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Abstract. The Z-Polyhedra is a library written in Maple and dedi-
cated to solving problems dealing with the integer points of polyhedral
sets. Those problems include decomposing the integer points of polyhe-
dral sets, solving parametric integer programs, performing dependence
analysis in for-loop nests and determining the validity of certain Pres-
burger formulas. This article discusses the design of the Z-Polyhedra
library and provides numerous illustrations of its usage.

1 Introduction

Solving systems of linear equations is a well-studied and fundamental problem
in mathematical sciences. When the input system includes equations as well as
inequalities, the algebraic complexity of this problem increases from polynomial
time to single exponential time with respect to the number of variables. When,
in addition, the solution points with integer coordinates are the only ones of
interest, the problem becomes even harder and is still actively investigated.

The integer points of polyhedral sets are, indeed, of interest in many areas
of mathematical sciences, see for instance the landmark textbooks of A. Schri-
jver [13] and A. Barvinok [3], as well as the compilation of articles [4]. One
of these areas is the analysis and transformation of computer programs. For
instance, integer programming [5] is used by P. Feautrier in the scheduling of
for-loop nests [6] while Barvinok’s algorithm [2] (for counting integer points in
polyhedra) is adapted by M. Köppe and S. Verdoolaege in [10] to answer ques-
tions like how many memory locations are touched by a for-loop nest. In [11],
W. Pugh proposes an algorithm, called the Omega Test, for testing whether a
polyhedron has integer points. In the same paper, W. Pugh shows how to use
the Omega Test for performing dependence analysis [11] in for-loop nests.

In [12], W. Pugh also suggests, without stating a formal algorithm, that the
Omega Test could be used for quantifier elimination on Presburger formulas. This
observation has motivated our papers [7, 8], where we propose a new approach
for computing the integer points of systems of linear equations and inequalities.
Here, solving means decomposing the solution set into geometrically meaningful
components and providing compact representations of those components. More-
over, the proposed algorithm runs in polynomial time when the dimension of
the ambient space is fixed and the input system satisfies mild assumptions. This
work produced a Maple library, originally called Polyhedra and presented at
ISSAC 2017 as a software demonstration. To emphasize the fact that this library
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is primarily dedicated to the integer points of polyhedral sets, we re-baptized it
the Z-polyhedra library. Improved design, new features and a faster core-solver
(the command IntegerSolve) leads us to the present paper.

Section 2.1 discusses the implementation of the mathematical concepts in-
volved in the manipulation of Z-polyhedra. Section 3 gives an overview of the
user-interface and the main solvers implemented in the Z-polyhedra library.
Section 4 illustrates the usage of the library through examples taken from the
literature. We note that the new algorithm (to be reported in a soon coming
article) behind the command IntegerSolve) has reduced the execution of some
problems from minutes to fractions of a second.

The Z-library is publicly available from the web site of the RegularChains
library at www.regularchains.org. A comparison with related software can be
found in the last section of [9].

2 Mathematical concepts and their implementation

In this section, we review the basic concepts of polyhedral geometry that are
involved in the specifications of the commands of our Z Polyhedra library. We
also discuss the implementation of those concepts, in particular their adaptation
to the context of effective computations. Section 2.1 is dedicated to the notion
of a polyhedral set while Section 2.3, 2.2 and 2.3 focus on lattices, Z-Polyhedra
and parametric Z-Polyhedra.

Notation 1 We use bold letters, e.g. v, to denote vectors and we use capital
letters, e.g. A, to denote matrices. Also, we assume that vectors are column
vectors. For row vectors, we use the transposition notation, that is, At for the
transposition of a matrix A. As usual, we denote by Z, Q and R the ring of
integers, the field of rational numbers and the field of complex numbers. Unless
specified otherwise, all matrices and vectors have their coefficients in Z.

2.1 Polyhedra

A subset P ⊆ Qn is called a convex polyhedron (or simply a polyhedron) if
P = {x | Ax ≤ b} holds, for a matrix A ∈ Qm×n and a vector b ∈ Qm, where
n,m are positive integers; we call the linear system {Ax ≤ b} a representation
of P . Hence, a polyhedron is the intersection of finitely many half-spaces.

An inequality of the system Ax ≤ b is redundant whenever it is implied by
all the other inequalities in Ax ≤ b. A representation of a polyhedron is minimal
if no inequality of that representation is redundant.

An inequality atx ≤ b (with a ∈ Qn and b ∈ Q) is an implicit equation of the
inequality system Ax ≤ b if atx = b holds for all x ∈ P . The dimension of the
polyhedron P , denoted by dim(P ), is n−r, where n is dimension3 of the ambient
space (that is, Qn) and r is the maximum number of implicit equations defined

3 Of course, this notion of dimension coincides with the topological one, that is, the
maximum dimension of a ball contained in P .

www.regularchains.org
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by linearly independent vectors. We say that P is full-dimensional whenever
dim(P ) = n holds. In other words, P is full-dimensional if and only if it does
not have any implicit equations.

The article [9] presents an efficient algorithm for computing a minimal repre-
sentation of the polyhedron P from any representation of P . This algorithm
builds upon ideas proposed by Egon Balas in [1]; it is implemented in the
Z Polyhedra library by the command MinimalRepresentation of the module
PolyhedraTools.

Let p, q be two positive integers such that p + q = n holds. We rank the
coordinates (x1, . . . , xn) of an arbitrary point x as x1 > · · · > xn and we denote
by u (resp. v) the first p (last q) coordinates of x. We denote by proj(P ;v) the
projection of P on v, that is, the subset of Qq defined by:

proj(P ;v) = {v ∈ Qq | ∃ u ∈ Qp, (u,v) ∈ P}.
Fourier-Motzkin elimination (FME for short) is an algorithm computing the
projection proj(P ;v) of the polyhedron of P by successively eliminating the u-
variables from a representation of P .

Consider a representation R of P and a positive integer i such that 1 ≤ i ≤ n.
Denote by R(xi) the inequalities in R whose largest variable is xi. A projected
representation of P induced by R is a representation of P consisting of
1. R(x1) , if n = 1,
2. R(x1) and a projected representation of proj(P ; (x2, . . . , xn)), otherwise.

The article [9] presents an efficient algorithm for computing a minimal pro-
jected representation of the polyhedron P from any R representation of P .
This algorithm is implemented in the Z Polyhedra library by the command
MinimalProjectedRepresentation of the module PolyhedraTools. In partic-
ular, this command provides a much more efficient way of performing FME than
the command Project of the PolyhedralSets library in Maple, as illustrated
by the comparative implementation reported in [9].

2.2 Lattices

The n-dimensional integer lattice, namely Zn, is the lattice in the Euclidean space
Rn whose lattice points are all n-tuples of integers. More generally, a lattice of
Rn consists of all linear combinations with integer coefficients of a basis of Rn (as
a vector space). The data-type Lattice of the Z Polyhedra library implements
lattices in that latter sense, with some adaptation to support our purpose of
studying the integer points of polyhedra. This adaptation is actually taken from
the article [14]. To be precise,
1. we restrict the basis vectors, given by n× n matrix A, to have integer coef-

ficients,
2. we allow a shift of the origin by a vector b ∈ Zn.

Therefore, we call an integer lattice of Zn any set of the form

{Ax + b | x ∈ Zn}
where A ∈ Zn×n is a full-rank matrix and b ∈ Zn is a vector; such a set is
denoted by L(A,b).
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2.3 Z-Polyhedra

Following [14] here again, we call a Z-Polyhedron the intersection of a polyhedron
with an integer lattice. The purpose of this notion is, for us, to support the
description of the integer points of a polyhedron P ⊆ Qn, that is, the description
of the set P ∩ Zn. This leads us to some preliminary remarks.

Consider first the problem of solving a Diophantine equation over Z, say in 2
variables x and y. For instance, consider 3x− 4y = 7; its solutions, as computed
by Maple, are of the form x = 5+4 Z1 , y = 2+3 Z1 , the description of which
requires the use of the auxiliary variable Z1. In his Omega test [11, 12] William
Pugh extended that idea for solving arbitrary systems of linear equations of Z.
For instance, for the system{

7x + 12y + 31z = 17
3x + 5y + 14z = 7

our implementation of the Omega test produces z = −t0 − 1
y = −5t0 − 3
x = 13t0 + 12

Of course, the introduction of the parameter t0 can be avoided by re-writing x
and z as a function of z, leading to:{

x = −1− 13z
y = 2 + 5z

Consider now this other polyhedron P of Q3:
x = 19
y = 25 + (1/2)z
z ≤ 18
z ≤ 0

Because of the presence of the rational number 1/2, the above input system
cannot be considered as a description of the set P ∩Z3. Using our algorithm [7, 8]
inspired by the Omega test, we obtain the following:

x = 19
y = 25 + t0
z = 2 t0

−t0 ≤ 0
t0 ≤ 9

Inspired by the work[14], we have substantially improved our algorithm in terms
of efficiency and in terms of output conciseness. In particular, for the above
example, we obtain in a Maple session, the result below: On the left-hand side
of Figure 1, we retrieve our original polyhedron P and on the right-hand side,
we have the lattice L of Zn consisting of the points (x, y, z) where z/2 is integer.
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Fig. 1: A Z-Polyhedron in PL format.

The intersection P ∩L is exactly P ∩Z3. More generally, encoding the integer
points of a polyhedron using the above format, that we call the PL format, and
thus using lattices, allows us to totally avoid the recourse to auxiliary variables.
In addition, it is easy to convert any set of the form P ∩Zn (where P ⊆ Qn is a
polyhedron) from PL format, say P ∩L(C,d), to the Omega test format, simply
by substituting x with Ct + d into the representation of P , say Ax ≤ b.

2.4 Parametric Z-Polyhedra

A parametric Z-Polyhedron is a family of Z-polyhedra
– given by the representation of a Z-polyhedron where,
– the defining matrix or the defining vector depend linearly on parameters.

This notion is particularly useful in application problems, like parametric inte-
ger linear programming, where the feasible region, and thus optimal solutions,
depend on the values of parameters.

Fig. 2: Making a new object of type Parametric Z polyhedron.

The Maple session on Figure 2 shows how to create (command Parametric-

Z polyhedron[new]) and display (command Parametric Z polyhedron[Display])
a parametric Z-Polyhedron from a list of equations, a list of inequalities, a list
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of the involved variables and a list of the involved parameters. In this example,
the parameters are theta 1 and theta 2 while the unknowns are x 1 and x 2.
On can see that an object of type Parametric Z polyhedron is represented by
a pair of Z-polyhedra in PL format:

– one in the parameter space,
– one the whole ambient space.

.

3 Core algorithms and their implementation

The Z Polyhedra library in Maple implements commands to manipulate Z-
polyhedra and in particular the integer points of polyhedra defined over Q. To
this end, the Z Polyhedra library offers

1. 3 data-types in the form Maple modules: Z polyhedron, Lattice and
Parametric Z polyhedron,

2. a collection of solvers to compute the integer points of (parametric) Z-
polyhedra,

3. a fourth module gathering commands to operate on polyhedra and their
rational points.

Data-Types and solvers are further discussed below.

3.1 Data-types

An object of the data-type Z polyhedron, encodes the integer points of a poly-
hedron, using the PL format, specified in Section 2.3. An object of the data-type
Lattice encodes a lattice as defined in Section 2.2. Finally, an object of the data-
type Parametric Z polyhedron encodes a parametric Z-polyhedron as defined
in Section 2.4.

Each of these data-types is implemented in an “object-oriented” fashion using
the Maple language construct of a module. Each of these three modules offers
“get” methods to access the different attributes of an object, see Figure 3.

3.2 Solvers

The most commonly used solver is IntegerSolve. It takes as input a system of
linear equations and inequalities, that is, a representation of some polyhedron
P ⊆ Qn. It returns finitely many Z-polyhedra

– either in PL format P1∩L1, . . . , Pe∩Le such that

P ∩Zn = (P1∩L1) ∪ · · · ∪ Pe∩Le,

– or in Omega test format (thus using auxiliary variables) as on the example
shown on Figure 4.
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> with(Z_Polyhedra);

[EnumerateIntegerPoints, IntegerSolve, Lattice, LexicographicalMinimum,

ParametricIntegerSolve, Parametric_Z_polyhedron, PlotIntegerPoints3d,

PolyhedraTools, Z_polyhedron, hasIntegerPoints]

> with(Lattice);

[DefiningMatrix, DefiningVector, Display, IsPointInLattice]

> with(Z_polyhedron);

[Display, Equations, Inequalities, IsContained, Unknowns]

> with(Parametric_Z_polyhedron);

[ConstraintsOnParameters, ConstraintsOnUnknowns, Display, Parameters, Unknowns]

> with(PolyhedraTools);

[IsNegative, IsNonNegative, IsNonPositive, IsPositive, IsRedundant, IsZero,

MinimalProjectedRepresentation, MinimalRepresentation, hasRationalPoints]

Fig. 3: Maple session showing the commands and modules available to an end-user of
the Z Polyhedra library.

The core solver of the Z-Polyhedra library is ParametricIntegerSolve.
Its specifications are similar to those of IntegerSolve but using parametric
Z-polyhedra instead of Z-polyhedra. In fact, IntegerSolve is derived from
ParametricIntegerSolve by letting the list of parameters be empty. Figure 5
shows what ParametricIntegerSolve does on the example of Section 2.4, that
is, computing its minimal projected representation.

While solving a system of constraints does not mean enumerating its solu-
tions, enumeration is sometimes what the user needs, in particular when plotting
is involved Figure6 shows how the command EnumerateIntegerPoints enumer-
ates the integer points of a polyhedron, after computing a minimal projected rep-
resentation of that polyhedron. This is used by the command PlotIntegerPoints3d

for plotting the same polyhedron.

4 Applications

4.1 Dependence analysis

Consider the following for-loop nest:

for i = 1 to 5 do
for j = i to 5 do

A[i, j + 1] = A[5, j]
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Fig. 4: Using IntegerSolve for decomposing the integer points of a polyhedron.

It is natural to ask whether two different iterations of the above for-loop nest can
access the same coefficient in the array A, with at least one of those iterations
writing that coefficient.

Consider first the case where one iteration (i, j) writes the same coefficient
in A that another iteration (i′, j′) reads. If such a couple of iterations exists then
the system below must have solutions for i′, j′, i, j ∈ Z

1 ≤ i ≤ j ≤ 5

1 ≤ i′ ≤ j′ ≤ 5

i = 5

j + 1 = j′

The Maple session on Figure 7 shows that the polyhedron defined by eqs

and ineqs has no integer points. Similarly, it can be shown that no two iterations
access the same coefficient in A both in writing. Consequently, each for-loop in
the above for-loop nest can be executed in a parallel fashion without any race
conditions.

We consider now a more difficult example used by Paul Feautrier in his
lectures, see Figure 8. Here again, the IntegerSolve command can be used to
prove that none of these 3 statements yield dependence, see Figure 9.

4.2 Cache lines accessed by a for-loop nest

The question considered here is counting the total number of cache lines accessed
by a for-loop nest (a 5-point stencil computation code) see Example 5 in [12].
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Fig. 5: Using ParametricIntegerSolve.

The polyhedron studied in the Maple session on Figure 10 is more general
than the one of William Pugh. Indeed, we have replaced the loop bound 500 by a
parameter N. What IntegerSolve computes in this case is a minimal projected
representation of that polyhedron. This essentially provides an enumeration of
its integer points. Focusing on the variables i and j leads to the desired answer.

4.3 Parametric linear programming

This last application presents work in progress. Consider the following for-loop
nest:

for i = 0 to m do
for j = 0 to n do

A[2 ∗ i + j] = i + j

A natural question of concurrency is to determine, for a given k, what is the last
iteration (i, j) at which A[2 ∗ i+ j] receives the value k, see the driving problem
in [5] by Paul Feautrier.

The command LexicographicalMinimum addresses a similar question with
maximum replaced by minimum. Hence, to answer the original question, we need
a natural change of coordinates where (i, j) is mapped to (m− i, n− j). We are
now looking at the following parametric Z-polyhedron P (k,m, n):

0 ≤ i
i ≤ m
0 ≤ j
j ≤ n

2i + j − k ≤ −k + 2m + n
−2i− j + k ≤ −k + 2m + n

In its current version, LexicographicalMinimum finds the lexicographical
minimum of (i, j) within P (k,m, n), viewing i, j, k,m, n as rational numbers
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Fig. 6: Using EnumerateIntegerPoints.

Fig. 7: Using IntegerSolve for dependence analysis.

(instead of integers) which yields the solution shown on Figure 11. The output
consists of 4 pairs; each pair gives a lexicographical minimum together with the
corresponding conditions on k,m, n under which this minimum is reached.
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Fig. 8: On the right: pseudo-code for Choleski LU. On the Left: dependence analysis
of 3 statements of this pseudo-code.

Fig. 9: Using IntegerSolve for dependence analysis on Choleski LU.
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Fig. 10: Using IntegerSolve for cache line accesses.

Fig. 11: Using LexicographicalMinimum for parametric linear programming.
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