Regular chain theory

Marc Moreno Maza

CS 9652, March 30, 2020

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Zero-dimensional regular chains

Pseudo-division, subresultants and division-free Euclidean algorithms

Division-free Euclidean algorithms

Computing regular GCDs

Regular chains in arbitrary dimension

Incremental solving

Plan

Zero-dimensional regular chains

Pseudo-division, subresultants and division-free Euclidean algorithms

Division-free Euclidean algorithms

Computing regular GCDs

Regular chains in arbitrary dimension

Incremental solving

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

How triangular decompositions look like?

For the following input polynomial system:

$$F: \begin{cases} x^{2} + y + z = 1\\ x + y^{2} + z = 1\\ x + y + z^{2} = 1 \end{cases}$$

One possible triangular decompositions of the solution set of F is:

$$\begin{cases} z = 0 \\ y = 1 \\ x = 0 \end{cases} \begin{cases} z = 0 \\ y = 0 \\ x = 1 \end{cases} \begin{cases} z = 1 \\ y = 0 \\ x = 0 \end{cases} \begin{cases} z^2 + 2z - 1 = 0 \\ y = z \\ x = z \end{cases}$$

Another one is:

$$\begin{cases} z = 0 \\ y^2 - y = 0 \\ x + y = 1 \end{cases} \begin{cases} z^3 + z^2 - 3z = -1 \\ 2y + z^2 = 1 \\ 2x + z^2 = 1 \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへぐ

An example in positive dimension

• Every prime ideal $\mathcal{P} = \langle F \rangle$ in a polynomial ring $\mathbb{K}[x_1, \dots, x_n]$ may be represented by a triangular set T encoding the generic zeros of \mathcal{P} .

$$F = \begin{cases} ax + by - c \\ dx + ey - f \\ gx + hy - i \end{cases} \simeq T = \begin{cases} gx + hy - i \\ (hd - eg)y - id + fg \\ (ie - fh)a + (ch - ib)d + (fb - ce)g \end{cases}$$

• All the common zeros of every polynomial system can be decomposed into finitely many triangular sets.

$$\mathbf{V}(\mathcal{P}) = \mathbf{W}(T) \cup \mathbf{W} \begin{cases} dx + ey - f \\ hy - i \\ (ie - fh)a + (-ib + ch)d \end{cases} \cup \mathbf{W} \begin{cases} x + hy - i \\ (ha - bg)y - ia + cg \\ hd - eg \end{pmatrix} = \frac{1}{2} \mathbf{W} \begin{cases} x \\ (hd - eg)y - id + fg \\ fb - ce \\ ie - fh \end{cases} \cup \mathbf{W} \begin{cases} x \\ e - fh \end{cases} = \frac{1}{2} \mathbf{W} \begin{bmatrix} x + by - c \\ hy - i \\ d \\ g \end{bmatrix} = \frac{1}{2} \mathbf{W} \begin{bmatrix} x \\ hg - c \\ g \\ ie - fh \end{bmatrix}$$

where $\mathbf{W}(T)$ denotes the generic zeros of T. We have : $\mathbf{W}(T) \subseteq \mathbf{V}(T)$.

How to compute triangular decompositions?

• Consider again solving the system F for x > y > z:

$$F: \begin{cases} x^2 + y + z = 1\\ x + y^2 + z = 1\\ x + y + z^2 = 1 \end{cases}$$

• Eliminating x leads to
$$\begin{cases} y^2 + (-1+2z^2)y - 2z^2 + z + z^4 = 0\\ y^2 + z - y - z^2 = 0 \end{cases}$$

- Eliminating y^2 and then y we can arrive to r(z) = 0 with $r(z) = z^8 4z^6 + 4z^5 z^4$.
- Factorizing r(z) leads to z⁴(z² + 2z − 1)(z − 1)² = 0 and thus to z = 0, z = 1 or z² + 2z = 1. In each case, it is easy to conclude either by substitution, or by GCD computation in (ℚ[z]/⟨z² + 2z − 1⟩)[y].
 Alternatively, one can directly perform GCD computation in (ℚ[z]/⟨r(z)⟩)[y]. But this is unusual since ℚ[z]/⟨r(z)⟩ is not a field! Let us see this now.

Computing a polynomial GCD over a ring with zero-divisors (I)

• Dividing f_1 by f_2 is no problem since f_2 is monic. We obtain:

$$\begin{array}{c|c} f_1 & f_2 \\ f_3 & 1 \end{array}$$

with $f_3 = 2z^2y - z^2 + 2z^2 - z$.

Computing a polynomial GCD over a ring with zero-divisors (II)

• In order to divide f_2 by f_3 , we need to check whether $2z^2$ divides zero in L. This is done by computing $gcd(s(z), 2z^2)$ in $\mathbb{Q}[z]$, which is z. • Hence s(z) writes $z(z^3 + z^2 - 3z + 1)$ and we split the computations into two cases: z = 0 and $z^3 + z^2 - 3z = 1$. • Case z = 0. Then $f_3 = 0$ and $f_2 = y^2 - y$ is the GCD. • Case $z^3 + z^2 - 3z = -1$. Since S(z) is square-free, $2z^2$ has an inverse in this case, namely $i(z) = -(3/2)z^2 - 2z + 4$. • Thus, the polynomial $\tilde{f}_3 = i(z)f_3 = y + (1/2)z^2 - (1/2)$ is monic. So, we can compute $\begin{array}{c} f_2 \\ 0 \\ \hline y - (1/2)z^2 - (1/2) \\ \hline \end{array}$. • Finally $gcd(f_1, f_2, \mathbb{L}[y]) = \begin{cases} y^2 - y & \text{if } z = 0\\ 2y + z^2 - 1 & \text{if } z^3 + z^2 - 3z = -1 \end{cases}$

・ロト・日本・ビア・ビア・ ビー うくぐ

How those triangular sets look like? (I)

How to pass from one triangular decomposition to another?

$$\begin{cases} z = 0 \\ y = 1 \\ x = 0 \end{cases} \begin{cases} z = 0 \\ y = 0 \\ x = 1 \end{cases} \begin{cases} z = 1 \\ y = 0 \\ x = 0 \end{cases} \begin{cases} z = 1 \\ y = 0 \\ x = 0 \end{cases} \begin{cases} z = 1 \\ y = 0 \\ y = 0 \\ x = 0 \end{cases} \begin{cases} z = 1 \\ y = 0 \\ x = 0 \\ x = 0 \end{cases} \begin{cases} z^2 + 2z - 1 = 0 \\ y = z \\ x = z \\ x = z \\ x = z \\ y \end{cases} \begin{cases} z = 0 \\ y^2 - y = 0 \\ x = 0 \\ y^2 - y = 0 \\ x = 0 \\ y^2 - y = 0 \\ x = z \\ x = z \\ y \end{cases} \begin{cases} z^3 + z^2 - 3z = -1 \\ 2y + z^2 = 1 \\ 2x + z^2 = 1 \end{cases}$$

・ロト・日本・ヨト・ヨー うへの

From a lexicographical Gröbner basis to a triangular decomposition (I)

• Let us consider again (last time) the polynomials $\begin{cases}
f_1 = y^2 + (2z^2 - 1)y - 2z^2 + z + z^4 \\
f_2 = y^2 + z - y - z^2
\end{cases}$ • It is natural to ask how we could obtain a triangular decomposition from the reduced lexicographical Gröbner basis of $\{f_1, f_2\}$ for y > z. This basis is: $\begin{cases}
g_1 = z^6 - 4z^4 + 4z^3 - z^2 \\
g_2 = 2z^2y + z^4 - z^2 \\
g_3 = y^2 - y - z^2 + z
\end{cases}$ • We initialize $T := \{g_1\}$. We would add g_2 into T provided that

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• We initialize $T := \{g_1\}$. We would add g_2 into T provided $lc(g_2, y)$ is a unit.

From a lexicographical Gröbner basis to a triangular decomposition (II)

• So, we compute $gcd(2z^2, g_1, \mathbb{Q}[z]) = z^2$. This shows $g_1 = z^2(z^4 - 4z^2 + 4z - 1)$ and splits the computations into two cases. • Case $z^2 = 0$. In this case g_2 vanishes and $g_3 = y^2 - y + z$, leading to $T^{\overline{1}} := \{z^2, y^2 - y + z\}$ • Case $z^4 - 4z^2 + 4z - 1$. In this case $lc(g_2, y)$ has $2z^3 + (1/2)z^2 - 8z + 6$ for inverse. Multiplying g_2 by this inverse leads to $\tilde{g}_2 = \gamma + (1/2)z^2 - (1/2)$. Then, we observe that $\begin{array}{c|c} g_3 & \tilde{g}_2 \\ 0 & v - (1/2)z^2 - (1/2) \end{array} \text{ leading to a second component} \end{array}$ $T^{2} := \{z^{4} - 4z^{2} + 4z - 1, 2v + 1z^{2} - 1\}.$ • For more details: (Gianni, 1987), (Kalkbrener, 1987), (Lazard, 1992).

・ロト・日本・モト・モー シック

Some notations before we start the theory (I)

Notation

Throughout the talk, we consider a field \mathbb{K} and an ordered set $X = x_1 < \cdots < x_n$ of n variables. Typically \mathbb{K} will be

- a finite field, such as $\mathbb{Z}/p\mathbb{Z}$ for a prime p, or
- the field ${\mathbb Q}$ of rational numbers, or
- a field of rational functions over $\mathbb{Z}/p\mathbb{Z}$ or \mathbb{Q} .

We will denote by $\overline{\mathbb{K}}$ the algebraic closure of \mathbb{K} .

Notation

We denote by $\mathbb{K}[x_1, \ldots, x_n]$ the ring of the polynomials with coefficients in \mathbb{K} and variables in X. For $F \subset \mathbb{K}[x_1, \ldots, x_n]$, we write $\langle F \rangle$ and $\sqrt{\langle F \rangle}$ for the ideal generated by F in $\mathbb{K}[x_1, \ldots, x_n]$ and its radical, respectively.

Notation

For $F \subset \mathbb{K}[x_1, \ldots, x_n]$, we are interested in

$$V(F) = \{ \zeta \in \overline{\mathbb{K}}^n \mid (\forall f \in F) \ f(\zeta) = 0 \},\$$

the zero-set of F or algebraic variety of F in $\overline{\mathbb{K}}^n$.

Remark

In some circumstances $\overline{\mathbb{K}}^n$ will be denoted $A^n(\overline{\mathbb{K}})$, especially when we consider several n at the same time.

Some notations before we start the theory (II)

Notation

Let *i* and *j* be integers such that $1 \le i \le j \le n$ and let $V \subseteq A^n(\overline{\mathbb{K}})$ be a variety over \mathbb{K} . We denote by π_i^j the natural projection map from $A^j(\overline{\mathbb{K}})$ to $A^i(\overline{\mathbb{K}})$, which sends (x_1, \ldots, x_j) to (x_1, \ldots, x_i) . Moreover, we define $V_i = \pi_i^n(V)$. Often, we will restrict π_i^j from V_i to V_j .

Notation

The algebraic varieties in $\overline{\mathbb{K}}^n$ defined by polynomial sets of $\mathbb{K}[x_1, \ldots, x_n]$ form the closed sets of a topology, called Zariski Topology. For a subset $W \subset \overline{\mathbb{K}}^n$, we denote by \overline{W} the closure of W for this topology, that is, the intersection of the V(F) containing W, for all $F \subset \mathbb{K}[x_1, \ldots, x_n]$.

Notation

For $W \subset \overline{\mathbb{K}}^n$, we denote by I(W) the ideal of $\mathbb{K}[x_1, \ldots, x_n]$ generated by the polynomials vanishing at every point of W.

Remark

When $\mathbb{K} = \overline{\mathbb{K}}$ and W = V(F), for some $F \subset \mathbb{K}[x_1, ..., x_n]$, recall the Hilbert Theorem of Zeros:

$$\sqrt{\langle F \rangle} = I(V(F)).$$

・ロト ・西ト ・ヨト ・ヨー うへぐ

Lazard triangular sets

Definition (Lazard, 1992) A subset

$$T = \{T_1, \ldots, T_n\} \subset \mathbb{K}[x_1 < \cdots < x_n]$$

is a Lazard triangular set if for $i = 1 \cdots n$

$$T_{i} = 1 \mathbf{x}_{i}^{\mathbf{d}_{i}} + a_{d_{i}-1} \mathbf{x}_{i}^{\mathbf{d}_{i}-1} + \dots + a_{1} \mathbf{x}_{i} + a_{0}$$

with

$$a_{d_i-1},\ldots,a_1,a_0\in \mathbf{k}[x_1,\ldots,x_{i-1}].$$

reduced w.r.t $\langle T_1, \ldots, T_{i-1} \rangle$ in the sense of Gröbner bases.

Theorem

A family T of n polynomials in $\mathbb{K}[x_1 < \cdots < x_n]$ is a Lazard triangular set if and only it is the reduced lexicographical Gröbner basis of a zero-dimensional ideal.

How those triangular sets look like? (II)

Notation

Let $T = \{T_1, \ldots, T_n\} \subset \mathbb{K}[x_1, \ldots, x_n]$ be a Lazard triangular set. Let V be its variety in $A^n(\overline{\mathbb{K}})$. Let $d_1 = \deg(T_1, x_1), \ldots, d_n = \deg(T_n, x_n)$.

Notation

For $1 \le i < j \le n$, recall that

$$\pi_i^j: \begin{array}{ccc} V_j & \longmapsto & V_i \\ (x_1, \dots, x_j) & \to & (x_1, \dots, x_i) \end{array}$$

where $V_i = \pi_i^n(V)$ and $V_j = \pi_j^n(V)$.

Proposition

For a point $M \in V_i$ the fiber (i.e. the pre-image) $(\pi_i^j)^{-1}(M)$ has cardinality $d_{i+1}\cdots d_j$, that is

$$|(\pi_i^j)^{-1}(M)| = d_{i+1}\cdots d_j.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Equiprojectable varieties

Definition

Let *i* and *j* be integers such that $1 \le i < j \le n$ and let $V \subseteq A^j(\overline{\mathbb{K}})$ be a variety over \mathbb{K} . The set V is said

equiprojectable on V_i, its projection on Aⁱ(K), if there exists an integer c such that for every M ∈ V_i the cardinality of (π^j_i)⁻¹(V_i) is c.
 equiprojectable if V is equiprojectable on V₁,..., V_{j-1}.

Theorem

(Aubry & Valibouze, 2000) Assume \mathbb{K} is **perfect** and let $V \subset A^n(\overline{\mathbb{K}})$ be finite. Assume that there exists $F \subset \mathbb{K}[x_1, \ldots, x_n]$ such that V = V(F). Then, the following conditions are equivalent:

- (1) V is equiprojectable,
- (2) There exists a Lazard Triangular set $T \in \mathbb{K}[x_1, ..., x_n]$ whose zero-set in $A^n(\overline{\mathbb{K}})$ is exactly V.

Proof.

For proving $(1) \Rightarrow (2)$ one can use the **interpolation formulas** of **(Dahan & Schost, 2004)** to construct a Lazard triangular set in $\overline{\mathbb{K}}[x_1, \dots, x_n]$. To conclude, one uses the hypothesis \mathbb{K} perfect, V = V(F) together with the Hilbert Theorem of Zeros.

The interpolation formulas: sketch (I)

Let V ⊂ Aⁿ(K) be (finite and) equiprojectable. Let K be a field, with K ⊆ K ⊆ K ⊆ K ⊆ K ⊆ K.
We have T₁ = ∏_{α∈V1}(x₁ − α). Let 1 ≤ ℓ < n. We give interpolation formulas for T_{ℓ+1} from the coordinates (in K) of the points of V_{ℓ+1}, for 1 ≤ ℓ < n.
Let α = (α₁,..., α_ℓ) ∈ V_ℓ. We define the varieties

The sets $V_{\alpha}^1, V_{\alpha}^2, V_{\alpha}^3, \dots, V_{\alpha}^{\ell}, V_{\alpha}^{\ell+1}$ form a partition of $V_{\ell+1}$. • The intermediate goal is to build $T_{\alpha,\ell+1} = T_i(\alpha_1, \dots, \alpha_{\ell}, x_{\ell+1}) \in \mathbf{K}[x_{\ell+1}]$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The interpolation formulas: sketch (II)

• We consider also the projections

$$\begin{array}{rclcrcrcrc} \mathbf{v}_{\alpha}^{1} &=& \pi_{1}^{\ell+1}(V_{\alpha}^{1}) &=& \{(\beta_{1}) \in V_{1} & \mid & \beta_{1} \neq \alpha_{1} \} \\ \mathbf{v}_{\alpha}^{2} &=& \pi_{2}^{\ell+1}(V_{\alpha}^{2}) &=& \{(\alpha_{1}, \beta_{2}) \in V_{2} & \mid & \beta_{2} \neq \alpha_{2} \} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \mathbf{v}_{\alpha}^{\ell} &=& \pi_{\ell}^{\ell+1}(V_{\alpha}^{\ell}) &=& \{(\alpha_{1}, \dots, \alpha_{\ell-1}, \beta_{\ell}) \in V_{\ell} & \mid & \beta_{\ell} \neq \alpha_{\ell} \} \end{array}$$

- For $1 \le i \le \ell$, define $e_{\alpha,i} \coloneqq \prod_{\beta \in \mathbf{v}_{\alpha}^{i}} (x_{i} \beta_{i}) \in \mathbf{K}[x_{i}]$ and $\boxed{E_{\alpha} \coloneqq \prod_{1 \le i \le \ell} e_{\alpha,i} \in \mathbf{K}[x_{1}, \dots, x_{\ell}].}$
- Then, we have:

$$\begin{aligned} T_{\alpha,\ell+1} &= \prod_{\beta \in V_{\alpha}^{\ell+1}} \left(x_{\ell+1} - \beta_{\ell+1} \right) \\ T_{\ell+1} &= \sum_{\alpha \in V_{\ell}} \frac{E_{\alpha} T_{\alpha,\ell+1}}{E_{\alpha}(\alpha)} \end{aligned}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

• Related work: (Abbot, Bigatti, Kreuzer & Robbiano, 1999), ...

Direct product of fields, the D5 Principle (I)

Proposition

Let $f \in \mathbb{K}[x]$ be a non-constant and square-free univariate polynomial. Then $\mathbb{L} = \mathbb{K}[x]/\langle f \rangle$ is a direct product of fields (DPF).

Proof.

The factors of f are pairwise coprime. Then, apply the **Chinese Remaindering Theorem**. (If $f = f_1 f_2$ then $\mathbb{L} \simeq \mathbb{K}[x]/\langle f_1 \rangle \times \mathbb{K}[x]/\langle f_2 \rangle$.

<u>PRINCIPLE.</u> (Della Dora, Dicrescenzo & Duval, 1985) If \mathbb{L} is a DPF, then one can compute with \mathbb{L} as if it were a field: it suffices to split the computations into cases whenever a zero-divisor is met.

Proposition

Let \mathbb{L} be a DPF and $f \in \mathbb{L}[x]$ be a non-constant monic polynomial such that f and its derivative generate $\mathbb{L}[x]$, that is, $\langle f, f' \rangle = \mathbb{L}[x]$. Then $\mathbb{L}[x]/\langle f \rangle$ is another DPF.

Proof.

It is convenient to establish the following more general theorem: A Noetherian ring is isomorphic with a direct product of fields if and only if every non-zero element is either a unit or a non-nilpotent zero-divisor.

500

Direct product of fields, the D5 Principle (II)

Proposition

Let $T \subset \mathbb{K}[x_1, ..., x_n]$ be a Lazard triangular set such that $\langle T \rangle$ is radical. Then, we have

- $\mathbb{K}[x_1,\ldots,x_n]/\langle T \rangle$ is a DPF,
- if \mathbb{K} is perfect then $\overline{\mathbb{K}}[x_1, \ldots, x_n]/\langle T \rangle$ is a DPF.

Remark

Recall the trap! Consider $\mathbb{F} = \mathbb{Z}/p\mathbb{Z}(t)$, for a prime p. Consider the polynomial $f = x^p - t \in \mathbb{F}[x]$ and $\overline{\mathbb{F}}$ an algebraic closure of \mathbb{F} . Since f is not constant, it has a root $\alpha \in \overline{\mathbb{F}}$ and we have

$$f = x^{p} - t = x^{p} - \alpha^{p} = (x - \alpha)^{p}$$

$$\tag{1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

in $\overline{\mathbb{F}}[x]$, which is clearly not square-free. However f is irreducible, and thus squarefree, in $\mathbb{F}[x]$.

Polynomial GCDs over DPF, quasi-inverses (I)

Definition

(M. & Rioboo, 1995) Let \mathbb{L} be a DPF. The polynomial $h \in \mathbb{L}[y]$ is a **GCD** of the polynomials $f, g \in \mathbb{L}[y]$ if the ideals $\langle f, g \rangle$ and $\langle h \rangle$ are equal.

Remark

Another trap! Even if f, g are both monic, there may not exist a monic polynomial h in $\mathbb{L}[y]$ such that $\langle f, g \rangle = \langle h \rangle$ holds. Consider for instance $f = y + \frac{a+1}{2}$ (assuming that 2 is invertible in \mathbb{L}) and g = y + 1 where $a \in \mathbb{L}$ satisfies $a^2 = a$, $a \neq 0$ and $a \neq 1$.

Remark

In practice, polynomial GCDs over DPF are computed via the D5 Principle. Moreover, only monic GCDs are useful. So, we generalize:

Definition

Let \mathbb{L} be a DPF and $f, g \in \mathbb{L}[y]$. A GCD of f, g in $\mathbb{L}[y]$ is a sequence of pairs $((h_i, \mathbb{L}_i), 1 \le i \le s)$ such that

- ▶ \mathbb{L}_i is a DPF, for all $1 \le i \le s$ and the direct product of $\mathbb{L}_1, \ldots, \mathbb{L}_s$ is isomorphic to \mathbb{L} ,
- h_i is a null or monic polynomial in $\mathbb{L}_i[y]$, for all $1 \le i \le s$,
- ▶ h_i is a GCD (in the above sense) of the projections of f, g to $\mathbb{L}_i[y]$, for all $1 \le i \le s$.

Polynomial GCDs over DPF, quasi-inverses (II)

Definition

Let \mathbb{L} be a DPF and let $f \in \mathbb{L}$. A quasi-inverse of f is a sequence of pairs $((g_i, \mathbb{L}_i), 1 \le i \le s)$ such that

- L_i is a DPF, for all 1 ≤ i ≤ s and the direct product of L₁,..., L_s is isomorphic to L
- $g_i \in \mathbb{L}_i$, for all $1 \le i \le s$,
- let f_i be the projection of f to \mathbb{L}_i ; either $f_i = g_i = 0$ or $f_i g_i = 1$ hold, for all $1 \le i \le s$.

Proposition

Let $T \subset \mathbb{K}[x_1, \dots, x_n]$ be a Lazard triangular set such that $\langle T \rangle$ is radical. We define $\mathbb{L} = \mathbb{K}[x_1, \dots, x_n]/\langle T \rangle$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- For all f ∈ K[x₁,...,x_n] (reduced w.r.t. T) one can compute a quasi-inverse in L of f (regarded as an element of L).
- (1) For all $f, g \in \mathbb{L}[y]$ one can compute a **GCD** of f and g in $\mathbb{L}[y]$.

Equiprojectable decomposition

Remark

Not every variety is equiprojectable, for instance $V = \{(0,1), (0,0), (1,0)\}$.

Definition

Let $V \subset A^n(\overline{\mathbb{K}})$ be finite. Consider the projection $\pi : V \mapsto \overline{\mathbb{K}}^{n-1}$ which forgets x_n . To every $x \in V$ we associate

$$N(x) = \#\pi^{-1}(\pi(x)).$$

We write $V = C_1 \cup \cdots \cup C_d$ where $C_i = \{x \in V \mid N(x) = i\}$. This splitting process is applied recursively to all varieties C_1, \ldots, C_d .

In the end, we obtain a family of pairwise disjoint, equiprojectable varieties, whose reunion equals V. This is the **equiprojectable decomposition** of V.

Proposition

Let $V(F) \subset A^n(\overline{\mathbb{K}})$ be finite with $F \subset \mathbb{K}[x_1, \ldots, x_n]$. There exist Lazard triangular sets $T^1, \ldots, T^s \subset \mathbb{K}[x_1, \ldots, x_n]$ such that

$$V(F)=V(T^1)\,\cup\,\cdots\,\cup\,V(T^s) \ \text{ and } \ i\neq j \ \Rightarrow \ V(T^i)\,\cap\,V(T^j)=\varnothing.$$

They form a triangular decomposition of V(F). $\langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Equiprojectable variety definition (1/3)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Equiprojectable variety definition (2/3)

Equiprojectable variety definition (3/3)

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ⊇ ○ ○ ○ ○

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ≧ ○ � � �

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへの

Generalizing Lazard triangular sets

Remark

Let $T = \{T_1, \ldots, T_n\} \subset \mathbb{K}[x_1, \ldots, x_n]$ be a Lazard triangular set. Let $\mathcal{I} := \langle T \rangle$. We have shown that given $p \in \mathbb{K}[x_1, \ldots, x_n]$,

- one can decide whether $p \in \mathcal{I}$. Indeed T is a Gröbner basis of \mathcal{I} .
- assuming \mathcal{I} radical, one can decide whether $p^{-1} \mod \mathcal{I}$ exists. Indeed $\mathbb{K}[x_1, \ldots, x_n]/\mathcal{I}$ is a DPF.

We aim at:

- first, relaxing the hypothesis $lc(T_i, x_i) = 1$, for all $1 \le i \le n$,
- second, relaxing the as many polynomials as variables constraint.
 while preserving a triangular shape together with the above algorithmic properties.

Zero-dimensional regular chains

Definition A subset $C = \{C_1, ..., C_n\} \subset \mathbb{K}[x_1 < \cdots < x_n]$ is a zero-dimensional regular chain if for all $i = 1 \cdots n$ we have

(1) $C_i \in \mathbb{K}[x_1, \dots, x_i],$ (2) $\deg(C_i, x_i) > 0,$ (3) $h_i := \operatorname{lc}(C_i, x_i)$ is invertible modulo the ideal $(C_1, \dots, C_{i-1}).$

Proposition

Let $C \subset \mathbb{K}[x_1, ..., x_i]$ be a zero-dimensional regular chain. There exists a Lazard triangular set $T \subset \mathbb{K}[x_1, ..., x_i]$ such that $\langle C \rangle = \langle T \rangle$.

Proof.

By induction on n.

- For n = 1 we have $T_1 = \operatorname{lc}(C_1)^{-1}C_1$ and the claim follows clearly.
- For n > 1 we compute \tilde{h}_n the inverse of h_n modulo $\langle T_1, \ldots, T_{n-1} \rangle$ and observe

$$\langle T_1,\ldots,T_{n-1},\tilde{h}_nC_n\rangle=\langle T_1,\ldots,T_{n-1},C_n\rangle.$$

The Dahan-Schost Transform (I)

Proposition

Consider $T = \{T_1, ..., T_n\}$ a Lazard triangular set. Assume T generates a radical ideal. Let $D_1 = 1$ and $N_1 = T_1$. For $2 \le \ell \le n$, define

$$D_{\ell} = \prod_{1 \le i \le \ell-1} \frac{\partial T_i}{\partial x_i} \mod \langle T_1, \dots, T_{\ell-1} \rangle$$

$$N_{\ell} = D_{\ell} T_{\ell} \mod \langle T_1, \dots, T_{\ell-1} \rangle$$

Then $N = \{N_1, \dots, N_n\}$ is a zero-dimensional regular chain with $\langle T \rangle = \langle N \rangle$.

Remark

The results of (Dahan & Schost, 2004) "essentially" show that the height (or "size") of each coefficient in N is upper bounded by

- the height of V(T) if K = Q, that is the minimum size of a data set encoding V(T),
- the degree of V(T[↓]) if K is a field k(t₁,...,t_m) of rational functions and T[↓] is T regarded in k[t₁,...,t_m,x₁,...,x_n].

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

See the authors' article for precise statements.

The Dahan-Schost Transform (II)

Consider the system F (Barry Trager)

$$-x^{5} + y^{5} - 3y - 1 = 5y^{4} - 3 = -20x + y - z = 0$$

We solve it for z < y < x.

V(F) is equiprojectable and its Lazard triangular set is

```
1474127949595250007469851907130022599454612253494776070051199475220192590004000144761057123097893465191301000117049027129017125033709234159810379810378103041598100712010547479165071205715746000300123940
 9934441072556430770604195551612193972977010100930011730186104714316107529521509773970546129852971870566509921445910050424930513039077208429321101822204509043750
 362457794998007226523064237197182386814553874348853792371700143077531532237850295577599442054921385504715875081170020878377110208228527009648803344051121705592832241429887
 4124133373604775386228203761990339603960554351804939044505110449153976435245929738034779754465197947702714342116764170792520912065114073651810141910422009490511176441575002
 74159823000775559982298310915981415421499079179907170130779007157982342542447774133244444414253987777421398244907013994422900072101994422900072101994424777744009040149821420
 249531511457164235275317079402015601945922094770509644405155650111512017510796170514965219143211011302157056602020477118924222550682780138119571000786020414171527914448001101750000000000
 23978710364428798728642475550746245486469675081278411846969752861333850575738117722989978983224804467512883607657599850120378546989972240351121714955903188324450459512883248044675128836076575998501203785409899722403511217149559031883244504551288350000
 5777051971234420003774430903294112997271341297027030435055997301113095399022450723004057230000271974233552056154004977220990002240005224000525019960219502205990027079900197090019702900029127120902250002007117401741152
 3624577949980072285210642371971182300814553874346853792217370814307753153223788024955775891420646231965504751517000917050073637110208278577589142064237120009485503144398875700094855031443988757000948550314439887500000010
 1250147911441292772801013141712970447112909120128284097112204098392298074114991719999059575416499202701705101173559651514009096190184217793409170000000007
 4194113877360477588223820170199013990035435130191919914500110044015397074524458297586187977702714544551979777027145421167641777922520912065114073651801140745218011411420209490011176441577002
 121711844050997770993195344596342120521211001020504412229514049607477956051840094573134972022043566414271419663537979525047601024174516414074349477755996081750
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

10980908392333478399979757⁴ - 141557671526403024000000002³ - 5898238732800000000002² 00000z - 6195303619231982878732441600243

· Applying the transformation of Dahan and Schost leads to 1787 characters.

- * $(20z^{19} + (-46z^{15}) + (-19200000z^{14}) + (-(36707199704/5)z^{11}) + (-5491200000z^{10}) + 61440000000000z^{9} + (-640z^{15}) + (-640$ $(-(2717905382277335654399676/125)z^3) + (-13589536466534690354000z^2) + (-377487278899200000000z) -$
- (-(2717905382277335654399076/125)x³) + (-13589536466534990304000x²) + (-377487278898200000000x) - $(-141557817139200002^7) + (-8355840000000002^6) + (-(679471833415273049598704/125)2^4) + (-90596768219147612160002^3) + (-(679471833415273049598704/125)2^4) + (-90596768219147612160002^3) + (-(679471833415273049598704/125)2^4) + (-(67947183415273049598704/125)2^4) + (-(67947183415273049598704/125)2^4) + (-(67947183415273049598704/125)2^4) + (-(67947183415273049704/125)2^4) + (-(67947183415273049704/125)2^4) + (-(67947183415273049704/125)2^4) + (-(67947183415273049704/125)2^4) + (-(67947183415273049704/125)2^4) + (-(67947183415273049704/125)2^4) + (-(67947183415273049704/125)2^4) + (-(67947183415273049704/125)2^4) + (-(67947183415273049704/125)2^4) + (-(67947183415273049704/125)2^4) + (-(67947183415273049704/125)2^4) + (-(67947183415273049704/125)2^4) + (-(67947183415273049704/125)2^4) + (-(67947183415273049704/125)2^4) + (-(6794718341527042) + (-(679471834152)2^4) + (-(679471834152) + (-(679471834152)2^4) + (-(679471834152)2^4) + (-(679471834152)2^4) + (-(679471834152)2^4) + (-(679471834152)2^4) + (-(679471834152)2^4) + (-(679471834152)2^4) + (-(679471834152)2^4) + (-(679471834152)2^4) + (-(679471834152)2^4) + (-(679471834152) + (-(679471834152)2^4) + (-(679471834152) + (-(679471834152) + (-(679471834152) + (-(679471834152) + (-(679471834152) + (-(679471834152) + (-(679471834152) +$
- * z²0 + (-1z¹6) + (-12800000z¹⁵) + (-(3225596682/5)z¹²) + (-49920000z¹¹) + 6144000000000z¹⁰ + $(-(679476345599313913999919/125)x^4) + (-4529845488944999758900x^3) + (-18874363944990000000x^2) +$ (-393216000000000000) + (-6195303619231982878732441600243/3125)

· One can do better! Here's the regular chain produced by the Triangularize algorithm of the RegularChains library, counting 963 characters.

20x - 1y + z

- {(4175x¹² + 52800011875x⁸ + 3200000000x⁷ + 110591802080002925x⁴ + 6143988080000000x³ + 1280000000000x² + 56821117271041038800027) y-18752¹³ - 96000101252⁹ + 20000000002⁸ - 73727147520045452⁵ + 307200024000000002⁴ + 1280000000000002³ -

Zero-dimensional regular chains

Pseudo-division, subresultants and division-free Euclidean algorithms

Division-free Euclidean algorithms

Computing regular GCDs

Regular chains in arbitrary dimension

Incremental solving

- Throughout this section, we consider a commutative ring A with identity element, a symbol x and the ring $\mathbb{A}[x]$ of the univariate polynomials in x with coefficients in A.
- Let $a, b \in A[x]$ be univariate polynomials such that b has a positive degree w.r.t. x.

Definition

We say that a polynomial $q \in \mathbb{A}[x]$ (resp. $r \in \mathbb{A}[x]$) is a pseudo-quotient (resp. *pseudo-remainder*) of a by b if there exists a non-negative integer e and a polynomial $r \in \mathbb{A}[x]$ (resp. $q \in \mathbb{A}[x]$) such that we have

$$\operatorname{lc}(b)^{e} a = qb + r \quad \text{and} \quad (r = 0 \quad \operatorname{or} \quad \operatorname{deg}(r) < \operatorname{deg}(b)). \tag{2}$$

Proposition

Assuume that the leading coefficient of is regular. We define $e = \min(0, \deg(a) - \deg(b) + 1)$. Then there exists a unique couple (q, r)of polynomials in $\mathbb{A}[x]$ such that q and r are a pseudo-quotient and a pseudo-remainder of a by b. The polynomial q (resp. r) is called the the pseudo-quotient (the pseudo-remainder) of a by b and denoted by prem(a, b) (pquo(a, b)). The map $(a, b) \mapsto (q, r)$ is called the pseudo-division of a by b. In addition, the following algorithm computes this couple. ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

```
Input: a, b \in \mathbb{A}[x] with b \notin \mathbb{A}.
   Output: q, r \in \mathbb{A}[x] satisfying Relation (2) with
                 e = \min(0, \deg(a) - \deg(b) + 1).
r := a
q := 0
e := \max(0, \deg(a) - \deg(b) + 1)
while r \neq 0 or \deg(r) \geq \deg(b) repeat
   d := \deg(r) - \deg(b)
   t := \operatorname{lc}(r) y^d
   q := \operatorname{lc}(b)q + t
   r := \operatorname{lc}(b)r - tb
   e := e - 1
r := \operatorname{lc}(b)^{e} r
q := \operatorname{lc}(b)^{e} q
return (q, r)
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proposition

Let \mathcal{I} be an ideal of \mathbb{A} and $d \in \mathbb{A}$ a regular element. Let $a, b, q, r \in \mathbb{A}[x]$ be univariate polynomials such that the following properties are satisfied:

- (i) b has a positive degree w.r.t. y and lc(b) is not a zero-divisor in \mathbb{A} ,
- (ii) q and r are the pseudo-quotient and pseudo-remainder of a w.r.t. b in A[x],
- (iii) $a \in \mathcal{I}[x]$ holds,

Them we have:

 $q \in \mathcal{I}[x]$ and $r \in \mathcal{I}[x]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Resultant (recall 1/2)

Let $P, Q \in \mathbb{A}[x]$ be two non-zero polynomials of respective degrees m and n such that n, m > 0. Suppose that

$$P = a_m x^m + \dots + a_1 x + a_0$$
 and $Q = b_n x^n + \dots + b_1 x + b_0$.

The Sylvester matrix of P and Q is the square matrix of order n + m with coefficients in R, denoted by sylv(P, Q, x) and defined by

whose determinant, denoted by res(P, Q, x), is the resultant of P and Q.

Resultant (recall 2/2)

Proposition

If \mathbb{A} is a unique factorization domain (UFD), then gcd(P, Q) is nonconstant in $\mathbb{A}[x]$ if and only if res(P, Q, x) = 0 in \mathbb{A} .

Example

Let $P = ax^2 + bx + c$ and let Q = 2ax + b be the derivative of P w.r.t x. Then the Sylvester matrix of P and Q w.r.t x is

$$S = \left[\begin{array}{rrrr} a & 2a & 0 \\ b & b & 2a \\ c & 0 & b \end{array} \right]$$

whose determinant is $det(S) = a(4ac - b^2)$. Whenever $a \neq 0$, P and Q have a common solution (or equivalently, P = 0 has a solution of multiplicity 2) if and only if the resultant res(P, Q, x) is zero.

Definition (Determinantal polynomial)

Let $m \le n$ be positive integers. Let M be a $m \times n$ matrix with coefficients in \mathbb{A} . Let M_i be the square submatrix of M consisting of the first m-1 columns of M and the *i*-th column of M, for $i = m \cdots n$; let det M_i be the determinant of M_i . The *determinantal polynomial* of M, denote by dpol(M), is a polynomial in $\mathbb{A}[x]$, given by

$$dpol(M) = \det M_m x^{n-m} + \det M_{m+1} x^{n-m-1} + \dots + \det M_n$$

If dpol(M) is not zero then its degree is at most n - m.

Notation

Let P_1, \ldots, P_m be polynomials of $\mathbb{A}[x]$ of degree less than n. We denote by $mat(P_1, \ldots, P_m)$ the $m \times n$ matrix whose *i*-th row contains the coefficients of P_i , sorting in order of decreasing degree, and such that P_i is treated as a polynomial of degree n - 1. We denote by $dpol(P_1, \ldots, P_m)$ the determinantal polynomial of $mat(P_1, \ldots, P_m)$.

Example

Let
$$n = 4$$
, $m = 2$, $P_1 = a_3x^3 + a_2x^2 + a_1x + a_0$ and $P_2 = b_2x^2 + b_1x + b_0$. Then

$$\max(P_1, P_2) = \begin{bmatrix} a_3 & a_2 & a_1 & a_0 \\ 0 & b_2 & b_1 & b_0 \end{bmatrix},$$

with

$$M_2 = \begin{bmatrix} a_3 & a_2 \\ 0 & b_2 \end{bmatrix}, M_3 = \begin{bmatrix} a_3 & a_1 \\ 0 & b_1 \end{bmatrix}, \text{ and } M_4 = \begin{bmatrix} a_3 & a_0 \\ 0 & b_0 \end{bmatrix}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Consequently, we have $dpol(P_1, P_2) = a_3b_2x^2 + a_3b_1x + a_3b_0$.

The notion of *subresultants* is a refinement of that of resultant. To define subresultants of two polynomials we need the following definition.

Definition

Let $P, Q \in \mathbb{A}[x]$ be non-constant polynomials of respective degrees m, n with $m \leq n$. Let k be an integer with $0 \leq k < m$. Then the k-th subresultant of P and Q, denoted by $S_k(P, Q)$, is

$$S_k(P,Q) = \operatorname{dpol}(x^{n-k-1}P, x^{n-k-2}P, \dots, P, x^{m-k-1}Q, \dots, Q).$$

- Observe that if $S_k(P,Q)$ is not zero then its degree is at most k. Indeed the underlying matrix has m + n - 2k rows and m + n - kcolumns. Nence $S_k(P,Q)$ has (m + n - k) - (m + n - 2k) + 1 = k + 1terms.
- When $S_k(P, Q)$ has degree k, then it is said *regular*, when $S_k(P, Q) \neq 0$ and deg $(S_k(P, Q)) < d$, $S_k(P, Q)$ is said *defective*.

It is easy to show that $S_0(P, Q)$ is res(P, Q, x), the resultant of P and Q.

Example

Let $P = b_2 x^2 + b_1 x + b_0$ and $Q = a_3 x^3 + a_2 x^2 + a_1 x + a_0$. Then

$$\begin{split} S_0(P,Q) &= \mathrm{dpol}(x^2P,xP,P,xQ,Q) = \mathrm{dpol}\begin{pmatrix}b_2 & b_1 & b_0 \\ & b_2 & b_1 & b_0 \\ & & b_2 & b_1 & b_0 \\ & & a_3 & a_2 & a_1 & a_0 \\ & & a_3 & a_2 & a_1 & a_0 \end{bmatrix}) \\ &= b_2 a_2^2 b_0^2 - 2b_2^2 a_2 b_0 a_0 - a_2 b_0^2 a_3 b_1 + b_2^3 a_0^2 + 3b_2 a_0 a_3 b_1 b_0 - b_1 b_2 a_1 a_2 b_0 - b_1 b_2^2 a_1 a_0 \\ &+ b_1^2 a_1 a_3 b_0 + b_2 a_2 b_1^2 a_0 - a_3 b_1^3 a_0 + b_0 b_2^2 a_1^2 - 2b_2 a_1 a_3 b_0^2 + a_3^2 b_0^3 \end{split}$$

and

$$\begin{split} S_1(P,Q) &= \mathrm{dpol}(xP,P,Q) = \mathrm{dpol}(\left[\begin{array}{ccc} b_2 & b_1 & b_0 \\ & b_2 & b_1 & b_0 \\ & a_3 & a_2 & a_1 & a_0 \end{array}\right]) \\ &= \left(b_2^2 a_1 - b_2 a_3 b_0 - b_2 a_2 b_1 + a_3 b_1^2\right) x - b_2 a_2 b_0 + b_2^2 a_0 + a_3 b_1 b_0. \end{split}$$

In particular, when $P = x(x-3) = x^2 - 3x$ and $Q = x(x-1)(x+1) = x^3 - x^2$, we have $S_0(P,Q) = 0$ and $S_1(P,Q) = 6x$, which in fact reflects gcd(P,Q) = x.

Proposition

Assume A is a UFD and let P, Q be polynomials in A[x] with degrees m and n. If for some $0 < k < \min(m, n)$, we have $S_k(P, Q) \neq 0$ and $S_i(P, Q) = 0$ for all i < k, then $\deg(\gcd(P, Q)) = k$ holds. In fact, $S_k(P, Q)$ is similar to $\gcd(P, Q)$ in the sense that there exist nonzero constants α and β in A such that $\alpha \gcd(P, Q) = \beta S_k(P, Q)$ holds.

According to the above proposition, S_k is a regular subresultant, and we usually call it the *last nonzero subresultant* of P, Q.

Zero-dimensional regular chains

Pseudo-division, subresultants and division-free Euclidean algorithms

Division-free Euclidean algorithms

Computing regular GCDs

Regular chains in arbitrary dimension

Incremental solving

Notations

We review the previous notions with a couple variable renaming.

- ▶ Let \mathbb{B} be another commutative ring with identity and let $m \le n$ be positive integers.
- ▶ Let $P, Q \in \mathbb{B}[y]$ be non-constant polynomials of respective degrees p, q with $q \le p$. Let d be an integer with $0 \le d < q$.
- Then the *d*-th subresultant of *P* and *Q*, denoted by $S_d(P, Q)$, is

$$S_d(P,Q) = \operatorname{dpol}(y^{q-d-1}P, y^{q-d-2}P, \dots, P, y^{p-d-1}Q, \dots, Q).$$

For convenience, we extend the definition to the q-th subresultant as follows:

$$S_q(P,Q) = \begin{cases} \gamma(Q)Q, & \text{if } p \ge q \text{ and } lc(Q) \in \mathbb{B} \text{ is regular} \\ \text{undefined, } otherwise} \end{cases}$$

where $\gamma(Q) = lc(Q)^{p-q-1}$. Note that when p equals q, then $S_q(P, Q) = lc(Q)^{-1}Q$ is in fact a polynomial over the total fraction ring of \mathbb{B} .

We call specialization property of subresultants the following statement.

Proposition

Let \mathbb{A} be another commutative ring with identity and Ψ a ring homomorphism from \mathbb{B} to \mathbb{A} such that $\Psi(\operatorname{lc}(P)) \neq 0$ and $\Psi(\operatorname{lc}(Q)) \neq 0$. Then

$$S_d(\Psi(P),\Psi(Q))=\Psi(S_d(P,Q)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

This property will play a central role later.

Divisibility relations of subresultants: integral domain case

Subresultants $S_{q-1}(P,Q)$, $S_{q-2}(P,Q)$, ..., $S_0(P,Q)$ satisfy relations which induce an Euclidean-like algorithm for computing them.

Following (Ducos, 1998) we first assume that \mathbb{B} is an integral domain. For convenience, we simply write S_d instead of $S_d(P, Q)$ for each d. We write $A \sim B$ for $A, B \in \mathbb{B}[y]$ whenever they are associates over $Fr(\mathbb{B})$ (the field of fractions of \mathbb{B}) that is, equal up to a non-zero element of $Fr(\mathbb{B})$. Then for d = q - 1, ..., 1, we have:

 (r_{q-1}) $S_{q-1} = \text{prem}(P, -Q)$, the pseudo-remainder of P by -Q, $(r_{< q-1})$ if $S_{q-1} \neq 0$, with $e = \text{deg}(S_{q-1})$, then the following holds:

$$\operatorname{prem}(Q, -S_{q-1}) = \operatorname{lc}(Q)^{(p-q)(q-e)+1} S_{e-1},$$

 (r_e) if $S_{d-1} \neq 0,$ with $e = \deg(S_{d-1}) < d-1,$ thus S_{d-1} is defective, then we have

(1)
$$\deg(S_d) = d$$
, thus S_d is non-defective,
(2) $S_{d-1} \sim S_e$ and $lc(S_{d-1})^{d-e-1}S_{d-1} = s_d^{-d-e-1}S_e$, thus S_e is non-defective,
(3) $S_{d-2} = S_{d-3} = \cdots = S_{e+1} = 0$,

 (r_{e-1}) if both S_d and S_{d-1} are nonzero, with respective degrees d and e then we have $\operatorname{prem}(S_d, -S_{d-1}) = \operatorname{lc}(S_d)^{d-e+1}S_{e-1}$. **Convention.** If $p = \deg(P) \ge \deg(Q) = q$, then $S_q = \operatorname{lc}(Q)^{p-q-1}Q$ where lc is the leading coefficient. Of course, if p = q, the coefficients of S_q belong to $\operatorname{Frac}(R)$, but the leading coefficient $s_q = \operatorname{lc}(Q)^{p-q}$ always belongs to R.

Subresultant algorithm. (see [2, 3, 8] or [12])
Inputs: $P, Q \in R[X]$ $\deg(P) \ge \deg(Q) \ge 1$
Output: List of non-zero subresultants of P and Q
$S \leftarrow \text{empty list}$
$s \leftarrow lc(Q)^{deg(P)-deg(Q)}$
$A \leftarrow Q; B \leftarrow \operatorname{prem}(P, -Q)$
loop
$d \leftarrow \deg(A); e \leftarrow \deg(B)$
— here, $A \sim S_d$ if $d = deg(Q)$ —
— here, $A = S_d$ if $d < deg(Q)$ —
— here, $B = S_{d-1}$, $s = lc(S_d)$ for $d \le deg(Q)$ —
if $B = 0$ then return S
$S \leftarrow [B] \cup S$
— here, $S = [S_{d-1}, S_d,]$ —
$\delta \leftarrow d - e$
if $\delta > 1$ then $C \leftarrow \frac{\operatorname{lc}(B)^{\delta-1}B}{\delta-1}; S \leftarrow [C] \cup S$
else $C \leftarrow B$
- here, $C = S_e, S = [S_e,]$
if $e = 0$ then return S
p = prem(A, -B)
$B \leftarrow \frac{1}{s^{\delta} lc(A)}$
— here, $B = S_{c-1}$ —
$A \leftarrow C$
$s \leftarrow lc(A)$
end loop

Divisibility relations of subresultants: non-integral domain

case

We consider now the case where \mathbb{B} is an arbitrary commutative ring, following Theorem 4.3 in (El Kahoui, 2003). If S_d , S_{d-1} are nonzero, with respective degrees d and e and if s_d is regular in \mathbb{B} then we have

$$lc(S_{d-1})^{d-e-1}S_{d-1} = s_d^{d-e-1}S_e.$$

Moreover, there exists $C_d \in \mathbb{B}[y]$ such that

$$(-1)^{d-1} \operatorname{lc}(S_{d-1}) s_e S_d + C_d S_{d-1} = \operatorname{lc}(S_d)^2 S_{e-1}.$$

In addition $S_{d-2} = S_{d-3} = \cdots = S_{e+1} = 0$ also holds.

From these formula we derive the following observation to which we will refer as the *block structure of subresultants*.

Proposition

Let S_i, S_j, S_k be three non-zero subresultants with indices $q \ge i > j > k \ge 0$. Assume that for all $\ell = i - 1, ..., j + 1, j - 1, ..., k + 1$ we have $S_\ell = 0$. Assume that S_j is defective. Then S_i is non-defective and we have j = i - 1. Moreover S_k is non-defective and we have $S_j \sim S_k$. Observe also that the non-zero subresultant S_d of smallest index d, sometimes called the last subresultant of P and Q and denoted by lsr(P, Q), is a non-defective subresultant.

Zero-dimensional regular chains

Pseudo-division, subresultants and division-free Euclidean algorithms

Division-free Euclidean algorithms

Computing regular GCDs

Regular chains in arbitrary dimension

Incremental solving

Regular GCD (recall)

- Let B again be a commutative ring with units. Let P, Q ∈ B[y] be non-constant with regular leading coefficients.
- We say that G ∈ B[y] is a r egular GCD of P, Q if we have:
 (i) lc(G,y) is a regular element of B,
 (ii) G ∈ (P,Q) in B[y],
 (iii) deg(G,y) > 0 ⇒ prem(P,G,y) = prem(Q,G,y) = 0.
- ▶ In practice $\mathbb{B} = \mathbb{K}[x_1, ..., x_n]/Sat(T)$, with T being a regular chain.
- Such a regular GCD may not exist. However, we shall see that one can compute *I_i* = Sat(*T_i*) and non-zero polynomials *G_i* such that

 $\sqrt{\mathcal{I}} = \cap_{i=0}^e \sqrt{\mathcal{I}_i} \ \text{ and } \ G_i \ \text{ regular GCD of } \ P, Q \ \text{mod } \mathcal{I}_i$

(日)((1))

Regularity test

• R egularity test is a fundamental operation:

$$\operatorname{Regularize}(p,\mathcal{I}) \quad \longmapsto \quad (\mathcal{I}_1,\ldots,\mathcal{I}_e)$$

such that:

$$\sqrt{\mathcal{I}} = \bigcap_{i=0}^{e} \sqrt{\mathcal{I}_i}$$
 and $p \in \mathcal{I}_i$ or p regular modulo \mathcal{I}_i

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Regularity test reduces to r egular GCD computation.

Regular GCDs (1/6)

- Let $P, Q \in \mathbb{K}[\mathbf{x}][\mathbf{y}]$ with mvar(P) = mvar(Q) = y.
- Define R = res(P, Q, y).
- Let $T \subset \mathbb{K}[x_1, \dots, x_n]$ be a regular chain such that • $R \in \text{Sat}(T)$,
 - init(P) and init(Q) are regular modulo Sat(T).
- $\mathbb{A} = \mathbb{K}[x_1, \dots, x_n]$ and $\mathbb{B} = \mathbb{K}[x_1, \dots, x_n]/\mathrm{Sat}(T)$.
- For $0 \le j \le mdeg(Q)$, we write S_j for the *j*-th subresultant of P, Q in $\mathbb{A}[y]$.

Regular GCDs (2/6)

• Let $1 \le d \le q$ such that $S_j \in \text{Sat}(T)$ for all $0 \le j < d$.

Proposition

If $lc S_d$, y is regular modulo Sat(T), then S_d is non-defective over $\mathbb{K}[\mathbf{x}]$.

- Consequently, S_d is the last nonzero subresultant over \mathbb{B} , and it is also non-defective over \mathbb{B} .
- If lc(S_d, x_n) is not regular modulo Sat(T) then S_d may be defective over B.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Regular GCDs (3/6)

• Let $1 \le d \le q$ such that $S_j \in Sat(T)$ for all $0 \le j < d$.

Proposition

If $lc S_d$, y is in Sat(T), then S_d is nilpotent modulo Sat(T).

- ▶ Up to sufficient splitting of Sat(T), S_d will vanish on all the components of Sat(T).
- ► The above two lemmas completely characterize the last non-zero subresultant of P and Q over B.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Regular GCDs (4/6)

Example

• Consider P and Q in $\mathbb{Q}[x_1, x_2][y]$:

$$P = x_2^2 y^2 - x_1^4 \text{ and } Q = x_1^2 y^2 - x_2^4.$$

We have:

$$S_1 = x_1^6 - x_2^6$$
 and $R = (x_1^6 - x_2^6)^2$.

- Let $T = \{R\}$. Then we observe:
 - The I ast subresultant of P, Q modulo Sat(T) is S₁, which is a defective one.

- S_1 is n ilpotent modulo Sat(T).
- *P* and *Q* do not admit a regular GCD over $\mathbb{Q}[x_1, x_2]/\text{Sat}(T)$.

Regular GCDs (5/6)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Let $1 \le d \le q$ such that $S_j \in \text{Sat}(T)$ for all $0 \le j < d$.

Proposition

Assume

- lcS_d , y is regular modulo Sat(T),
- ▶ Sat(*T*) is radical.

Then, S_d is a regular GCD of P, Q modulo Sat(T).

Regular GCDs (5/6)

• Let $1 \le d \le q$ such that $S_j \in \text{Sat}(T)$ for all $0 \le j < d$.

Proposition

Assume

- lcS_d , y is regular modulo Sat(T),
- Sat(T) is radical.

Then, S_d is a regular GCD of P, Q modulo Sat(T).

Recall that S_d regular GCD of P, Q modulo Sat(T) means

- (*i*) $lc(S_d, y)$ is a regular element of \mathbb{B} ,
- (*ii*) $S_d \in \langle P, Q \rangle$ in $\mathbb{B}[y]$,
- (iii) $\deg(S_d, y) > 0 \implies \operatorname{prem}(P, S_d, y) = \operatorname{prem}(Q, S_d, y) = 0.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Regular GCDs (5/6)

• Let $1 \le d \le q$ such that $S_j \in \text{Sat}(T)$ for all $0 \le j < d$.

Proposition

Assume

- lcS_d , y is regular modulo Sat(T),
- Sat(T) is radical.

Then, S_d is a regular GCD of P, Q modulo Sat(T).

Proposition

Assume

- lcS_d , y is regular modulo Sat(T),
- ▶ for all $d < k \le q$, $coeff(S_k, y^k)$ is either 0 or regular modulo Sat(T).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Then, S_d is a regular GCD of P, Q modulo Sat(T).

Regular GCDs (6/6)

- Assume that the subresultants S_i for $1 \le j < q$ are computed.
- Then one can compute a regular GCD of P, Q modulo Sat(T) by performing a bottom-up search.

Zero-dimensional regular chains

Pseudo-division, subresultants and division-free Euclidean algorithms

Division-free Euclidean algorithms

Computing regular GCDs

Regular chains in arbitrary dimension

Incremental solving

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Triangular sets and auto-reduced sets

Definition

A subset $B \subset \mathbb{K}[X] \setminus \mathbb{K}$ is

- a triangular set if for all $f, g \in B$ we have $f \neq g \Rightarrow mvar(f) \neq mvar(g)$,
- **auto-(pseudo-)reduced** if all $b \in B$ is pseudo-reduced w.r.t. $B \setminus \{b\}$.

Proposition

Every auto-reduced set is finite and is a triangular set.

Notation

Let $f \in \mathbb{K}[X]$ and $B \subset \mathbb{K}[X] \setminus \mathbb{K}$ an auto-reduced set. If $B = \emptyset$ we write $\operatorname{prem}(f, B) = f$. Otherwise let $b \in B$ with largest main variable; we write $\operatorname{prem}(f, B) = \operatorname{prem}(\operatorname{prem}(f, b), B \setminus \{b\})$. For $A \subset \mathbb{K}[X]$ write $\operatorname{prem}(A, B) = \{\operatorname{prem}(a, B) \mid a \in A\}$.

Example

For instance, with $T_4 = \{x_1(x_1 - 1), x_1x_2 - 1\}$ and $p = x_2^2 + x_1x_2 + x_1^2$, we have

 $\operatorname{prem}(\rho, T) = \operatorname{prem}(\operatorname{prem}(\rho, T_{x_2}), T_{x_1}) = \operatorname{prem}(x_1^4 + x_1^2 + 1, T_{x_1}) = 2 x_1 + 1.$

where $T_{x_1} = x_1(x_1 - 1)$ and $T_{x_2} = x_1x_2 - 1$.

The saturated ideal of a triangular set (1/3)

Definition Let $\mathcal{T} \subset \mathbb{K}[X]$ be a triangular set. The set

 $\operatorname{Sat}(T) = \{ f \in \mathbb{K}[X] \mid (\exists e \in \mathbb{N}) \ h_T^e \ f \in \langle T \rangle \}$

is the saturated ideal of T. (Clearly Sat(T) is an ideal.)

Proposition Let $T \in \mathbb{K}[X]$ be a triangular set and $f \in \mathbb{K}[X]$. We have $\operatorname{prem}(f, T) = 0 \Rightarrow f \in \operatorname{Sat}(T).$

Remark

The converse is false. Consider $n \ge 2$ and

$$T = \{x_1(x_1-1), x_1x_2-1\}.$$

Consider $p = (x_1 - 1)(x_1x_2 - 1)$ and $q = -(x_1 - 1)x_1x_2$. We have:

 $\operatorname{prem}(p,T) = \operatorname{prem}(q,T) = 0.$

However, we have $p + q = 1 - x_1$, $\operatorname{prem}(p + q, T) \neq 0$ but $p + q \in \operatorname{Sat}(T)$, since $\operatorname{Sat}(T)$ is an ideal. Note that $\operatorname{Sat}(T) = \langle x_1 - 1, x_2 - 1 \rangle$.

The saturated ideal of a triangular set (2/3)

• Consider again for x > y > a > b > c > d > e > f > g > h > i

$$F = \begin{cases} ax + by - c \\ dx + ey - f \\ gx + hy - i \end{cases} \text{ and } T = \begin{cases} gx + hy - i \\ (hd - eg) y - id + fg \\ (ie - fh) a + (ch - ib) d + (fb - ce) g \end{cases}$$

• Using Gröbner basis computations, one can check the following assertions for this example:

- Sat(T) = $\langle F \rangle$.
- Sat(T) is an ideal stricly larger than $\langle T \rangle$.
- In fact $\langle T \rangle \subset \operatorname{Sat}(T) \cap \langle g, h, i \rangle$,
- and none of Sat(T) or $\langle g, h, i \rangle$ contains the other.

The quasi-component of a triangular set

Definition

Let $T \subset \mathbb{K}[X]$ be a **triangular set**. Let h_T be the product of the initials of T. The set $W(T) = V(T) \setminus V(\{h_T\})$ is the **quasi-component** of T.

Remark

Clearly W(T) may not be variety. Consider n = 2 and $T = \{x_1x_2\}$. We have $h_T = x_1$ and W(T) is the line $x_2 = 0$ minus the point (0,0). Observe that $Sat(T) = \langle x_2 \rangle$.

Proposition

For any triangular set $T \subset \mathbb{K}[X]$ we have

$$\overline{W(T)} = V(\operatorname{Sat}(T)).$$

Remark

Consider

$$T=\{x_2^2-x_1,x_1x_3^2-2x_2x_3+1,(x_2x_3-1)x_4+x_2^2\}.$$

We have $W(T) = \emptyset = V(T)$.

Regular chains

Definition

Let \mathcal{I} be a proper ideal of $\mathbb{K}[X]$. We say that a polynomial $p \in \mathbb{K}[X]$ is **regular** modulo \mathcal{I} if for every prime ideal \mathcal{P} associated with \mathcal{I} we have $p \notin \mathcal{P}$, equivalently, this means that p is neither null modulo \mathcal{I} , nor a zero-divisor modulo \mathcal{I} .

Definition

Let $T = \{T_1, ..., T_s\}$ be a triangular set where polynomials are sorted by increasing main variables. The triangular set T is a regular chain if for all $i = 2 \cdots s$ the initial of T_i is regular modulo the saturated ideal of $T_1, ..., T_{i-1}$.

Proposition

If T is a regular chain then Sat(T) is a proper ideal of $\mathbb{K}[X]$ and, thus, $W(T) \neq \emptyset$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The saturated ideal of a triangular set (3/3)

Theorem (Aubry, Lazard & M., 1997) Let $C \subset \mathbb{K}[X]$ be an auto-(pseudo-)reduced set. Then, we have

$$Sat(C) = \{p \mid prem(p, C) = 0\}$$
$$(C regular chain)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Reduction to dimension zero (1/2)

Theorem

(Chou & Gao, 1991), (Kalkbrener, 1991), (Aubry, 1999), (Boulier, Lemaire & M., 2006) Let $T = \{T_{d+1}, \ldots, T_n\}$ be a triangular set. Assume that $mvar(T_i) = x_i$ for all $d + 1 \le i \le n$ and assume Sat(T) is a proper ideal of $\mathbb{K}[X]$. Then, every prime ideal \mathcal{P} associated with Sat(T) has dimension d and satisfies

$$\mathcal{P} \cap \mathbb{K}[x_1,\ldots,x_d] = \langle 0 \rangle.$$

Corollary

With T as above. Consider the localization by $\mathbb{K}[x_1, \ldots, x_d] \setminus \{0\}$; in other words, we map our polynomials from $\mathbb{K}[x_1, \ldots, x_n]$ to $\mathbb{K}(x_1, \ldots, x_d)[x_{d+1}, \ldots, x_n]$. Let T_0 be the image of T. Let $p \in \mathbb{K}[x_1, \ldots, x_n]$ and p_0 its image in $\mathbb{K}(x_1, \ldots, x_d)[x_{d+1}, \ldots, x_n]$. Assume p non-zero modulo $\operatorname{Sat}(T)$. Then, the following conditions are equivalent:

- (1) p is regular w.r.t. Sat(T),
- (2) p_0 is invertible w.r.t. Sat(T_0).

In particular T is a regular chain iff T_0 is a (zero-dimensional) regular chain.

Reduction to dimension zero (2/2)

Remark

Consequently, we can generalize to positive dimension our computations of **polynomial GCDs** defined previously over zero-dimensional regular chains. (Indeed, It is also possible to relax the condition $Sat(T_0)$ radical.)

Notation

Let T is a regular chain and $F \subset \mathbb{K}[X]$ be a polynomial set. We denote by Z(F,T) the intersection $V(F) \cap W(T)$, that is the set of the zeros of F that are contained in the quasi-component W(T). If $F = \{p\}$, we write Z(p,T) for Z(F,T).

Proposition

Let T be a regular chain. If p is regular modulo Sat(T), then Z(p,T) is either empty or it is contained in a variety of dimension strictly less than the dimension of $\overline{W(T)}$.

Zero-dimensional regular chains

Pseudo-division, subresultants and division-free Euclidean algorithms

Division-free Euclidean algorithms

Computing regular GCDs

Regular chains in arbitrary dimension

Incremental solving

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Notations

- polynomial ring $R = \mathbb{K}[x_1 < \cdots < x_n]$
- polynomial $p \in R$
- mvar(p) : largest variable appearing in p
- init(p) : leading coefficient of p w.r.t. mvar(p)
- a polynomial set $T \subset R \setminus \mathbb{K}$
- ▶ *T* is a triangular set if $mvar(p) \neq mvar(q)$ for all $p \neq q \in T$
- init(T): the product of the initials of polynomials in T
- $\operatorname{Sat}(T) \coloneqq \langle T \rangle : \operatorname{init}(T)^{\infty}$
- an element $p \neq 0$ of a ring A is regular if p is not a zerodivisor in A
- a triangular set $T = \{t_1, \ldots, t_s\}$ is a regular chain if $\{t_1, \ldots, t_{s-1}\}$ is a regular chain and $init(t_s)$ is regular in $R/Sat(t_1, \ldots, t_{s-1})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
Example

$$T := \begin{cases} t_2 = (x_1 + x_2)x_3^2 + x_3 + 1 \\ t_1 = x_1^2 - 2. \end{cases}$$

Under the order $x_3 > x_2 > x_1$,

- $mvar(t_2) = x_3$ and $init(t_2) = x_1 + x_2$
- $\operatorname{init}(t_2)$ is regular(neither zero or zerodivisor) modulo $\langle t_1 \rangle : 1^{\infty} = \langle t_1 \rangle$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- T is a regular chain
- $\operatorname{init}(T) \coloneqq \operatorname{init}(t_2)\operatorname{init}(t_1)$
- $\operatorname{Sat}(T) \coloneqq \langle T \rangle : \operatorname{init}(T)^{\infty}$
- quasi-component of T: $W(T) = V(T) \setminus V(init(T))$.

Triangular decomposition of an algebraic variety

Kalkbrener triangular decomposition

Let $F \subset \mathbb{K}[\mathbf{x}]$. A family of regular chains T_1, \ldots, T_e of $\mathbb{K}[\mathbf{x}]$ is called a Kalkbrener triangular decomposition of V(F) if

$$V(F) = \cup_{i=1}^{e} \overline{W(T_i)}.$$

Lazard-Wu triangular decomposition

Let $F \subset \mathbb{K}[\mathbf{x}]$. A family of regular chains T_1, \ldots, T_e of $\mathbb{K}[\mathbf{x}]$ is called a Lazard-Wu triangular decomposition of V(F) if

$$V(F) = \cup_{i=1}^{e} W(T_i).$$

Incremental algorithm and intersect operation

Intersect operation

- Let $R = \mathbb{K}[x_1 < \cdots < x_n].$
- Let $p \in R$ and T be a regular chain of R.
- ▶ Intersect(p, T, R) returns regular chains $T_1, \ldots, T_e \subset R$ such that

$$V(p) \cap W(T) \subseteq W(T_1) \cup \cdots \cup W(T_e) \subseteq V(p) \cap \overline{W(T)}.$$

Triangularize(F, R)

- if $F = \{ \}$ then return $\{\emptyset\}$
- Choose a polynomial $p \in F$ with maximal rank
- for $T \in \text{Triangularize}(F \setminus \{p\}, R)$ do output Intersect(p, T, R)

end

Specialization properties of subresultants

Theorem

Let *H* be a homomorphism from a ring *R* to a field \mathbb{L} . Let $p, t \in R[y]$. Let *j* be the smallest integer s.t. $H(s_j) \neq 0$. Then $H(S_j) = \text{gcd}(H(p), H(t))$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Properties of Regular GCD (I)

- Let $R := \mathbb{K}[x_1, \ldots, x_{k-1}]$, where $1 \le k \le n$.
- Let $T \subset \mathbb{K}[x_1, \ldots, x_{k-1}]$ be a regular chain.
- Let $p, t, g \in R[x_k]$ be polynomials with main variable x_k .

Proposition

Assume $T \cup \{t\}$ is a regular chain and g is a regular GCD of p and t in $R[x_k]/\sqrt{\operatorname{Sat}(T)}$. We have:

$$V(p) \cap W(T \cup t) \subseteq W(T \cup g) \cup V(\{p, h_g\}) \cap W(T \cup t)$$

$$\subseteq V(p) \cap \overline{W(T \cup t)}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Properties of Regular GCD (II)

- Let $R := \mathbb{K}[x_1, \ldots, x_{k-1}]$, where $1 \le k \le n$.
- Let $T \subset \mathbb{K}[x_1, \ldots, x_{k-1}]$ be a regular chain.
- Let $p, t, g \in R[x_k]$ be polynomials with main variable x_k .

Theorem

There exists finitely many regular chains $T_1 \cup g_1, \ldots, T_e \cup g_e$ such that

$$V(p) \cap W(T \cup t) \subseteq \cup_{i=1}^{e} W(T_i \cup g_i) \subseteq V(p) \cap \overline{W(T \cup t)},$$

where g_i is a regular GCD of p and t in $R[x_k]/\sqrt{\operatorname{Sat}(T_i)}$.

Remark

Note that for all T_i , the regular GCD of p and t in $R[x_k]/\sqrt{\operatorname{Sat}(T_i)}$ can be computed by t he same subresultant chain of p and t.

ふして 山田 ふぼやえばや 山下

ふして 山田 ふぼやえばや 山下

ふして 山田 ふぼやえばや 山下