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The extended Hensel construction (EHC)

Goal
e Factorize F(X,Y) € C[X,Y] into linear factors in X over C({Y™*)):
FXY) = (X —xa(Y)(X = x2(Y)) - (X = xa(Y))
where each x;(Y) is a Puiseux series.

@ Thus offers an alternative algorithm to that of Newton-Puiseux.

Remarks

@ The EHC generalizes to factorize polynomials over multivariate power
series rings

@ Hence, the EHC has similar goal to Abhyankar-Jung theorem

@ However, it is a weaker form:

® |ess demanding hypotheses, and
® weaker output format, making it easier to compute.




An example with the PowerSeries library

> P := PowerSeries([y]):
> U := UnivariatePolynomialOverPowerSeries([yl, x):
> poly := y72 *x + y"2 - y*x"3 - y*x"2 + y -x72;
3 2 2 2 2
poly :=-x y-xX y+xy - X +y +y
U:-ExtendedHenselConstruction(poly, [0],3);
-T -1 2 2 2 2
[ly =T, x = -—————- 1, ly=T,x=-T1, [y=T, x=T1]
T
4 1
|
|
| —



Another example

_> Pi=

FowerSeries([y, z]):
o

UnivarigtePolmormialOverPowerSeries( [y, z], %)
poly =y 4 (-2 - y+z+1)x+y:
U-ExtendedHenselConstruction( poly, [0, 0], 3);

~RootOf(_Z% + y) + Rootof(_Z% + ) y— % Rootof (L2 + y) z+ = 37
X =

¥
Rootof(_Z% + y) — RootOf(_Z2 + ) y + = Rootof(_Z2 4 y) z+4 = 32
X =

¥

[x=-¥]




Related works (1/2)

© Extended Hensel Construction (EHC):
® |ntroduction: F. Kako and T. Sasaki, 1999
® Extensions:
e M. lwami, 2003,
D. Inaba, 2005,
D. Inaba and T. Sasaki 2007,
D. Inaba and T. Sasaki 2016.

@ Newton-Puiseux:
® H. T. Kung and J. F. Traub, 1978,

® D. V. Chudnovsky and G. V. Chudnovsky, 1986
® A. Poteaux and M. Rybowicz, 2015.



Related works (2/2)

@ The Extended Hensel Construction (EHC) compute all branches
concurrently

@ while approaches based on Newton-Puiseux computes one branch
after another.

For F(X,Y):=-X34+Y X +Y:
@ the EHC produces
0 xu(Y):= Y% +3Ys
9 x2(Y):= %
® xs(Y) = (F5) Y+ 5 () yE




Related works (2/2)

@ The Extended Hensel Construction (EHC) compute all branches
concurrently

@ while approaches based on Newton-Puiseux computes one branch
after another.

For F(X,Y):=-X34+Y X +Y:
@ the EHC produces
@ xi(Y)=Y5+3 Y%+O( Y).
@ y2(Y):= 1-&-\/7Y3 _|_
® (V)= (0 v 43 (S v o)
@ Whereas Kung-Traub's method (based on Newton-Puiseux) computes

E
5
_|_
)
=

0 1 (Y):=Y5+1Y34+0(Y),



Related works (2/2)

@ The Extended Hensel Construction (EHC) compute all branches
concurrently

@ while approaches based on Newton-Puiseux computes one branch
after another.

For F(X,Y):=-X34+Y X +Y:

@ the EHC produces
0 1 (Y):=Y35+1Y3+0(Y),
@ xa(Y) = 1+FY3+ LSS Yo,
@ xs(Y) = (= F)Yw () vE+ o).

o (Y):=Y5 + % Y3 +0(Y),

2 x2(Y):=0Ys3 +

0 x3(Y)=02Y5 +
for § € C such that 03 = 1,6% # 1,0 #1, since F(X,Y) is a
Weierstrass polynomial.

H
w\m“‘%



Overview

Notations
o Let F(z,y) € Clx,y] be square-free, monic in z and let d := deg, (F).
o Note that assuming F'(z,y) is general in x of order d = deg, (F) (thus
meaning F(z,0) = % and F(z,y) is a Weierstrass polynomial) is a
stronger condition, which is not required here.
@ On can easily reduce to the case where F' is monic in x as long as the
leading coefficient of F' in & can be seen an invertible power series in

C(y).

Objectives

@ The final goal is to to factorize F' over the field C({(y*)) of convergent
Puiseux series over C.

@ This follows the ideas of Hensel lemma: lifting the factors of an initial
factorization.

o If the initial factorization has no multiple roots, then we are able to
generate the homogeneous parts (one degree after another) of the
coefficients of the factors predicted by Puiseux’s theorem.




Newton line (1/2)

Definition

@ We consider a 2D grid G where the Cartesian coordinates (e, e,) of a
point are integers.

@ Each nonzero term cxz® y® of F(x,y), with ¢ € C is mapped to the
point of coordinates (e, e,) on the grid.

o Let L be the straight line passing through the point (d,0) as well as
another point of the plot of F' such that no points in the plot of F' lye
below L; The line L is called the Newton line of F.

e, } F =23 - z%y% — ap® + ot




Newton line (2/2)

>F :=x"3 - x72 % y°2 -xxy~3 + y~4;
2 2 3 4 3
F:i=-=xy -xy +y +x
> U := UnivariatePolynomialOverPowerSeries([y], x):
> U:-ExtendedHenselConstruction(F, [0],2);
5 6
3 4 5 T T
(ly =T, x=T % -1/3T %1+ -+ -——-1],
3 3
3 4 5 6
x=-T -1/3T +1/37T],

I
|

Ly
6
3 4 4 5 T
-T %1 +T +1/3 T %1 + -——-1]
3

I
|_]
o]

1]

Ly

%1 := Root0f(_Z - _Z + 1)



Newton polynomial

Definition

The sum of all the terms of F'(z,y), which are plotted on the Newton line
of F is called the Newton polynomial of F and is denoted by F(¥) (z,y).

Remarks

@ The Newton polynomial is uniquely determined and has at least two
terms.

@ Let § € Q such that the equating of the Newton line is
ex/d+ey/d =1.

@ Observe that F(O)(z,y) is homogeneous in (z,4°%/9) of degree d.

e Thatis, F(O)(z,y) consists of monomials included in the set
(2, 2= 1y0/d gd=2,28/d  ,dé/d}




Factorizing Newton polynomial (1/2)

Notations

Let r > 1 be an integer, let (1,...,( € C, with (; # (; for any i # j and
let mq,...,m, € N be positive such that we have

F0) (x,1) = (& — )™ - (& — G)™.

Recall that F(O)(z, ) is homogeneous in (z,1%/?) of degree d.

Lemma

We have:

FO(z,y) = (z = Q4™ - (x — Gyl )™

Proof of the lemma

o It is enough to show that ((;1%/?, ) vanishes F(©)(z, ) for all y.
o Define §j = y%/% such that F()(z, ) is homogeneous of degree d in

(,9).
o Since each monomial of F(9)(z,) is of the form z®*y° where

ez + ey = d, we have

FOGgp=9" () =0
——
some constant terms

@ The last equality is valid since F(9)(¢;, 1) = 0 clearly holds.




Factorizing Newton polynomial (2/2)

>F 1= x"3 - x72 % y"2 -xxy"3 + y~4;
2 2 3 4 3
F:=-x y -xy +y +x

> L :=x"3 - y'4;
4 3
L:=-y +x

> PolynomialTools:-Split(eval(L, [y=11), x);
2 2
(x = 1) (x - RootOf(_Z + _Z + 1)) (x + 1 + Root0f(_Z + _Z + 1))

> U:-ExtendedHenselConstruction(F, [0],1);

5 6
3 4 5 T T
[ly=T,x=T % -1/3T %1 + ———— + -———-],
3 3
3 4 5 6
[y=T,x=-T -1/3T +1/3T],
6
3 4 4 5 T
[y=T,x=-T % +T +1/3T %1 + -—-1]
3

%1 := Root0f(_Z - _Z + 1)



The moduli of the Hensel-Sasaki construction (1/2)

Notations

Let §,d € Z>° such that:
6/d=26/d, gedd,d=1

Choosing such integers 5, dis possible since § € Q and d € N0,

Lemma

Each non-constant monomial of F(x,y) is contained in the set

{xdy(k+0)/c?7 xd—ly(k+5)/d7 $d72y(k+25)/627 o 7x0y(k+d3)/ci |k=0,1,2,...}.

b

Proof of the lemma

@ It is enough to show that for each exponent vector (e, e,) which is not
below the Newton's line, there exists i, k such that we have
xezyey _ xdfiy(kJrié)/d.

@ Given such an exponent vector (e, e, ), let us choose i = d — e, and
k= ey(f —ib.

@ One should check, of course, that k£ > 0 holds, which follows easily
from e, /d+ e, /0 > 1.




The moduli of the Hensel-Sasaki construction (2/2)

Notations
The previous lemma leads us to define the following monomial ideals

S, = <a,yf/d>d x <yl/dsk
= <z xd—1y5/d’ xd—2y25/dA’ o ,$Oyd5/d> % <y1/c2>k
<ply(k+0)/d _pd=1y (k+8)/d yd=2, (k+28)/d 1.0, (k+dd)/d,

Remark

@ The generators of <z, y%?>% are homogeneous monomials in (z,°/%)
of degree d. A

@ We can view Sy, as a polynomial ideal in the variables z and y'/%; note
that the monomials generating Sy regarded in this way do not all have
the same total degree.

@ We shall use the ideals Si, for k. = 1,2, ..., as moduli of the
Hensel-Sasaki construction to be described hereafter.

e We have F(z,y) = FO(z,5) mod S0,




A weak but algrithmic version of Puiseux theorem (1/2)

As before, for F' € C[z,y] (and in fact, even for F'(x,y) € C(y)[z]) our
ultimate goal is to factorize F'(z,y) as

F(z,y) = Gi(z,y) - Gr(2,y)
where
@ this factorization holds in C((y*)), and
@ deg, (G;) =1holds foralli=1,...,r.

In our first step, we will allow deg,, (G;) > 1 forall i =1,...,7. Moreover,

in practice,
@ we compute a truncated factorization, that is, G1(z,y),...,Gr(z,y)
are polynomials in C]z,y| (in fact homomogeneous polynomials) and,

@ the relation F(z,y) = Gi(x,y) - - - Gr(z,y) holds modulo an ideal Sj.



A weak but algrithmic version of Puiseux theorem (2/2)

Hypothesis

We assume that F(©)(z,y) has been factorized as

FO(z,y) = ¢ (z,y)--- GO (x,y)

where the polynomials GEO)(x,y) are homomogeneous and coprime w.r.t.

x (that is, once y is specialized to 1). Of course, a special case is

GO (x,y) = (& — Gy®/dyms

K3

For simplicity, we write §j = yé/d_




Lagrange’s Interpolation polynomials (1/4)

Lemma

Let @l(x,g)) € Clx, 9], for i =1,...,r, be homogeneous polynomials in
(z,9), that we regard in C(g)[x], such that

e r>2and d:degx(éy-'ér),

° deng m; fori=1,...,r, and
° gcdz(Gz,G )=1 for any i # j.

Then for each ¢ € {0,...,d — 1}, there exists only one set of polynomials
{W (:c g) € C(y)[z] | 1 =1,...,r} satisfying
@ W ((GrG) fGn) -+ W (G Gy ) G ) =t
Q deg, (Wi(e) (z,9)) < deg, (Gi(z,7)), fori=1,...,r
Moreover, the polynomials Wi(o), ey Wi(dfl), fori=1,...,r are

homogeneous in (z,y) of degree m;. We call them the Lagrange’s
interpolation polynomials.




Lagrange’s Interpolation polynomials (2/4)

Proof of the lemma (1/3)

@ We shall first prove that there exists only one set of polynomials

W@ 1) i=1,...,r}
satisfying (1) and (2) in the above lemma statement, when § = 1.
@ Using the extended Euclidean algorithm, one can compute
Ai, ..., As € Clz] such that

A%—l—-“—l—A%:l-

o If we multiply both sides of the above equality by z¢, then we have
fGl Gs éGl Gs _ L
Az Gt t Asz o= ().




Lagrange’s Interpolation polynomials (3/4)

Proof of the lemma (2/3)
@ Foreachi=1,...,7 —1, let Q;, R; € C[x] such that
o Azt =Q,Gi+ R and
e deg, (R;) < deg,(G;)
@ Thus the equality () can be re-written as:

Ry e 4 Ry e 4 (Aga 4+ 5000 QiGy) g = at.
@ Observe that we have

'deggc(RG1 ty<dfori=1,...,r—1,

o degx(TG) =d —m,, and also
e L <d.

o Combined with relation (%), we obtain
deg, (Ara’ + 3021 QiGy) < my = deg, (Gy).




Lagrange’s Interpolation polynomials (4/4)

Proof of the lemma (3/3)

@ Hence, we set
° Wi(e)(m,l) =R;, fori=1,...,r—1
o Wi (2,1) = At + Y QiG

@ The proof of the unicity will be added later . ..

o Note that we have deg(z/§¢*) = d.

@ Since deg, <VVZ-(£)(SU, 1) (G‘l e é,«) /éz) < d, we can homogenize in
degree d both Wi(e)(:c, 1) and Gi(z,1), for i =1,...,r, using § as
homogeization variable.

@ This homogeization process defines each WZ@ (z,9) uniquely.

@ Moreover we have,

e N A
deg, (W, (2,§)) < deg,(Cy),
since the homogenization has no effect on degrees in x.




Hensel-Sasaki construction: bivariate case

Theorem

Let F(z,y) € C(y)[z] be a square-free polynomial, monic in x of degree
d > 0. Let FO)(z, y) be the Newton polynomial of F(z,y). Let

Ggo) (z,9),... 7G£0) (z,y) € C|x,y] be homogeneous polynomials in (x, %),
pairwise coprime when ¢ = 1, such that we have:

FO(z,y) = GO (w,)- -GV (z,y).

Recall S, = <1.dy(k+0)/oi7 xd71y(k+8)/d7 xd72y(k+2é)/d’ . xoy(k+d5)/c2> for
k=1,2,.... Then, for any positive integer k, we can construct
ng)(a:,y) e C(y l/d)[ |, fori=1,...,r, satisfying

@ Fla,y) =Gy (e.y)--- G (2,y) mod Spi,

Q G(k)(m y) = GEO)( ,y) mod Sy, i=1,...,r

The proof is by induction on k and constructive.



Proof (1/5)

e base case: Since F(z,y) = F(O(z,5) mod Si, the theorem is valid
for k = 0.

e inductive step: Let the theorem be valid up to the (k — 1)-st
construction. We write

G = 60 y) + AG (@) + -+ AGH D (a,y),

such that

° ng/)(x7y) €Sy fork'=1,...,k—1,

o deg, (AG™) (z,y)) < deg, (G (z,y)) =ms, K =1,... . k—1.
These latter properties are part of the induction hypothesis.
Note: Each AGEk/)(x,y) is being computed in the k’-th Hensel
construction step. So the degree in x does not increase contrary to
the degree in y, because of the definition of Sy.



Proof (2/5)

We define:
AF(k) (SC, y) = F(l‘7 y) - ngil) tee G&k_l) mod Sk+1.

According to the format of monomials of F'(z,y) (Lemma in page 8) and
also induction assumptions, we have

AF(k)(x’y) _ fé’i)lxd—lyé/cf+”,+f(§k‘)x0yd5/cz
fE = Pyl B e fore=0,....d—1



Proof (3/5)

We construct ng)(:n,y) by observing that we have:

G (w,y) =G V(@) + AGP (@,y), AGP(2,5)=0 mod

1
Then we have:
(¢ Y +a6) o (¢¥D +AGM)  mod Siys

GFD el LA (GG -+ A6 (G Grla) +
other terms mod Sp41
—

F(z,y)

containg AGS./k) (x,y) and AG;k) (z,y)
G%’“*l) o GFTD L AG (GG o+ AGH) (Gy - Grly)  mod Spgq
G Ve 4 actM (6 e+ rac® (67 6l0)) mod Sk



Proof (4/5)

The last two equivalence relations are valid, since

AGEk) (x, y)AGg-k/)(x, y) =0 mod Sgyq fork' =1,...

It actually follows from the fact that by assumption,
° AG§k) =0 mod Sk

o AGY) =0 mod Sy for ' =1,...,k
Thus,

AGPAGY) =0 mod 5.5y
Since, S; Sk = Sk then

AGPAGY) =0 mod Sy for k' =1,....k
Furthermore, since k' > 1, then

AGPAGH) =0 mod Sy for k' =1,...,k



Proof (5/5)
Therefore,
AP0 = AGH (GG ) 4+ AGP (617G ) mod Sy
If in the lemma of Lagrange Interpolation polynomial we let
Gi(z,9) = GEO) (z,9), using the other representation of AF(*)(z, ), it allows us

to solve the last equation (the equation above) as

..
r E GGy k
> i AG'E )(m,y)% = Zﬁ 0 é() gt
i GEO)“-G(O))

d—1 p(k r 4 r
S 1Y (Ei—l W) )(Gm))

(0) (0)
r d—1 p(k)r 0\ (G1 Ge
Doz ( =0 o W, )7( o )

Since degx(fg l )) < degm(G(- )) and degw(AG( )(m y)) < degm(G ) for
i=1,...,7, then we have

AGT (@,y) = S WO, P y) i=1,...r



About the theorem

Remarks

@ The proof of the theorem constructs the ng)(x,y) uniquely.

@ The theorem holds in particular for the case where the case where
GEO)(x,y) = (x — Gy®/?)™ holds for each i = 1,...,7.

@ However, the theorem is more generral and only requires that the
GEO)(I,y) are homogeneous polynomials in (z,§), pairwise coprime
when g = 1.

@ And, in fact each factor Ggo) (z,y) of the Newton polynomial are
necessarily a product of some of the (z — Ciy®/?) and thus each factor

G(O)(r,y) is homogeneous in (z,9).

7

Proposition

If the initial factors GZ(-O)(m,y) are in fact polynomials in Clz, 3], then, after

the k-th lifting step, the computed factors Gl(k)(x,y) are themselves
polynomials in C[z, y].

The proof of this proposition follows by tracking the calculations of the
lemma and the theorem.



Algorithm

Algorithm 1: EHC_Lift(F, k)

begin
Compute the Newton polynomial F(©) and 5. d;
Compute Ggo) = (X —-GY)™, with 1 <i<r;
Compute the Yun-Moses polynomial WZ@ fore=1,---,r and
£=0,....,d—1;
for j=1,...,k do
Compute AFU)(X, Y) = F(X,Y) [T, GY™" mod Sj1;
Compute AGE - WZ@ é(]), fori=1,---,r
Let GV = GY~ 1)+AG( Dfori=1,---,r
return ng), cee ng);




Algorithm

Algorithm 2: EHC_Lift(F, k)

begin
Compute the Newton polynomial F(9) and 4, d;
Compute a0 = (X = GY)™, with 1 <i <,

i

Compute the Yun-Moses polynomial Wz@ fore=1,---,r and

0=0,---,d—1;
forj=1,...,k do
Compute

AFU(X,Y):= F(X,Y) - I\, GZ(-j_l) mod Sj41 ;
Compute AGE‘” = Z;'gl 1/1”7,1-(5),]"(?‘].), fori=1,---,r
Let GV =G 4+ AGY fori=1,--- ,r;

return ng), ey Gq(nk);




Algorithm

Algorithm 3: EHC_LIiftF, k

begin
Compute the Newton polynomial F(© and 4, d;
Compute GEO) = (X —=¢GY)™, with 1 <i <,

Compute the Yun-Moses polynomial Wi(ﬂ) fori=1,---,r and

L=0,---,d—1,;

forj=1,...,k do
Compute AFY(X,Y) := F(X,Y) -] lGEj*]) mod Sj1;
Compute AGU) 7761 U ©) }‘[m fori=1,---,r;
Let GY) = G“ REwNe forz,:l,--- e

return ng), .. ng),




Example of Extended Hensel Construction

Consider
F(m,y):x5+x4y—2x3y—2x2y2+m(y2—y3)+y3. (1)

Then, we have

o d =deg,(F(z,y)) =5,

o Newton line: e,/5+¢e,/2.5 =1

0 0/d=1/2=46/d

o Sy =<, ztyl/2, 13y, a2 2, wy?, 452>
F(O)(x,y) =2’ 2%y +axy=x(z+ y1/2)2 (x — y1/2)2
Note that

FOG@ D =z@x+1)*(x—-1)2 (2)



Example of Extended Hensel Construction

Hence, we can put
G =2,G = (@ + 912G = (o -y

Yun-Moses polynomials are calculated as,

W1(0) — yl/2 WQ(O) _ _%xyuz _ %y WS(O) — _lyyl2 4 zy
Wl(l)zo W2(1)21$y1/2+1y Wg(l): Ly yl/2 4 Ly
WP —o Wi -ty Wi~ by

W1(3) -0 W2(3) _ _%xyyz W3(3) _ iwyl/Q

W1(4) -0 W2(4) = lagl/2 ¢ %y W3(4) _ %xyl/Q Ly



Example of Extended Hensel Construction

For
So :<~T5 Y, 3543/3/27 35392, x2y5/2, xy?’a y7/2>
We have,
AF® F-GP6¢Y6"Y mod S,
= 2y — 2222 — a4y
_ y1/2 . :v4y1/2 . 2y1/2 . x2y3/2 + y1/2y5/2

The last representation of AF() in the last equation is for the purpose of
computing fz(l) for{=0,...,d—1in

(@2
=

AF®) =N pRgd=tpl when k=1

~
Il
=)



Example of Extended Hensel Construction

Therefore,
f(l 1/2 f(l 2y1/2’f(§1) _ yl/Q’f?El) _ 1(1) =0

Considering the above polynomials and also the Lagrange's interpolation
polynomials, we obtain:

° Ggl):G( )—I—Wl() ()—T+1/

o G =GP + WiV iV Wi iV WP 5D = (a4 y/?)?

° Ggl) —_ G:(;)) 4 WS( ) (1) + W?)(O)f + W3(2)f2(1) — (T _ yl/2)2



Example of Extended Hensel Construction

Now for S5 =<ady?/2, xty2, 23y5/2, 22y3, xy7/2, y*>, we have

F-cMePal) mod S
_y . $y2 :

AF®)

Hence,

1 =i’ =57 =57 =17 =0
And then we obtain,
° GgZ) :Ggl)+0:x+y
o Gg2) _ Ggl) + W2(1)f1(2) = (z _|_yl/2>2 _ (%11’3/3/2 + %yz)
o ng) _ Ggl) + Wg(l)fl(2) = (z— 111/2)2 + (L;Lmya/Q _ %yz)



Example of Extended Hensel Construction

Continuing two more iterations, we have

o GW=utyty?

4 1 3 ) . 5 .
o GiY = (v +y2)? - (hoy? + 37 — (Jav* + 3v%) — (Fay? + 3v?)

4 1. ¢ 3 5 = 5 .
o G = (z—y2)? + (hoy? — 3% — Gay® + 3u3) + (Bay? - 3P

We note that Ggg and G§4) can be written as:
o G — Gl 4 y12G
° G§4) _ Gg;l) _ yl/zGE;l)
where
° ng‘):xQ—ky—% 2—%xy2—§y3
° fo) = 2x — %xy— %yQ — %azyg

Note: G§°°) € Clz,y], since FO(z,y) = z(z* — 222y + 3?)



Yun-Moses Polynomials (1/3)

Assume G1(X,Y),...,G-(X,Y) are homogeneous polynomials.
Regarding them as polynomials of C(Y)[X], further assume

ged (G,,@]) =1fori#j,

Let d := deg(G1(X,Y) ... G.(X,Y)). Then, for each ¢ € {0,...,d — 1},
there exists a unique set of polynomials

{Wi(é)(X, Y)e C(Y)[X]|i=1,...,r} satisfying
0 (G1---Gr @) Gi---Gr\ _ Xty d-t
Wl < Gl ) + + Wr Gr - )

where degy (W9 (X,Y)) < degy (G4(X,Y)), i=1,....r.



Yun-Moses Polynomials (2/3)

Key observation

Let us fix i := A. Writing Wy = 57wy ;(¥) X7, we have

-1
L g (Xjﬂ)‘ wf) = O (xty)
 0Xr\ Q) Ix=qv

J]=

where ¢, is a root of F(O(X,1) and m,, is its multiplicity

Consequences

@ This is a system of linear equations WAX/{Z) = BE\@.

@ The matrix W, is a Wronskian matrix.




Yun-Moses Polynomials (3/3)

The inverse of W, is VV/\_1 = My M7 where My and My are square matrices of
order my, defined as follows. The matrix M7 writes
My = My, 1)~ M11 Mg such that, for j =0,---,my — 1, we have

. 0o --- 0 0 0 -+ 07
01 --- 0 0 0 --- 0
00 -+ 1 0 0 --- 0
Miyj=10 0 --- ﬁ 0 ---
j+1y =f
0 () 1
00 -~ 0 (m*j—l)w 0 - 1]

Hence, the matrix My, differs from the identity matrix only in its (j + 1)-th
column. The matrix My is an upper triangular matrix My = [y, ] with

Yik = (—1)f+k(kﬁj)¢§—j1>k—j if j <k and v =0if j >k, for

J, ke {0,1,...,m)\71}.



Matrix M

Ny N

Matrix Moy
Matrix W, ! = MyM,




Complexity Result:

Theorem 1:

One can compute all the Yun-Moses polynomials Wi(g) (0<e<d-1,
1 <i <), within

e O(d?) operations in C, or

e O(d®>M(d)) operations in the field of coefficients of F/(X,Y).




Algorithm

Algorithm 4: EHC_LIiftF, k

begin
Compute the Newton polynomial F(© and 4, d;
Compute GEO) = (X —=¢GY)™, with 1 <i <,
Compute the Yun-Moses polynomial I’I/’i(é)
0=0,---,d-1;
forj=1,...,k do
Compute
AFD(X,Y) = F(X,Y) - -, GY mod 5, ;
Compute AGE‘” = 22'1:61 I/Vi“)f;”, fori=1,---,r;
Let Gg‘j) =GV 4 AGE‘D fori=1,---,r

i

return ng), e ank);

fori=1,---,r and




Computing AFU)(X,Y)

Goal
AFO(X,Y) = F(X,Y) =TI, GV mod §j41

Oobservation
G(] 2) G(O) -}-AG(l) . —f-AGEj_Q)
° G(] 1) G(O) —f-AG(l) . —|—AG§]72) _i_AGEJ*l)

Hence, we aim at recycling terms in the product [/_, G " mod S;4;
computed from previous iterations.

Notations

0 Pit = Hz LG® mod Sy
[2) Pf“ =11, G,Ek) mod Sy, for j =3,...,7

We want

P =TT7_, G mod Sy




Computing AFU)(X,Y)

Initially define: le = Ggo) e G§0) mod Sy, for j =2,---,r. and

recursively compute:
Pyt =Py (AJAS+ AFADYF + (ATAS 4+ + AFAD Y = HG
Now for j = 3,...,r, define
Pf = Pﬁng.k_l) mod Sky1
and assume qu is recursively given by
g = pIIOAR £ MHAY with bt = ARAT + AJAE. (3)

where pj_l’ is the coefficient of Y0 in Pffll. We can compute

Pf“ _ ij n qf—i-l}}k I (pj+1 1Ak Jrpkz+1 "““AO) yh+L — HG



Computing AFU)(X,Y)

P} P Py Py
Pl P2 P2 P} Py
P} P P P} Py
Pl P P P Py
P} Py P Py Py




Computing AFU)(X,Y)

ooy @—@)—r—ri—n
net @—rn—r—nrn—rn
P} P P P} Py
Pl P P P Py
p} Py P Py Py




Computing AFU)(X,Y)

0 0
o @@ @
Q-

o @

Py

Py Py

P} P P}

P} P} P} P}
Pi P Py P
P} P} P Py




Computing AFU)(X,Y)

GO GO @_,@_,a_,@_, P
riG @—»@—»@ P2 P2
j2rely @—»@ P} P} P
G @ P P P P




Computing AFU)(X,Y)

2 @-Q-@-Q- @
- Q- Q- @-@—i—
“ @-0-Q
ret @—@)—r—r—r
j2¥el @ P} P Ps P

<9,
<Y,




Computing AFU)(X,Y)

i @-Q-@-@-0@
“ O-0-0-@-Q
o @-Q@-@-@i—
e @—@—@Q—r—r
PGy @—»@ I P P




Computing AFU)(X,Y)

Ggo) Géo)

pay

PGy

PGy

piay

00000
00000
00000
0000  —
000

%,

P




Computing AFU)(X,Y)

Ggo) Géo)

pay

PGy

PGy

piay

00000
0000
00000
0000
000




Computing AFU)(X,Y)

Ggo) Géo)

pay

PGy

PGy

piay

00000
00000
00000
0000
00008




Complexity result:

Theorem 2:
he k-th iteration of Step 9 in the Algorithm 4 runs within
e O(kdM(d)) operations in C,
o O(kdM(d)?) operations in the field of coefficients of F(X,Y).




Comparative complexity results

Theorem 3:

Our enhancement of the EHC computes all the branches in O(k? d M(d))
operations in C, using a linear lifting scheme.

Kung-Traub, 1987
The first k iterations of Newton-Puiseux on an input bivariate polynomial of
degree d computes all branches within
o O(d?>kM(k)) operations in C using a linear lifting scheme (Theorem 5.2
in their paper)
e O(d*M(k)) operations in C using a quadratic lifting scheme (Corollary
5.1 in their paper)

D. V. Chudnovsky and G. V. Chudnovsky, 2015

The latter estimate reported by Kung and Traub is improved to O(d? k)
operations in C for computing all the branches.

Remark

A quadratic lifting scheme for the EHC is work in progress.
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