-th subresultant of P and Q, denoted by Sd(P,Q), is

Sd(P,Q) = dpol(yq−d−1P, yq−d−2P, . . . ,P, yp−d−1Q, . . . ,Q).

▸ For convenience, we extend the definition to the q-th subresultant as
follows:

Sq(P,Q) = {
γ(Q)Q, if p ≥ q and lc(Q) ∈ B is regular
undefined, otherwise

where γ(Q) = lc(Q)p−q−1. Note that when p equals q, then
Sq(P,Q) = lc(Q)−1Q is in fact a polynomial over the total fraction ring
of B.

We call specialization property of subresultants the following statement.

Proposition
Let A be another commutative ring with identity and Ψ a ring
homomorphism from B to A such that Ψ(lc(P)) ≠ 0 and Ψ(lc(Q)) ≠ 0. Then

Sd(Ψ(P),Ψ(Q)) = Ψ(Sd(P,Q)).

This property will play a central role later.



Divisibility relations of subresultants: integral domain case
Subresultants Sq−1(P,Q), Sq−2(P,Q), . . ., S0(P,Q) satisfy relations which
induce an Euclidean-like algorithm for computing them.
Following (Ducos, 1998) we first assume that B is an integral domain. For
convenience, we simply write Sd instead of Sd(P,Q) for each d . We write
A ∼ B for A,B ∈ B[y] whenever they are associates over Fr(B) (the field of
fractions of B) that is, equal up to a non-zero element of Fr(B). Then for
d = q − 1, . . . ,1, we have:

(rq−1) Sq−1 = prem(P,−Q), the pseudo-remainder of P by −Q,
(r<q−1) if Sq−1 ≠ 0, with e = deg(Sq−1), then the following holds:

prem(Q,−Sq−1) = lc(Q)
(p−q)(q−e)+1

Se−1,

(re) if Sd−1 ≠ 0, with e = deg(Sd−1) < d − 1, thus Sd−1 is defective, then we
have

(1) deg(Sd) = d , thus Sd is non-defective,
(2) Sd−1 ∼ Se and lc(Sd−1)

d−e−1Sd−1 = sd
d−e−1Se , thus Se is non-defective,

(3) Sd−2 = Sd−3 = ⋯ = Se+1 = 0,

(re−1) if both Sd and Sd−1 are nonzero, with respective degrees d and e then

we have prem(Sd ,−Sd−1) = lc(Sd)
d−e+1

Se−1.





Divisibility relations of subresultants: non-integral domain
case

We consider now the case where B is an arbitrary commutative ring,
following Theorem 4.3 in (El Kahoui, 2003). If Sd ,Sd−1 are nonzero, with
respective degrees d and e and if sd is regular in B then we have

lc(Sd−1)
d−e−1Sd−1 = sd

d−e−1Se .

Moreover, there exists Cd ∈ B[y] such that

(−1)d−1 lc(Sd−1)seSd + CdSd−1 = lc(Sd)
2
Se−1.

In addition Sd−2 = Sd−3 = ⋯ = Se+1 = 0 also holds.
From these formula we derive the following observation to which we will refer
as the block structure of subresultants.

Proposition
Let Si ,Sj ,Sk be three non-zero subresultants with indices q ≥ i > j > k ≥ 0.
Assume that for all ` = i − 1, . . . , j + 1, j − 1, . . . , k + 1 we have S` = 0. Assume
that Sj is defective. Then Si is non-defective and we have j = i − 1. Moreover
Sk is non-defective and we have Sj ∼ Sk . Observe also that the non-zero
subresultant Sd of smallest index d , sometimes called the last subresultant of
P and Q and denoted by lsr(P,Q), is a non-defective subresultant.
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Regular GCD (recall)

▸ Let B again be a commutative ring with units. Let P,Q ∈ B[y] be
non-constant with regular leading coefficients.

▸ We say that G ∈ B[y] is a r egular GCD of P,Q if we have:

(i) lc(G , y) is a regular element of B,
(ii) G ∈ ⟨P,Q⟩ in B[y],
(iii) deg(G , y) > 0 ⇒ prem(P,G , y) = prem(Q,G , y) = 0.

▸ In practice B = K[x1, . . . , xn]/Sat(T ), with T being a regular chain.

▸ Such a regular GCD may not exist. However, we shall see that one
can compute Ii = Sat(Ti) and non-zero polynomials Gi such that

√
I = ∩

e
i=0

√
Ii and Gi regular GCD of P,Q mod Ii



Regularity test

▸ R egularity test is a fundamental operation:

Regularize(p,I) z→ (I1, . . . ,Ie)

such that:

√
I = ∩

e
i=0

√
Ii and p ∈ Ii or p regular modulo Ii

▸ Regularity test reduces to r egular GCD computation.



Regular GCDs (1/6)

▸ Let P,Q ∈ K[x][y] with mvar(P) =mvar(Q) = y .

▸ Define R = res(P,Q, y).

▸ Let T ⊂ K[x1, . . . , xn] be a regular chain such that
▸ R ∈ Sat(T),
▸ init(P) and init(Q) are regular modulo Sat(T).

▸ A = K[x1, . . . , xn] and B = K[x1, . . . , xn]/Sat(T ).

▸ For 0 ≤ j ≤mdeg(Q), we write Sj for the j-th subresultant of P,Q in
A[y].



Regular GCDs (2/6)

▸ Let 1 ≤ d ≤ q such that Sj ∈ Sat(T ) for all 0 ≤ j < d .

Proposition
If lcSd , y is regular modulo Sat(T ), then Sd is non-defective over K[x].

▸ Consequently, Sd is the last nonzero subresultant over B, and it is
also non-defective over B.

▸ If lc(Sd , xn) is not regular modulo Sat(T ) then Sd may be defective
over B.



Regular GCDs (3/6)

▸ Let 1 ≤ d ≤ q such that Sj ∈ Sat(T ) for all 0 ≤ j < d .

Proposition
If lcSd , y is in Sat(T ), then Sd is nilpotent modulo Sat(T ).

▸ Up to sufficient splitting of Sat(T ), Sd will vanish on all the
components of Sat(T ).

▸ The above two lemmas completely characterize the last non-zero
subresultant of P and Q over B.



Regular GCDs (4/6)

Example

▸ Consider P and Q in Q[x1, x2][y]:

P = x22 y
2
− x41 and Q = x21 y

2
− x42 .

▸ We have:
S1 = x61 − x62 and R = (x61 − x62 )

2.

▸ Let T = {R}. Then we observe:
▸ The l ast subresultant of P,Q modulo Sat(T) is S1, which is a

defective one.
▸ S1 is n ilpotent modulo Sat(T).

▸ P and Q do not admit a regular GCD over Q[x1, x2]/Sat(T ).



Regular GCDs (5/6)

▸ Let 1 ≤ d ≤ q such that Sj ∈ Sat(T ) for all 0 ≤ j < d .

Proposition
Assume
▸ lcSd , y is regular modulo Sat(T),
▸ Sat(T) is radical.

Then, Sd is a regular GCD of P,Q modulo Sat(T ).

Recall that Sd regular GCD of P,Q modulo Sat(T ) means

(i) lc(Sd , y) is a regular element of B,
(ii) Sd ∈ ⟨P,Q⟩ in B[y],
(iii) deg(Sd , y) > 0 ⇒ prem(P,Sd , y) = prem(Q,Sd , y) = 0.

Proposition
Assume
▸ lcSd , y is regular modulo Sat(T),
▸ for all d < k ≤ q, coeff(Sk , y

k
) is either 0 or regular modulo Sat(T).

Then, Sd is a regular GCD of P,Q modulo Sat(T ).
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k
) is either 0 or regular modulo Sat(T).

Then, Sd is a regular GCD of P,Q modulo Sat(T ).



Regular GCDs (6/6)

▸ Assume that the subresultants Sj for 1 ≤ j < q are computed.

▸ Then one can compute a regular GCD of P,Q modulo Sat(T ) by
performing a bottom-up search.

B

C

A

D

E

O
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Triangular sets and auto-reduced sets

Definition
A subset B ⊂ K[X ] ∖K is

- a triangular set if for all f ,g ∈ B we have f ≠ g ⇒ mvar(f ) ≠mvar(g),
- auto-(pseudo-)reduced if all b ∈ B is pseudo-reduced w.r.t. B ∖ {b}.

Proposition
Every auto-reduced set is finite and is a triangular set.

Notation
Let f ∈ K[X ] and B ⊂ K[X ] ∖K an auto-reduced set. If B = ∅ we write
prem(f ,B) = f . Otherwise let b ∈ B with largest main variable; we write
prem(f ,B) = prem(prem(f ,b),B ∖ {b}). For A ⊂ K[X ] write
prem(A,B) = {prem(a,B) ∣ a ∈ A}.

Example
For instance, with T4 = {x1(x1 − 1), x1x2 − 1} and p = x22 + x1x2 + x21 , we have

prem(p,T ) = prem(prem(p, Tx2), Tx1) = prem(x41 + x21 + 1, Tx1) = 2 x1 + 1.

where Tx1 = x1(x1 − 1) and Tx2 = x1x2 − 1.



The saturated ideal of a triangular set (1/3)
Definition
Let T ⊂ K[X ] be a triangular set. The set

Sat(T ) = {f ∈ K[X ] ∣ (∃e ∈ N) heT f ∈ ⟨T ⟩}

is the saturated ideal of T . ( Clearly Sat(T ) is an ideal.)

Proposition
Let T ⊂ K[X ] be a triangular set and f ∈ K[X ]. We have

prem(f ,T ) = 0 ⇒ f ∈ Sat(T ).

Remark
The converse is false. Consider n ≥ 2 and

T = {x1(x1 − 1), x1x2 − 1}.

Consider p = (x1 − 1)(x1x2 − 1) and q = −(x1 − 1)x1x2. We have:

prem(p,T ) = prem(q,T ) = 0.

However, we have p + q = 1 − x1, prem(p + q,T ) ≠ 0 but p + q ∈ Sat(T ),
since Sat(T ) is an ideal. Note that Sat(T ) = ⟨x1 − 1, x2 − 1⟩.



The saturated ideal of a triangular set (2/3)

● Consider again for x > y > a > b > c > d > e > f > g > h > i

F =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ax + by − c
dx + ey − f
gx + hy − i

and T =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

gx + hy − i
(hd − eg) y − id + fg
(ie − fh) a + (ch − ib)d + (fb − ce)g

● Using Gröbner basis computations, one can check the following
assertions for this example:

- Sat(T ) = ⟨F ⟩.

- Sat(T ) is an ideal stricly larger than ⟨T ⟩.

- In fact ⟨T ⟩ ⊂ Sat(T ) ∩ ⟨g ,h, i⟩,

- and none of Sat(T ) or ⟨g ,h, i⟩ contains the other.



The quasi-component of a triangular set

Definition
Let T ⊂ K[X ] be a triangular set. Let hT be the product of the initials of

T . The set W (T ) = V (T ) ∖V ({hT}) is the quasi-component of T .

Remark
Clearly W (T ) may not be variety. Consider n = 2 and T = {x1x2}. We have
hT = x1 and W (T ) is the line x2 = 0 minus the point (0,0).
Observe that Sat(T ) = ⟨x2⟩.

Proposition
For any triangular set T ⊂ K[X ] we have

W (T ) = V (Sat(T )).

Remark
Consider

T = {x22 − x1, x1x
2
3 − 2x2x3 + 1, (x2x3 − 1)x4 + x22}.

We have W (T ) = ∅ = V (T ).



Regular chains

Definition
Let I be a proper ideal of K[X ]. We say that a polynomial p ∈ K[X ] is
regular modulo I if for every prime ideal P associated with I we have p /∈ P,
equivalently, this means that p is neither null modulo I, nor a zero-divisor
modulo I.

Definition
Let T = {T1, . . . ,Ts} be a triangular set where polynomials are
sorted by increasing main variables.

The triangular set T is a regular chain if for all i = 2⋯s the initial of Ti is
regular modulo the saturated ideal of T1, . . .Ti−1.

Proposition
If T is a regular chain then Sat(T ) is a proper ideal of K[X ] and, thus,
W (T ) ≠ ∅.



The saturated ideal of a triangular set (3/3)

Theorem
(Aubry, Lazard & M., 1997) Let C ⊂ K[X ] be an
auto-(pseudo-)reduced set. Then, we have

Sat(C) = {p ∣ prem(p,C) = 0}
⇕

C regular chain



Reduction to dimension zero (1/2)

Theorem
(Chou & Gao, 1991), (Kalkbrener, 1991), (Aubry, 1999), (Boulier,
Lemaire & M., 2006) Let T = {Td+1, . . . ,Tn} be a triangular set. Assume
that mvar(Ti) = xi for all d + 1 ≤ i ≤ n and assume Sat(T ) is a proper ideal
of K[X ]. Then, every prime ideal P associated with Sat(T ) has dimension d
and satisfies

P ∩ K[x1, . . . , xd] = ⟨0⟩.

Corollary
With T as above. Consider the localization by K[x1, . . . , xd] ∖ {0}; in other
words, we map our polynomials from K[x1, . . . , xn] to
K(x1, . . . , xd)[xd+1, . . . , xn].
Let T0 be the image of T . Let p ∈ K[x1, . . . , xn] and p0 its image in
K(x1, . . . , xd)[xd+1, . . . , xn]. Assume p non-zero modulo Sat(T ). Then, the
following conditions are equivalent:

(1) p is regular w.r.t. Sat(T ),
(2) p0 is invertible w.r.t. Sat(T0).

In particular T is a regular chain iff T0 is a (zero-dimensional) regular chain.



Reduction to dimension zero (2/2)

Remark
Consequently, we can generalize to positive dimension our computations of
polynomial GCDs defined previously over zero-dimensional regular chains.

(Indeed, It is also possible to relax the condition Sat(T0) radical.)

Notation
Let T is a regular chain and F ⊂ K[X ] be a polynomial set. We denote by
Z(F ,T ) the intersection V (F )∩W (T ), that is the set of the zeros of F that
are contained in the quasi-component W (T ). If F = {p}, we write Z(p,T )

for Z(F ,T ).

Proposition
Let T be a regular chain. If p is regular modulo Sat(T ), then Z(p,T ) is
either empty or it is contained in a variety of dimension strictly less than the
dimension of W (T ).
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Notations

▸ polynomial ring R = K[x1 < ⋯ < xn]

▸ polynomial p ∈ R

▸ mvar(p) : largest variable appearing in p

▸ init(p) : leading coefficient of p w.r.t. mvar(p)

▸ a polynomial set T ⊂ R ∖K
▸ T is a triangular set if mvar(p) ≠mvar(q) for all p ≠ q ∈ T

▸ init(T ): the product of the initials of polynomials in T

▸ Sat(T ) ∶= ⟨T ⟩ ∶ init(T )
∞

▸ an element p ≠ 0 of a ring A is regular if p is not a zerodivisor in A
▸ a triangular set T = {t1, . . . , ts} is a regular chain if {t1, . . . , ts−1} is

a regular chain and init(ts) is regular in R/Sat(t1, . . . , ts−1)



Example

T ∶= {
t2 = (x1 + x2)x3

2 + x3 + 1
t1 = x1

2 − 2.

Under the order x3 > x2 > x1,

▸ mvar(t2) = x3 and init(t2) = x1 + x2
▸ init(t2) is regular(neither zero or zerodivisor) modulo ⟨t1⟩ ∶ 1∞ = ⟨t1⟩

▸ T is a regular chain

▸ init(T ) ∶= init(t2)init(t1)

▸ Sat(T ) ∶= ⟨T ⟩ ∶ init(T )
∞

▸ quasi-component of T : W (T ) = V (T ) ∖V (init(T )).



Triangular decomposition of an algebraic variety

Kalkbrener triangular decomposition
Let F ⊂ K[x]. A family of regular chains T1, . . . ,Te of K[x] is called a
Kalkbrener triangular decomposition of V (F ) if

V (F ) = ∪
e
i=1W (Ti).

Lazard-Wu triangular decomposition
Let F ⊂ K[x]. A family of regular chains T1, . . . ,Te of K[x] is called a
Lazard-Wu triangular decomposition of V (F ) if

V (F ) = ∪
e
i=1W (Ti).



Incremental algorithm and intersect operation

Intersect operation

▸ Let R = K[x1 < ⋯ < xn].

▸ Let p ∈ R and T be a regular chain of R.

▸ Intersect(p,T ,R) returns regular chains T1, . . . ,Te ⊂ R such that

V (p) ∩W (T ) ⊆W (T1) ∪⋯ ∪W (Te) ⊆ V (p) ∩W (T ).

Triangularize(F ,R)
▸ if F = { } then return {∅}

▸ Choose a polynomial p ∈ F with maximal rank

▸ for T ∈ Triangularize(F ∖ {p},R) do
output Intersect(p,T ,R)

end



Specialization properties of subresultants

Theorem
Let H be a homomorphism from a ring R to a field L. Let p, t ∈ R[y].
Let j be the smallest integer s.t. H(sj) ≠ 0. Then
H(Sj) = gcd(H(p),H(t)).



Properties of Regular GCD (I)

▸ Let R ∶= K[x1, . . . , xk−1], where 1 ≤ k ≤ n.

▸ Let T ⊂ K[x1, . . . , xk−1] be a regular chain.

▸ Let p, t,g ∈ R[xk] be polynomials with main variable xk .

Proposition
Assume T ∪ {t} is a regular chain and g is a regular GCD of p and t in

R[xk]/
√
Sat(T ). We have:

V (p) ∩W (T ∪ t) ⊆ W (T ∪ g) ∪ V ({p,hg}) ∩W (T ∪ t)

⊆ V (p) ∩W (T ∪ t).



Properties of Regular GCD (II)

▸ Let R ∶= K[x1, . . . , xk−1], where 1 ≤ k ≤ n.

▸ Let T ⊂ K[x1, . . . , xk−1] be a regular chain.

▸ Let p, t,g ∈ R[xk] be polynomials with main variable xk .

Theorem
There exists finitely many regular chains T1 ∪ g1, . . . ,Te ∪ ge such that

V (p) ∩W (T ∪ t) ⊆ ∪e
i=1W (Ti ∪ gi) ⊆ V (p) ∩W (T ∪ t),

where gi is a regular GCD of p and t in R[xk]/
√
Sat(Ti).

Remark
Note that for all Ti , the regular GCD of p and t in R[xk]/

√
Sat(Ti) can

be computed by t he same subresultant chain of p and t.
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