
Hardware Acceleration Technologies in Computer Algebra: Challenges and
Impact

Ph.D Thesis Presentation
of

Sardar Anisul Haque
Supervisor: Dr. Marc Moreno Maza

Ontario Research Centre for Computer Algebra
University of Western Ontario, London, Ontario

November 15, 2013

(ORCCA) presentation 1 / 60

Overview and challenges

Overview
▸ This thesis deals with the implementation (both parallel and serial) of basic routines in
computer algebra.

▸ These routines are from linear algebra (both sparse and dense) and polynomial arithmetic.
▸ We are interested in developing tools for analyzing algorithms and implementation
techniques targeting hardware acceleration technologies.

▸ An outcome of our work is GPU-support for high-level polynomial system solver in the
computer algebra system Maple.

Challenges
With respect to high-performance computing challenges, computer algebra low-level routines fall
into categories:
(P1) memory access patterns are highly irregular and work count is essentially proportional to

memory accesses;
(P2) the amount of work is much larger than the amount of reads/writes while memory access

patterns are rather regular.
This classification defines the two parts of this thesis.

(ORCCA) presentation 2 / 60

Two types problems of our interest in this thesis

Problems of type (P1)
▸ Irregular memory access patterns and relatively little work w.r.t. memory accesses
▸ Typical examples: sparse matrix and sparse polynomial arithmetic.
▸ Cases of interest involve huge data.
▸ All these properties make these operations not so suitable for manycores.
▸ Typical operations: sparse matrix vector multiplication (SpMxV) multiplication (Pinar and
Heath, 1999). Solutions are classified broadly into two groups:

▸ Improving locality by exploiting the structure of the data: by blocking (Vuduc and Moon, 2005) or
rearranging data (Pinar and Heath, 1999).

▸ Reducing the number of I/O operations in the whole memory hierarchy (Bender, Brodal, Fagerberg,
Jacob, and Vicari 2010).

Problems of type (P2)
▸ Compute- and data-intensive operations, with regular memory access patterns
▸ Typical examples: dense matrix arithmetic and dense polynomial arithmetic.
▸ Fine grain parallelism; moreover certain complex memory access patterns (FFT) make these
operations not so suitable for multicores.

▸ Typical operations: FFT-based and plain polynomial arithmetic. See the landmark book (von
zur Gathen and Gerhard, 1999).

▸ Reports on GPU implementation: (Emeliyanenko, 2009-2011) (Morneo Maza & Pan,
2010-2011).

(ORCCA) presentation 3 / 60

Plan

1 Around Sparse Matrix Vector Multiplication
Ideal Cache Model and Cache Complexity
Cache Friendly Sparse Matrix Vector Multiplication
One More Sorting Problem
Cache Oblivious Counting Sort Algorithm

2 A model of compuation for many-core architectures
Manycore architectures
Determinant on GPU by Condensation Method
Many-core Machine Model
Polynomial division algorithms
The Euclidean algorithm for polynomials
Polynomial multiplication algorithms
On the implementation and application of subproduct tree based technique
Integrating GPU support into bivariate solver

(ORCCA) presentation 4 / 60

Plan

1 Around Sparse Matrix Vector Multiplication
Ideal Cache Model and Cache Complexity
Cache Friendly Sparse Matrix Vector Multiplication
One More Sorting Problem
Cache Oblivious Counting Sort Algorithm

2 A model of compuation for many-core architectures
Manycore architectures
Determinant on GPU by Condensation Method
Many-core Machine Model
Polynomial division algorithms
The Euclidean algorithm for polynomials
Polynomial multiplication algorithms
On the implementation and application of subproduct tree based technique
Integrating GPU support into bivariate solver

(ORCCA) presentation 5 / 60

The (Z , L)-ideal cache model

Frigo, Leiserson, Prokop and Ramachandran (1999) introduce:

▸ Computer with a two-level memory hierarchy:
▸ an ideal (data) cache of Z words partitioned into Z/L cache lines, where L is the number of words

per cache line.
▸ an arbitrarily large main memory.

▸ Cache lines (sometimes called blocks) are the data unit when for transfer between cache and
main memory.

▸ The cache is tall, that is, Z is much larger than L, say Z ∈ Ω(L2).

(ORCCA) presentation 6 / 60

Cache complexity

▸ For an algorithm with input of size n, the ideal-cache model uses two complexity measures:
▸ the work W (n), which is its running time in the RAM model.
▸ the cache complexity Q(n; Z ,L), that is, the number of cache misses the algorithm incurs (as a

function of the size Z and line length L of the ideal cache).

▸ An algorithm is said to be cache aware if its behavior (and thus performances) can be tuned
(and thus depend on) on the memory parameters (Z , L, etc.) of the targeted machine.

▸ Otherwise the algorithm is cache oblivious.

(ORCCA) presentation 7 / 60

Cache complexity of SpMxV multiplication: an illustrative example (1/2)

Input matrix and vector

A x

⎛
⎜
⎝

a0,0 0 0 0 a0,4 0
0 0 a1,2 0 0 a1,5
0 a2,1 0 a2,3 0 0

⎞
⎟
⎠
×

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

x0
x1
x2
x3
x4
x5

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

Cache misses due to x
Assume that the cache has 2 lines each of 2 words. Assume also that the cache is dedicated to
store the entries from x :

[] [x0 x1] [x0 x1
x4 x5

] [x0 x1
x2 x3

] [x4 x5
x2 x3

] [x4 x5
x0 x1

] [x2 x3
x0 x1

]

Total number of cache misses: 6.

(ORCCA) presentation 8 / 60

Cache complexity of SpMxV multiplication: an illustrative example (2/2)

After reordering the columns of A

A′ x ′

⎛
⎜
⎝

a0,0 a0,4 0 0 0 0
0 0 a1,2 a1,5 0 0
0 0 0 0 a2,1 a2,3

⎞
⎟
⎠
×

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

x0
x4
x2
x5
x1
x3

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

Cache misses due to x ′

Assume that the cache has 2 lines each of 2 words. Assume also that the cache is dedicated to
store the entries from x :

[] [x0 x4] [x0 x4] [x0 x4
x2 x5

] [x0 x4
x2 x5

] [x0 x4
x1 x3

] [x0 x4
x1 x3

]

Total number of cache misses: 3.

(ORCCA) presentation 9 / 60

Gray codes

Definition
▸ For N = 2n, an n-bit code Cn = (u1,u2, . . . ,uN), where N = 2n, is a Gray code if ui and ui+1
differ in exactly one bit, for all i .

▸ This corresponds to a Hamiltonian path (cycle) in the n-dimensional hypercube.

Binary reflected Gray codes
The reflected Gray code Γn is defined recursively by

Γ1 = (0,1) and Γn+1 = 0 Γn, 1 ΓnR

Introduced by Frank Gray 1953 for shaft encoders

Γ3 = 000,001,011,010,110,111,101,100.

Binary reflected Gray code for arithmetic operations
▸ Integers of dimension m can be represented by a data structure that uses

m + logm +O(loglogm) bits so that increment and decrement operations require at most
logm +O(loglogm) bit inspections and 6 bit changes per operation. (M.Z. Rahman and J.I.
Munro, 2007).

▸ They have also good results for addition and subtraction.

(ORCCA) presentation 10 / 60

Gray codes

Definition
▸ For N = 2n, an n-bit code Cn = (u1,u2, . . . ,uN), where N = 2n, is a Gray code if ui and ui+1
differ in exactly one bit, for all i .

▸ This corresponds to a Hamiltonian path (cycle) in the n-dimensional hypercube.

Binary reflected Gray codes
The reflected Gray code Γn is defined recursively by

Γ1 = (0,1) and Γn+1 = 0 Γn, 1 ΓnR

Introduced by Frank Gray 1953 for shaft encoders

Γ3 = 000,001,011,010,110,111,101,100.

Binary reflected Gray code for arithmetic operations
▸ Integers of dimension m can be represented by a data structure that uses

m + logm +O(loglogm) bits so that increment and decrement operations require at most
logm +O(loglogm) bit inspections and 6 bit changes per operation. (M.Z. Rahman and J.I.
Munro, 2007).

▸ They have also good results for addition and subtraction.

(ORCCA) presentation 10 / 60

Gray codes

Definition
▸ For N = 2n, an n-bit code Cn = (u1,u2, . . . ,uN), where N = 2n, is a Gray code if ui and ui+1
differ in exactly one bit, for all i .

▸ This corresponds to a Hamiltonian path (cycle) in the n-dimensional hypercube.

Binary reflected Gray codes
The reflected Gray code Γn is defined recursively by

Γ1 = (0,1) and Γn+1 = 0 Γn, 1 ΓnR

Introduced by Frank Gray 1953 for shaft encoders

Γ3 = 000,001,011,010,110,111,101,100.

Binary reflected Gray code for arithmetic operations
▸ Integers of dimension m can be represented by a data structure that uses

m + logm +O(loglogm) bits so that increment and decrement operations require at most
logm +O(loglogm) bit inspections and 6 bit changes per operation. (M.Z. Rahman and J.I.
Munro, 2007).

▸ They have also good results for addition and subtraction.

(ORCCA) presentation 10 / 60

Cache friendly SpMxV multiplication: our method

Principle
For a sparse matrix A with m rows and n columns, we re-order columns (and rows) so as to
reduce cache complexity when multiplying A by a dense vector.

Details
1. Consider each column as a binary string from the binary reflected Gray code Γm.
2. We partition columns based on their rank, considering only a few most significant nonzeros.
3. Next, we re-order rows with no significant nonzeros according to Γn.
4. Keep Refining the column partition (by considering more nonzeros) until each part of the

partition is a singleton.
(ORCCA) presentation 11 / 60

Time complexity

In theory . . .
▸ Recall that A has n columns and m rows.
▸ Theoretically, one could sort the columns of A according to their rank in Γm. The algebraic
complexity of this preprocessing would be O(n log(n) f (m)) where f (m) is the maximum
number of bit operations for comparing two columns.

▸ Using sparse data-structure for encoding A, we can assume that f (m) is bounded over by
the maximum number of nonzeros in a column.

▸ Let τ be the total number of non-zeros in A.
▸ This “direct” approach would requires at most O(τ log(n)) bit operations.

Our results
▸ Our preprocessing procedures requires O(τ) index comparisons and O(τ + n) data-structure
updates,.

▸ Experimentally, we verified that our preprocessing is faster than procedures based on sorting
algorithms

▸ Typically, for 106 ≤ m,n ≤ 108 and n ≤ τ ≤ 10n, preprocessing cost is less than 70 SpMxV
▸ Therefore, preprocessing cost can be amortized in iterative methods like the conjugate
gradient algorithm, where the number of iterations is O(n), often Θ(n).

(ORCCA) presentation 12 / 60

Time complexity

In theory . . .
▸ Recall that A has n columns and m rows.
▸ Theoretically, one could sort the columns of A according to their rank in Γm. The algebraic
complexity of this preprocessing would be O(n log(n) f (m)) where f (m) is the maximum
number of bit operations for comparing two columns.

▸ Using sparse data-structure for encoding A, we can assume that f (m) is bounded over by
the maximum number of nonzeros in a column.

▸ Let τ be the total number of non-zeros in A.
▸ This “direct” approach would requires at most O(τ log(n)) bit operations.

Our results
▸ Our preprocessing procedures requires O(τ) index comparisons and O(τ + n) data-structure
updates,.

▸ Experimentally, we verified that our preprocessing is faster than procedures based on sorting
algorithms

▸ Typically, for 106 ≤ m,n ≤ 108 and n ≤ τ ≤ 10n, preprocessing cost is less than 70 SpMxV
▸ Therefore, preprocessing cost can be amortized in iterative methods like the conjugate
gradient algorithm, where the number of iterations is O(n), often Θ(n).

(ORCCA) presentation 12 / 60

Cache complexity

Our results
▸ Recall that nonzeros are classified into five types: α, β, γ, δ and λ.
▸ Proposition: if τ ≥ 2n then the total number of nonzeros of types α or β is at least 2n.
▸ Experimentally, the total number of nonzeros of types α, β and δ is at least 3n.
▸ Theorem: Assuming Z ≥ 2

√
nL, the number of cache misses incured when multiplying the

nonzeros of types α, β and δ is at most the 3n/L +O(
√

n/L).

(ORCCA) presentation 13 / 60

One more sorting problem

Sorting long binary strings
▸ Kirkpatrick and Reisch (1984) ask the following question: "For what ranges of inputs can we
construct practical o(n log n) integer sorting algorithms?"

▸ Comparison-based sorting requires n log(n) f (m), where m is the maximum bit-length of a
string and f (m) is the maximum number of bit operations for comparing two strings of size
at most m.

▸ Our proposed preprocessing step for SpMxV multiplication suggests an algorithm for sorting
many long strings, in particular when those latter are sparse.

Our algorithm for sorting long integers
The input integers are encoded by their binary expansions, all assumed to be of equal length.

1. We partition these integers based on the index of their Most Significant Bit (MSB).
2. We refine all parts of the first partition all together as follows:

▸ we sort all integers by sorting the indices of their Second Most Significant Bit by means of a
counting sort (which is a stable sort) running in expectation within O(n + p) bit operations, where
1/p is the probability that a random bit in an integer is 1. Note that: p = mn/τ .

▸ then we retrieve the part of each integer in O(n) bit operations by means of carefully designed
data-structures.

3. We keep refining partition considering 3rd, 4th, etc Most Significant Bit until each part of
the partition is a singleton.

(ORCCA) presentation 14 / 60

Our sorting algorithm: an illustrative example

Let a, b, c, d , e, f be given integers
a b c d e f
0 0 1 0 1 0
1 1 0 1 0 0
0 0 0 0 1 1
1 1 0 0 0 0
0 0 1 1 0 0

Running the algorithm
Each integer is encoded by the indixes of its 1s:

a = (1,3),b = (1,3), c = (0,4),d = (1,4), e = (0,2), f = (2)

Initial partition
= ((a,b, c,d , e, f)).

Sort the integers based on their MSBs leads to

= ((c, e), (a,b,d), (f)).

Sort the integers based on their second MSB leads to

((c), (e), (a,b), (d), (f)).

(ORCCA) presentation 15 / 60

Complexity analysis of our sorting algorithm

Theorem
▸ Recall that we are sorting n integers of bit-size m forming a bit-matrix A with τ nonzero bits
▸ Recall that p = mn/τ is the average distance between two consecutive nonzero bits in a
column.

▸ Assume that A is sparse in the sense that O(logp(n)) ∈ Θ(1).
▸ Then, the expected number of iterations of our sorting algorithm is O(logp(n)).
▸ Moreover it is expected to run within O(n + p + n p

2(p−1)) bit operations.

(ORCCA) presentation 16 / 60

Test matrices

Characterisitics of the test matrices
Matrix name m n τ

fome21 67748 216350 465294
lp_ken_18 105127 154699 358171
barrier2-10 115625 115625 3897557
rajat23 110355 110355 556938
hcircuit 105676 105676 513072
GL7d24 21074 105054 593892
GL7d17 1548650 955128 25978098
GL7d19 1911130 1955309 37322725

wikipedia-20051105 1634989 1634989 19753078
wikipedia-20070206 3566907 3566907 45030389

Table: Test matrices from University of Florida Sparse Matrix Collections.

(ORCCA) presentation 17 / 60

SpMxV multiplication time for test matrices

Experimental results
Matrix name With our No Random

preprocessing preprocessing re-ordering
fome21 3.6 3.9 4.8

lp_ken_18 2.7 3.1 3.3
barrier2-10 19.0 19.1 23.2
rajat23 3.0 3.0 3.4
hcircuit 2.6 2.5 2.9
GL7d24 3.0 3.2 3.1
GL7d17 484.6 625.0 580.7
GL7d19 784.6 799.0 899.2

wikipedia-20051105 258.9 321.0 411.5
wikipedia-20070206 731.5 859.0 1046.0

Table: CPU time in seconds for 1000 SpMxVs.

(ORCCA) presentation 18 / 60

Cache oblivious counting sort algorithm

Counting sort and locality issues
▸ The classical Counting Sort runs in linear time w.r.t. number of entries and their range size.
▸ Unfortunately, Counting Sort suffers from poor data locality due to random memory

accesses. Some comparison-based sorting implementation outperform it.
▸ Nevertheless Counting Sort should work well if the range of integers fits in cache.

An improvement
▸ Sorting an input array A of n integers in the range [0, r] by counting sort incures at most

3n + 2n/L + 2r/L + 4 cache misses.
▸ Assume r = `m − 1 for non-negative integers ` and m are such that m < Z/(1 + L).
▸ We say that A is m-buckteted whenever, for all j = 0⋯(` − 1), every entry of A lying in the
sub-range [jm, (j + 1)m − 1] appears in A before every entry of A lying in the sub-range
[(j + 1)m, `m − 1].

▸ To improve data locality, we preprocess A such that it becomes m-buckteted.
▸ Letting u = logm(r) − 1, the number of cache misses to preprocess and counting-sorting A is

Q = 3n(u + 1)/L +mu/L + u + (2 +m) (mu − 1
m − 1

+ `) + 4r/L + 4.

If u = 1, that is, r = m2, then Q simplifies to 6n/L + 2m +m/L + r + 4r/L + 5.

(ORCCA) presentation 19 / 60

Cache oblivious counting sort algorithm

Experimental results
n classical cache-oblivious

counting counting sort
sort (preprocessing + sorting)

100000000 13.74 4.66 (3.04 + 1.62)
200000000 30.20 9.93 (6.16 + 3.77)
300000000 50.19 16.02 (9.32 + 6.70)
400000000 71.55 22.13 (12.50 +9.63)
500000000 94.32 28.37 (15.71 + 12.66)
600000000 116.74 34.61 (18.95 + 15.66)

Table: CPU times in seconds for both classical and cache-oblivious counting sort algorithm.

(ORCCA) presentation 20 / 60

Plan

1 Around Sparse Matrix Vector Multiplication
Ideal Cache Model and Cache Complexity
Cache Friendly Sparse Matrix Vector Multiplication
One More Sorting Problem
Cache Oblivious Counting Sort Algorithm

2 A model of compuation for many-core architectures
Manycore architectures
Determinant on GPU by Condensation Method
Many-core Machine Model
Polynomial division algorithms
The Euclidean algorithm for polynomials
Polynomial multiplication algorithms
On the implementation and application of subproduct tree based technique
Integrating GPU support into bivariate solver

(ORCCA) presentation 21 / 60

Manycore programming (1/2)

▸ The parallel kernel C code executes in many device threads across multiple GPU processing
elements, called streaming processors (SP).

▸ Thus, the parallel code (kernel) is launched and executed on a device by many threads.
▸ Threads are grouped into thread blocks.
▸ One kernel is executed at a time on the device.
▸ Many threads execute each kernel.
▸ Thus, each thread executes the same code on different data based on its thread and block ID.

(ORCCA) presentation 22 / 60

Manycore programming (2/2)

Challenges:
▸ data structures and algorithm design are not the same as in conventional multicore
programming.

▸ data transfers between host memory and device main memory increase overhead.
▸ data transfers within the device memory hierarchy should be carefully designed.
▸ synchronization among threads of different thread block increase overhead (may need
redesign the algorithm).

▸ Little software support to help with code development.
▸ Lack of theoretical models supporting code development.

(ORCCA) presentation 23 / 60

Computing determinant on GPU by condensation method (1/3)

Overview
▸ Charles Lutwidge Dodgson (1866) developed the condensation method for computing
determinant of a square matrix A = (ai,j ∣ 0 ≤ i , j ≤ n − 1) of order n

▸ Salem and Said (2007) tuned into a complete algorithm: Let ` be the smallest column index
of a non-zero element in the first row of A. The condensation step produces a matrix
B = (bi,j) of order n − 1 defined by:

bi,j = ∣ a0,` a0,j+1
ai+1,` ai+1,j+1

∣

for j ≥ ` and by bi,j = −ai+1,j a0,` for j < `. The key relation between A and B is the following:

det(A) = det(B)/(a0,`)n−2

▸ We designed a GPU implementation of Salem and Said’s algorithm.

(ORCCA) presentation 24 / 60

Computing determinant on GPU by condensation method (2/3)

Experimental results with modular integers
We parallelize condensation method on GPU.

Figure: CUDA code for condensation method and determinant on NTL over finite field.

(ORCCA) presentation 25 / 60

Computing determinant on GPU by condensation method (3/3)

Experimental results with floating point coefficients
Matrix order Maple MATLAB Condensation

Method
on GPU

5 0.3239712e-11 3.749295e-12 3.74967e-12
6 -0.1037653175e-16 5.367300e-18 5.36556e-18
7 -0.2940657217e-22 4.835803e-25 4.44292e-25
8 -0.2156380381e-28 2.737050e-33 -3.92813e-33
9 -0.1692148341e-35 9.720265e-43 -2.79235e-41
10 0.4704819751e-42 2.164405e-53 -4.44342e-50
15 0.1386122551e-74 -2.190300e-120 -9.47742e-103
20 0.4711757502e-106 -1.100433e-195 3.81829e-164
25 -0.4092672466-139 5.482309e-274 -3.82134e-239
30 -0.2087134536-174 0 -2.50914e-319
35 0.6863051439e-205 - 3.50293e-398
40 0.3354475665e-237 - -7.42227e-479

Table: Determinant of Hilbert Matrix by Maple, MATLAB, and condensation method on both CPU and GPU.

(ORCCA) presentation 26 / 60

Models of computations targeting many-core architectures

Popular models
▸ PRAM (parallel random access machine) supports data parallelism but not task parallelism.
Moreover, cannot support memory traffic issues (cache complexity, memory contention)

▸ Queue Read Queue Write PRAM considers memory contention, however, it unifies in a single
quantity time spent in arithmetic operations and time spent in read/write accesses

▸ TMM (Threaded Many-core Memory) model retains many important characteristics of
GPU-type architectures, however, the running time estimate on P cores is not given by a
Graham-Brent theorem

In this work:
We propose a many-core machine model (MMM) which aims at optimizing algorithms targeting
implementation on GPUs. We insist on

▸ Two-level DAG (directed acyclic graph) programs
▸ Parallelism overhead
▸ A Graham-Brent theorem

(ORCCA) presentation 27 / 60

Motivations and strategy

Motivations
▸ At HPCS 2012, we reported on an optimized GPU implementation of polynomial arithmetic
operations (division, GCD, multiplication)

▸ These optimizations were obtained by minimizing data transfer between global and local
memories and also by minimizing the impact of code divergence in kernels

Using the MMM for minimizing parallelism overheads
▸ Let s be a program parameter of an MMM program P that can be arbitrarily chosen in some
range S. Let s0 be a particular value of s.

▸ Assume that, when s varies in S, the work, say WP(s), and the span, say SP(s), do not
vary much, that is, WP(s0)/WP(s) ∈ Θ(1) and SP(s0)/SP(s) ∈ Θ(1) hold.

▸ Assume also that the parallelism overhead OP(s) varies more substantially, say
OP(s0)/OP(s) ∈ Θ(∣s − s0∣).

▸ Then, we determine a value smin ∈ S which maximizes the ratio OP(s0)/OP(s).
▸ We use our version of Graham-Brent’s theorem to check that the upper bound for the
running time (on P streaming multiprocessors) of P(smin) is no more than that of P(so).

(ORCCA) presentation 28 / 60

MMM: characteristics

Architecture:
▸ Unbounded number of streaming multiprocessors (SMs) which are all identical
▸ Each SM has a finite number of processing cores and a fixed-size local memory
▸ 2-level memory hierarchy, comprising an unbounded global memory with high latency and
low throughput while the SM local memories have low latency and high throughput

(ORCCA) presentation 29 / 60

MMM: programs

Each MMM program P is modeled by a directed acyclic graph (K,E), called the kernel DAG of
P, where each node K ∈ K represents a kernel, and each edge E ∈ E represents a kernel call which
must precede another kernel call.

▸ Note: a kernel call can be executed whenever all its predecessors in the DAG (K,E) have
completed their execution

▸ Since each kernel of the program P decomposes into a finite number of thread-blocks, we
map P to a second graph, called the thread block DAG of P, whose vertex set B(P)
consists of all thread-blocks of the kernels of P, such that (B1,B2) is an edge if B1 is a
thread-block of a kernel preceding the kernel of B2 in P.

(ORCCA) presentation 30 / 60

MMM: scheduling, synchronization and memory access policy

Scheduling and synchronization:
▸ At run time, an MMM machine schedules thread-blocks onto the SMs, based on the
dependencies among kernels and the hardware resources required by each thread-block

▸ Threads within a thread-block cooperate with each other via the local memory
▸ Thread-blocks interact with each other via the global memory

Memory access policy:
▸ All threads of a given thread-block can access simultaneously any memory cell of the local
memory or the global memory

▸ Read/Write conflicts are handled by the CREW (concurrent read exclusive write) policy

(ORCCA) presentation 31 / 60

MMM: machine parameters

For the purpose of analyzing program performance, we define two machine parameters
▸ U: Time (expressed in clock cycles) to transfer one machine word between global memory
and the local memory of any SM

▸ Z : Size (expressed in machine words) of the local memory of each SM

For a thread-block B, if each thread executes at most ` local (i.e. arithmetic) operations, and
reads r (resp. writes w) words to the global memory, then to compute the total running time T
of an SM executing B,

▸ the total time TD spent in data transfer between the global memory and the local memory
TD ≤ (r +w)U

▸ there exists a constant V such that the total time TA spent in local operations satisfies
TA ≤ `V

we have

T = TA +TD ≤ ` + (r +w)U, with V = 1.

(ORCCA) presentation 32 / 60

MMM: complexity measures

Work:
▸ The work W (B) of a thread-block B is defined as the total number of local operations
performed by the threads of B

▸ The work W (K) of a kernel K is defined as the sum of the works of its thread-blocks
▸ The work W (P) of the entire program P is defined as the total work of all its kernels

W (P) = ∑
K∈K

W (K)

Parallelism overhead:
▸ The overhead O(B) of a thread-block B is defined as (r +w)U, assuming that each thread
of B reads (at most) r words and writes (at most) w words to the global memory

▸ The overhead O(K) of a kernel K is defined as the sum of the overheads of its thread-blocks
▸ The overhead O(P) of the entire program P is defined as the total overhead of all its kernels

O(P) =∑
α

O(α)

(ORCCA) presentation 33 / 60

MMM: complexity measures
Span:

▸ The span S(B) of a thread-block B is defined as the maximum number of local operations
performed by a thread of B

▸ The span S(K) of a kernel K is defined as the maximum span of its thread-blocks
▸ We define the span S(γ) of any path γ from the first kernel to a last one as

S(γ) = ∑
K∈γ

S(K)

▸ The span S(P) of the entire program P is defined as
S(P) = max

γ
S(γ)

Theorem (Graham-Brent)

We have the following estimate for the running time Tp of the program P when executed on p
SMs

Tp ≤ (N(P)/p + L(P)) ⋅ C(P),

where
N(P) number of vertices in the thread-block DAG of P,
L(P) critical path length (that is, the length of the longest path) in the thread-block

DAG of P,
C(P) = maxB∈B(P) (S(B) +O(B)).

(ORCCA) presentation 34 / 60

Plain division algorithms for polynomials

Given two polynomials a and b over a finite field K and with variable X, where deg(a) = n − 1,
and deg(b) = m − 1, compute the remainder in the Euclidean division of a by b.

▸ Naive division algorithm
▸ Optimized division algorithm

We assume that
▸ b is not zero
▸ n ≥ m

(ORCCA) presentation 35 / 60

Plain division algorithms

Naive Division Algorithm Optimized Division Algorithm

▸ Each kernel performs 1 division step
▸ n −m + 1 kernels are executed in serial

▸ Each kernel performs s division steps
▸ ⌈ n−m+1

s ⌉ kernels are executed in serial

(ORCCA) presentation 36 / 60

Analysis of plain division algorithms

We obtain the work ratio and the overhead ratio as

Wnai

Wopt
= 8 (Z + 1)

9Z + 7
and

Onai

Oopt
= 20
441

Z

Applying Theorem 1,

R = (Nnai/p + Lnai) ⋅ Cnai

(Nopt/p + Lopt) ⋅ Copt
= 2
3

(3 + 5U) (2m + Z p)Z
(Z + 21U) (7m + 2Z p)

When m escapes to infinity, the ratio R is equivalent to

4
21

(3 + 5U)Z
Z + 21U

▸ We observe that this latter ratio is larger than 1 if and only if Z > 441U
20U−9 holds

▸ The optimized algorithm is overall better than the naive one

(ORCCA) presentation 37 / 60

Experimental results

Optimized Vs naive
Optimized division is almost 4 times faster than naive division.

Optimized Vs NTL library

(ORCCA) presentation 38 / 60

The Euclidean algorithm for polynomials

Given two polynomials a and b over a finite field K and with variable X, where deg(a) = n − 1 and
deg(b) = m − 1, compute the greatest common divisor (GCD) of a and b.

▸ Naive Euclidean algorithm
▸ Optimized Euclidean algorithm

We assume that
▸ b is not zero
▸ n ≥ m

(ORCCA) presentation 39 / 60

The Euclidean algorithm

It checks the current degree of both a and b to decide which polynomial will take the role as a
divisor, and then it completes a division step

Naive Euclidean algorithm Optimized Euclidean algorithm

▸ Each kernel performs 1 division step
▸ n +m − 2 kernels are executed in serial

▸ Each kernel performs s division steps
▸ n+m

s kernels are executed in serial

(ORCCA) presentation 40 / 60

Analysis of the Euclidean algorithm

We obtain the work ratio and the overhead ratio, replacing m by n as

Wnai
Wopt

= (284Z+2) n2+(Z−2) n
(1296Z+7488) n2+(348Z2+2208Z) n−(115Z3+616Z2)

Onai
Oopt

= 5
48

Z(2 n+2+Z)
6 n+Z

▸ As n escapes to infinity, the additional work Wopt −Wnai is only a portion of Wnai,
▸ Meanwhile the data transfer overhead decreases as Z increases.

Applying Theorem 1, when n escapes to infinity, the ratio R is equivalent to

R = (Nnai/p + Lnai) ⋅ Cnai

(Nopt/p + Lopt) ⋅ Copt
≃ (3 + 5U)Z

9 (Z + 16U)

▸ We observe that this latter ratio is larger than 1 if and only if Z > 144U
5U−6 holds

▸ The optimized algorithm is overall better than the naive one

(ORCCA) presentation 41 / 60

Experimental results

Optimized Vs Naive
Optimized gcd is almost 4 times faster than naive gcd.

Optimized Vs NTL library

(ORCCA) presentation 42 / 60

Analysis of (plain) polynomial multiplication

Given two polynomials a and b over a finite field K and with variable X, where deg(a) = n − 1 and
deg(b) = m − 1, compute the product d of a × b
1) Multiplication phase
2) Addition phase

We assume that
▸ n ≥ m

(ORCCA) presentation 43 / 60

Multiplication phase

Algorithm 1: MulKer(a,b,M,n, x)
Input: a, b, M ∈ K[X] and an integer x ≥ 1.
j = blockID×blockDim+threadID; t = threadID;
Let B′ and A′ be two local arrays of size x and blockDim
respectively with coefficients in K;
i = j mod (n + x − 1);
if i ≥ n then

A′[t] = 0;
else

A′[t] = a[i];
if t < x then

B′[t] = b[⌊(j/(n + x − 1))⌋x + t];
/* copying from global */
f = 0;
for (k = 0; k < x ∧ (i − k) ≥ 0; k = k + 1) do

f = f + A′[i − k]B′[k];
M[j] = f ;
/* writing to global memory */

▸ Within a `-thread block, (1) each thread reads a coefficient from a, (2) x threads read a
coefficient from b and (3) ` partial sums are written to M

(ORCCA) presentation 44 / 60

Addition phase

Algorithm 2: AddKer(M,d , c, x , r , i)
Input: M, d, ∈ K[X] and c, x, r, i are positive integers.
j =blockID blockDim +threadID; t =threadID;
k = j mod c;
q = ⌊j/c⌋;
s = 2i − 1 + 2i+1 q;
e = s + 2i ;
if k < 2i x then

d[s x + k] = d[s x + k] +M[s r + k];
else

M[e r + k − 2i x] = M[e r + k − 2i x] +M[s r + k];

▸ Each thread block needs ` intermediate results from two rows of M, and ` intermediate
results to write back

(ORCCA) presentation 45 / 60

Analysis of the polynomial multiplication algorithm

Arbitrary x
▸ We have work, span and overhead as

Wx = (2m − 1
2) (n + x − 1)

Sx = 2 x − 1 + log2 m
x

Ox = 3 (n+x−1) (2m−x)U
x `

▸ To apply Theorem 1, we have

Nx = (n+x−1) (2m−x)
x `

Lx = log2 m
x + 1

Cx = 2 x − 1 + 3U

(ORCCA) presentation 46 / 60

Comparison of polynomial multiplication algorithms

We replace x by 1 to obtain a “naive” algorithm. Then, we obtain the work ratio and the
overhead ratio as

W1

Wx
= n

n + x − 1
and

O1

Ox
= n (2m − 1) x

(n + x − 1) (2m − x)
Applying Theorem 1 and replacing m by n, when n escapes to infinity, the ratio R is equivalent to

R = (N1/p + L1) ⋅ C1

(Nx/p + Lx) ⋅ Cx
≃ (1 + 3U) x
2 x − 1 + 3U

▸ One can assume 3U > 1, which implies that the above ratio is always greater than 1 as soon
as x > 1 holds

▸ The algorithm with arbitrary x outperforms the naive one

(ORCCA) presentation 47 / 60

Experimental results

degree GPU Plain multiplication GPU FFT-based multiplication
210 0.00049 0.0044136
211 0.0009 0.004642912
212 0.0032 0.00543696
213 0.01 0.00543696
214 0.045 0.00709072

Table: Comparison between plain and FFT-based polynomial multiplications (Moreno Maza and Pan 2010) for
balanced pairs (n = m) on CUDA.

(ORCCA) presentation 48 / 60

Polynomial evaluation and interpolation

Multipoint polynomial evaluation
Given a uni-variate polynomial P = ∑n−1

j=0 pj x j ∈ K[x], with coefficients in the field K , with n = 2k ,
and evaluation points u0, . . . ,un−1 ∈ K , compute P(ui) = ∑n−1

j=0 pj uj
i , for i = 0, . . . ,n − 1.

Polynomial interpolation
Given distinct points u0, u1, . . . ,un−1 in a field K and arbitrary values v0, v1, . . . , vn−1 ∈ K ,
compute the unique polynomial P ∈ K[x] of degree less than n = 2k that takes the value vi at the
point ui for all i

(ORCCA) presentation 49 / 60

Subproduct tree

Definition
Split the point set U = {u0, . . . ,un−1} into two halves of equal cardinality and to proceed
recursively with each of the two halves. This leads to a binary tree of depth k having the points
u0, . . . ,un−1 as leaves.
Let mi = x − ui as above, and define

Mi,j = mj ⋅2i ⋅mj ⋅2i+1 . . .mj ⋅2i+(2i−1) =∏0≤l<2i mj ⋅2i+l

(ORCCA) presentation 50 / 60

Subproduct tree

(ORCCA) presentation 51 / 60

Subproduct tree: construction

Adaptive Algorithm
Let H be a fixed integer with 1 ≤ H ≤ k. We call adaptive algorithm for computing Mn with
threshold H the following procedure:
1. For each level 1 ≤ h ≤ H, we compute the subproducts using plain multiplication.
2. Then, for each level H + 1 ≤ h ≤ k, we compute the subproducts using FFT-based

multiplication.

(ORCCA) presentation 52 / 60

Implementation: evaluation

Polynomial evaluating
1. r0 = P rem Mk−1,0 and r1 = P rem Mk−1,1

2. Recursively compute r0(u0), . . . , r0(un/2−1), r1(un/2), . . . , r1(un−1)

Adaptive top down traversing
Do the remaindering of the polynomials over subproducts, we fix a threshold H:
1. 1 ≤ h ≤ H: use plain arithmetic
2. H + 1 ≤ h ≤ k: use subinverse tree

We are using reverse and inverse for remaindering

(ORCCA) presentation 53 / 60

Implementation: subinverse tree

What is subinverse tree?
For the subproduct tree Mn the corresponding subinverse tree InvM is a complete binary tree with
the same height as Mn and such that, at level i of InvM contains an univariate polynomial InvMi,j
of degree 2i − 1 such that for all 0 ≤ j < 2k−i . we have

InvMi,j rev2i+1(Mi,j) ≡ 1 mod x2i
.

Remarks
1. It is used to speedup multi-point evaluation in the degrees where fast division (based on

Newton iteration) applies.
2. However, subinverse tree is not used lower degrees.

Remarks
1. Algebraic complexity reduced to 50% because of this data structure.

(ORCCA) presentation 54 / 60

Implementation, Interpolation

Lagrange interpolation
1. we have ((u0, v0), . . . , (un−1, vn−1))
2. m =∏0≤i<n(x − ui), si =∏i≠j 1/(ui − uj)
3. f = ∑n

i=0 vi si m/(x − ui)
Note: 1/si = m′(ui), P = Mk−1,0P0 +Mk−1,1P1

Adaptive Algorithm
For computing intermediate results, we fix a threshold H:
1. 1 ≤ h ≤ H: use plain multiplication
2. H + 1 ≤ h ≤ k: use FFT-based multiplication

(ORCCA) presentation 55 / 60

Experimentation

Evaluation Interpolation
Deg. GPU FLINT SpeedUp GPU FLINT SpeedUp
8 0.0310 0 0 0.0328 0 0
9 0.0623 0 0 0.0669 0 0
10 0.0843 0 0 0.0968 0.01 0.1032
11 0.1012 0.01 0.0987 0.1202 0.01 0.0831
12 0.1361 0.02 0.1468 0.1671 0.03 0.1794
13 0.1580 0.07 0.4429 0.1963 0.09 0.4584
14 0.2034 0.17 0.8354 0.2548 0.22 0.8631
15 0.2415 0.41 1.6971 0.3073 0.53 1.7242
16 0.3126 0.99 3.1666 0.4026 1.26 3.1294
17 0.4285 2.33 5.4375 0.5677 2.94 5.1780
18 0.7106 5.43 7.6404 0.9034 6.81 7.5379
19 1.0936 12.63 11.5484 1.3931 15.85 11.3768
20 1.9412 29.2 15.0420 2.4363 36.61 15.0268
21 3.6927 67.18 18.1923 4.5965 83.98 18.2702
22 7.4855 153.07 20.4486 9.2940 191.32 20.5851
23 15.796 346.44 21.9321 19.6923 432.13 21.9441

(ORCCA) presentation 56 / 60

Integrating GPU support into bivariate solver

Overview
1. We integrated CUDA support for computing polynomial gcd, division and multiplication into

a bivariate solver over finite fields
2. This bivariate solver is written in C and is part of the cumodp library.
3. In particular, it relies on CUDA code for computing subresultant chains developed by Dr.

Wei Pa nd Marc Moreno Maza.
4. All these features together make bivariate solver very powerful.

system Pure C C with CUDA support speed-up
dense-70 5.22 0.50 10.26
dense-80 6.63 0.77 8.59
dense-90 8.39 1.16 7.19
dense-100 19.53 1.80 10.79
sparse-70 0.89 0.31 2.81
sparse-80 3.64 1.18 3.09
sparse-90 3.13 0.92 3.40
sparse-100 8.86 1.20 7.38

(ORCCA) presentation 57 / 60

Concluding remarks (1/2)

Around sparse matrix vector multiplication
▸ We proposed new algorithms for improving the data locality of basic routines dealing with
vectors and sparse matrices.

▸ In each case, we re-arrange the input data and amortize the cost of this re-arrangement
against the cost of calculations with the input data.

▸ We provide cache complexity analysis whose favorable results are confirmed experimentally.

Adaptive algorithms for subproduct tree techniques on GPUs
▸ We propose parallel algorithms for performing subproduct tree construction, evaluation and
interpolation and report on their implementation on many-core GPUs

▸ We enhance the traditional algorithms for polynomial evaluation and interpolation based on
subproduct-trees, by introducing the notion of a subinverse tree.

▸ For subproduct-tree operations, we demonstrate the importance of adaptive algorithms.
That is, algorithms that adapt their behavior to the available computing resources.

▸ In particular, we combine parallel plain arithmetic and parallel fast arithmetic.

(ORCCA) presentation 58 / 60

Concluding remarks (2/2)

Plain arithmetic on GPUs
▸ We presented a model of multithreaded computation, combining the fork-join and SIMD
parallelisms, with an emphasis on estimating parallelism overheads, so as to reduce
scheduling and communication costs in GPU programs.

▸ We have applied this model and successfully reduced parallelsim overheads for seevral basic
routines in polynomial algebra.

▸ For polynomial multiplication, our theoretical analysis allows us to reduce parallelism
overheads due not only to data transfer but also to code divergence.

▸ For the Euclidean algorithm, our running time estimates match those obtained with the
Systolic VLSI Array Model (Brent & Kung, 1984). Meanwhile, our CUDA code
implementing this optimized Euclidean algorithm runs within the same estimate analyzed by
our model for input polynomials with degree up to 100,000.

▸ Finally, our order of magnitude estimates for the program parameter of radix sort agrees with
the empirical results of (Satish, Harris, and Garland, 2009).

▸ All our GPU code is freely available in source at www.cumodp.org

(ORCCA) presentation 59 / 60

Thank you

(ORCCA) presentation 60 / 60

	Around Sparse Matrix Vector Multiplication
	Ideal Cache Model and Cache Complexity
	Cache Friendly Sparse Matrix Vector Multiplication
	One More Sorting Problem
	Cache Oblivious Counting Sort Algorithm

	A model of compuation for many-core architectures
	Manycore architectures
	Determinant on GPU by Condensation Method
	Many-core Machine Model
	Polynomial division algorithms
	The Euclidean algorithm for polynomials
	Polynomial multiplication algorithms
	On the implementation and application of subproduct tree based technique
	Integrating GPU support into bivariate solver

