Algorithmic Contributions to the Theory of
Regular Chains

Wei PAN

January 25th, 2011

Solving a Polynomial System

Given a polynomial system in Q[x, y, z]
fi X2y —2yz +1,
h = xy2—z242x,
f‘3 = yZZ - X2 + 57

its lexicographic Grobner basis with x < y < z is

—1 4 40800 x + 60 x2 — 48320 x3 — 914 x* 4 20832 x> 4 2440 x6—
3840 x” — 1652 x8 4 256 x9 + 400 x10 4 25 x11 — 32 x12 — 10 x13 4 x15,

14381563508743348530 + - - - + 22275725783443030880 x3+
17337962129339576800 x* + - - - + 678653188817311360 x’+
417888194856743705 x° + - - - + 1295293069959120 x4+
1438088726195281921 y,

73368693579709120 + - - - + 4519595559439694016 x” +
446923318749103260 x® + - - - + 27806316011036620 x12+
7748578966043840 x13 — 5388716836938020 x4+
1438088726195281921 z

length(G) = 957.

Solving a Polynomial System

Given a polynomial system in Q[x, y, z]

i = xty—2yz+1,
fh = xy?—2z2+42x,
6 = yzz_X2+57

a triangular decomposition with x < y < z is

t; = —1+440800x + 60 x2 — 48320 x3 — 914 x* + 20832 x° + 2440 x6—
3840 x” — 1652 x8 4 256 x% + 400 x10 4 25 x11 — 32 x12 — 10 x13 4 x1°
T = th = 40 —408x2+240x* + x> —32x5 —10x7 +2x9+

(x7—80x2+24x4+4)y
t3= 2yz—x%y—1.

length(T) = 286.

| \

Notations

mvar(t;) = x, mvar(tp) =y, mvar(t3) = z.
init(t) = 1, init(tr) = x” — 80x* + 24 x* + 4, init(t3) = 2y.

Key References

@ Grobner basis Bruno Buchberber in 1960's

o Characteristic set Joseph Fels Ritt in the 1930’s and Wen
Tsun Wu in the 1980's

@ Regular chain Michael Kalkbrener and Normal ascending chain
Lu Yang & Jingzhong Zhang in 1990's.

@ Theory unification by Philippe Aubry, Daniel Lazard & Marc
Moreno Maza in 1999.

@ Triangular decomposition algorithms: (Dongming Wang
1993-1998-2000) (M. Kalkbrener 1991) (Daniel Lazard 1992)
(M. Moreno Maza 2000) (Xavier Dahan, M. Moreno Maza,
Eric Schost, Yuzhen Xie 2005) (Changbo Chen & M. Moreno
Maza 2010).

@ Software: The RegularChains library in MAPLE.

Contributions of this Thesis

@ Better understanding of the theory of regular chains:

e a notion of primitivity for regular chains and
e efficient criterion to remove redundant components.

Contributions of this Thesis

@ Better understanding of the theory of regular chains:
e a notion of primitivity for regular chains and
e efficient criterion to remove redundant components.
@ Better algorithm for computing regular GCDs:
e enhanced theoretical foundation of the regular GCDs
e proposed a bottom-up algorithm which permits the use of fast
polynomial arithmetic and modular methods.

Contributions of this Thesis

@ Better understanding of the theory of regular chains:
e a notion of primitivity for regular chains and
e efficient criterion to remove redundant components.
@ Better algorithm for computing regular GCDs:

e enhanced theoretical foundation of the regular GCDs
e proposed a bottom-up algorithm which permits the use of fast
polynomial arithmetic and modular methods.

o Parallelization by means of GPU computing:

o efficient fast Fourier transform over finite fields
o efficient subroutines for computing subresultants by values
e compute resultants faster and solve bivariate systems faster

References for the Thesis

When does (T) equal sat(T)? (with Frangois Lemaire, Marc
Moreno Maza, and Yuzhen Xie), Journal of Symbolic
Computation, accepted.

Computations modulo regular chains (with Xin Li, Marc
Moreno Maza), Proceedings of ISSAC 20009.

Fast polynomial multiplication on a GPU (with Marc Moreno
Maza), High Performance Computing Symposium 2010,
Journal of Physics: Conference Series 256.

Solving bivariate polynomial systems on a GPU (with Marc
Moreno Maza), submitted.

Regul

arity

@ Let A be a commutative ring.

@ Element x € A is regular iff xy = 0 implies y = 0.

| \

Example

Consider A = /127 = {0,1,.. .,
(1,5,7,

and zero-divisors are

{2,3,4,5,

11}. Regular elements are

1},

I—‘I

8,9, 10}.

Regular Chains and Saturated ldeals

Let T = (tl(X]_), ceey t,'(Xl, .

cyXi)y o) Ck[x1 < ... < x| bea
triangular set.

The saturated ideal sat(T) of a triangular set T is

sat(T)=(T): h*>

={f ekl[xi,...,xy] | h®f € (T) for some e > 0},

where h is the product of initials of t;’s.

Regular chain (recursive)

(1) if T =0, then it is a regular chain and sat(T) = (0);

(2) if T=CU{p}, then T is a regular chain, iff C is a regular
chain and init(p) is regular modulo sat(C).

An Example
o Ink[x1 < xp < x3 < xa, let
U={xxx3s+x1} and T ={x2x3+ x1,x1x1s+ x2}.
We have
sat(U) = (xax3 + x1) : x3° = (x2 x3 + x1),

and x; is regular modulo sat(U). Hence T is a regular chain.

An Example

o Ink[x1 < xp < x3 < xa, let
U={xx3+x1} and T ={xxx3+x1,x1xs+ x2}.
We have
sat(U) = (xax3 + x1) : x3° = (x2 x3 + x1),

and x is regular modulo sat(U). Hence T is a regular chain.

v

@ The saturated ideal sat(7T) may be strictly larger than (T).

(T) (%2 x3 + x1, x4 x3 — 1) N (x1, x2),
sat(T) = (xox3+ x1,xax3 —1).

Primitive Regular Chains

Inclusion Test for Regular Chains

@ The inclusion test problem
o Does sat(T) C sat(U) hold?
is hard to answer, which causes certain redundancy in the
output of triangular decomposition algorithms in practice.

o If a system of generators of sat(T) is known, then the
inclusion test reduces to the ideal membership problem.

@ Our objectives are, in positive dimension,
o characterizing the T's for which sat(T) = (T) holds;
o deciding sat(T) = (T) without Grébner basis computation.

V.

Main Theorem

o Let f € A[x] be a univariateof degree d > 0. Then

f =1c(f)x9 + tail(f)

is weakly primitive iff

o 1c(f) is invertible or,
o tail(f) is regular modulo (1c(f)).

ﬁ_

Main Theorem

o Let f € A[x] be a univariateof degree d > 0. Then

f =1c(f)x9 + tail(f)

is weakly primitive iff

o 1c(f) is invertible or,
o tail(f) is regular modulo (1c(f)).

@ Let T = CU{p} be a regular chain. Then T is primitive if
e C is primitive and
e pis a weakly primitive polynomial regarded as a univariate
polynomial in its main variable over k[x]/(C).

v

_

Main Theorem

o Let f € A[x] be a univariateof degree d > 0. Then

f =1c(f)x9 + tail(f)

is weakly primitive iff

o 1c(f) is invertible or,
o tail(f) is regular modulo (1c(f)).

@ Let T = CU{p} be a regular chain. Then T is primitive if
e C is primitive and
e pis a weakly primitive polynomial regarded as a univariate
polynomial in its main variable over k[x]/(C).

@ Regular chain T is primitive iff (T) = sat(T) holds.

Application to the Inclusion Test

@ There is an efficient routine to check if a regular chain T is
primitive. Implemented as a command IsPrimitive of the
REGULARCHAIN library in Maple.

@ The inclusion sat(T) C sat(U) holds iff (T) C sat(U)
holds, provided that T is primitive. The latter can be
efficiently checked by pseudo-division computations.

@ This new criterion together with the previous criteria covers
most cases in practice.

Regular GCD and a Bottom-up Algorithm

Subresultant and GCD

Let x < y and
F =3y* +6y3 — yx> — 2x%> + 2y + 4,
G=y3x?—-2-2y3+x?

Subresultants

So = (—x°+3x*—4)y +6x*—2x5-38,

S = (X]‘O—4X8—|—X6—|—10X4—4X2—8)y—|—2X10
—8x%4+2x8 420x* —8x% — 16,

So = —T7x*4+35x12—21x10-119x8 4+ 112x°

+168 x* — 112 x2 — 112.

@ Sy has two squarefree factors A; = x?> + 1 and Ay = x% — 2.
e {(A1,51), (A, F)} is a triangular decomposition of F and G.

V.

Regular GCD

e Let P, Q € Afy] be non-constant with regular leading
coefficients.

o G is a regular GCD of P, Q if we have:
o lc(G,y) is regular in A,
o Ge(P,Q)inAly],
o deg(G,y) >0 = prem(P,G,y)=pren(Q,G,y)=0.

Regular GCD

e Let P, Q € Afy] be non-constant with regular leading
coefficients.

o G is a regular GCD of P, Q if we have:
o lc(G,y) is regular in A,
o G e <P, Q> in A[y],
o deg(G,y) >0 = prem(P,G,y)=pren(Q,G,y)=0.

@ In practice A = k[xi, ..., x,]/sat(T) for a regular chain T.

@ Such a regular GCD may not exist. However one can compute
Z; = sat(T;) and non-zero polynomials G; such that

VI =n¢_1\/Z; and G; regular GCD of P, Q mod Z;

Related Work

This regular GCD was proposed in (Moreno Maza 2000)

In previous work (Kalkbrener 1993) and (Rioboo & Moreno
Maza 1995), other regular GCDs modulo regular chains were
introduced, but with limitations.

In other work (Wang 2000), (Yang etc. 1995) and (Jean Della
Dora, Claire Dicrescenzo, Dominique Duval 85), related
techniques are used to construct triangular decompositions.

Regular GCDs modulo regular chains generalize GCDs over
towers of field extensions for which specialized algorithms are
available, (van Hoeij and Monagan 2002 & 2004).

The complexity of computing regular GCDs (Dahan, Moreno
Maza, Schost, and Xie)

Main Theorem

Let P, Q € k[x1,...,xa][y] and So, ..., Sq—1 be their subresultants
iny,and T C k[xi,...,xp] be a regular chain.

Sy is called a candidate regular GCD of P, Q if the following hold
Q Siesat(T)forall0<i<d
Q Sy ¢ sat(T)
@ init(Sy) is regular modulo sat(T)

Candidate Sy is a regular GCD of P, Q w.r.t T, if for each £ > d
either condition holds

Q coeff(Sy,y') € sat(T),
Q coeff(S,,y") is regular modulo sat(T).

Implications of the Main Theorem

@ Separate the computation of regular GCDs and that of
subresultants
e reduce the algebraic complexity by recycling subresultants
e reduce the memory consumption

Implications of the Main Theorem

@ Separate the computation of regular GCDs and that of
subresultants
e reduce the algebraic complexity by recycling subresultants
e reduce the memory consumption

@ Permit to use fast polynomial arithmetic by pushing
computations to the ground field
e represent subresultants by values (FFT evaluations)
o interpolate subresultants only needed (FFT interpolations)
e exposure the parallelism

The Complexity of the Regular GCD Algorithm

o Let dj = max(deg(P, x;),deg(Q, x;))
© dpy1 = deg(Q,y) and Dy = d1 -+~ dk
@ Assume that T zero-dimensional prime ideal

Corollary
Ifd=dy =---=dht1 > 2, then

GCD(dh,...,dn,dnt1) € ON(nZQ"d2’7+2).

| \

Theorem

| |
A\

GCD(dh, ..., dn, dny1) € O~ (n?27)d 7D, +0~(2") Y (% d] D;) .
i=2

v

Fast Fourier Transform on GPUs

Fast Fourier Transform on GPUs

Background

o FFTs over finite fields is the starting point for asymptotically
fast algorithms in symbolic computation.

@ In the literature, most FFTs on GPUs are for complex
numbers, such as NVIDIA CUFFT library.

V.

Main Results

@ Our Stockham FFT implementation is highly efficient. Even
though the ratio between the algebraic complexity and the
output size is ©(log n), it still achieves a reasonable amount
speedup.

@ Our CUDA kernels can be extended to realize a list of 1D
FFTs, one of the building blocks for computing subresultants.)

Bandwidth for CPUs and GPUs

Testing in GB/s

logy n | memset | Main Mem to GPU | GPU to Main Mem | GPU Kernel

23 1.56 1.33 1.52 61.6
24 1.56 1.34 1.52 69.9
25 1.39 1.35 1.53 75.0
26 1.39 1.28 1.50 7.4
27 1.43 1.35 1.49 79.0

@ "memset” for CPU to main memory
e “cudaMemcpy” between main memory and GPU memory
o Intel Core 2 Quad Q9400 @ 2.66GHz, 6GB memory, memory

interface width 128 bits

GeForce GTX 285, 1GB global memory, 30 x 8 cores, memory
interface width 512 bits

Discrete Fourier Transform (DFT)

Definition

Given a primitive n-th root of unity w (i.e. w"/? = —1), and
f(t) = x0 +xat+ -+ xo_1t" 1,

DFET%(f) isy = (Yo,---,Yn_1) With yx = f(wk) for 0 < k < n. As
a matrix-vector product, it is

y=DFT,x, DFT,= [Wulogk,€<n' (1)

2=
yi = Xo—X1 1

That is, DFT, = [1 _i]

Kronecker Product

The Kronecker (or tensor) product of A and B is

A® B = [agBlks with A= [axks

For example, let

1 2 10
ST

Then their tensor products are

1 2 00 1 0
3400 0 1
I ® A= 00 1 2 and A® /= 30
0 0 3 4 0 3

o O DN

&~ O N O

Extract Parallelism from Structural Formulas

In ® A: block parallelism

I, @ DFT, = L K

Extract Parallelism from Structural Formulas

A® I,: vector parallelism

DFT, ® Iy =

k—1
DFTo = [] (DFT2 ® hi1) (D pb-i-1 ® bi) (13 @ by)
kzo______\,______/______\’______,____\,____/

butterfly twiddling reordering

void stockham_dev(int *X_d, int n, int k, const int *W_d, int p)
{
int *Y_d;
cudaMalloc((void **)&Y_d, sizeof(int) * n);
butterfly_dev(Y_d, X_d, k, p);
for (int i =k - 2; i >= 0; —--i) {
stride_transpose2_dev(X_d, Y_d, k, i);
stride_twiddle2_dev(X_d, W_d, k, i, p);
butterfly_dev(Y_d, X_d, k, p);
}
cudaMemcpy(X_d, Y_d, sizeof(int)*n, cudaMemcpyDeviceToDevice);
cudaFree(Y_d);

k—1
DFTzk = H \(DFT2 ® I2k—1) (D2’2k—i—1 ® I2i) (L%k_l ® I2i)

~~

=1 butterfly twiddling reordering

{

global__ void butterfly_ker(int *Y, const int *X, int k, int p)

int bid = blockIdx.y * gridDim.x + blockIdx.x;
int halfn = ((int)1 << (k - 1));

const int *A = X + bid * blockDim.x;

int *B = Y + bid * blockDim.x;

int m = threadldx.x + halfn;

B[threadIdx.x] = add_mod(A[threadIdx.x], A[m], p);
B[m] = sub_mod(A[threadIdx.x], Alm], p);

Implementation of Stockham FFT

Height Plot
G 1 memcopy
E [double_expand_ker
I butterlly_kernel
321440 |T I stride_transpose2_kernel_a
275510 ;” [stride_twiddle_kernel_a_double
M stride_transpose2_kernel_b
229599 3 stride_twiddle_kernel_b_double
[memcpyDtoD_aligned
183678 FitinWindow : Yes
ShowCPUTime : No
197759 Height Zoom - 1
91839 4
45918 4
[EEE——— TE SE RE SE RE S SN A A e e A e N S A = F R R R R E N

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91
Wethod Number

Cooley-Tukey FFT

k
DFTzk = < (/2/—1 ® DFT2 X l2k—i) TnJ) Rn

i=1

with the twiddle factor matrix Tp; = hi-1 ® D, 5«—i and the
bit-reversal permutation matrix

Rn = (Inj2 ® L3)(lny2 ® L3) - (h ® LF).

953002 -

816858 -

680715 |

544572 -

408429 -

272286 —

136143

Implementation of Cooley-Tukey FFT

=1 memcopy Height Plot
[double_expand_ker

B list_transpose2_kemel_b
[list_transpose2_kemel_a
[list_fft_kernel

B list butterfly_kernel_a

e3~-4 cUe

=3 list_butterfly_kernel_b

FitinWindow : Yes
‘ShowCPUTime : No

Height Zoom : 1

@ The

1 5 a 13 17 21 25 29 33 37 M 45 49 53 87 61
Method Number

problem comes from the read to the “scattered” powers

1w?, (W¥)2,..., (W)

Implementation of Cooley-Tukey FFT

Height Plot
3 memcopy
[list_transpose2_kemnel b
o B list_transpose2_kemel_a
321519+ p B list_fit_kernel
Y 3 list_butterfly_kernel_a
285794 o
A B list butterfly kernel_b
250060 - g‘ FitinWindow : Yes
ShowCPUTIme : No
214345 Height Zoom : 1
178621 —
142897
107172
71448
35724
1 4 710 13 16 19 22 25 26 31 34 37 40 43 46

@ Pre-compute “scattered” powers for each i

Lw? (W¥)2,..., ()21

Timing FFT in Milliseconds

e modpn Cooley-Tukey C-T + Mem Stockham S + Mem
time ratio time | ratio time | ratio time | ratio
12 1 1 1.0 1 1.0 2 0.5 2 0.5
13 1 2 0.5 2 0.5 2 0.5 3 0.3
14 3 1 3.0 2 1.5 2 1.5 3 1.0
15 4 2 2.0 2 2.0 3 2.0 3 1.3
16 10 3 33 3 3.3 3 3.3 4 3.3
17 16 4 4.0 5 3.2 3 5.3 5 3.2
18 37 6 6.2 9 4.1 4 9.3 7 5.3
19 71 11 6.5 15 6.5 6 11.8 10 7.1
20 174 22 7.9 28 6.2 9 19.3 16 10.9
21 470 44 10.7 56 8.4 16 29.4 28 16.8
22 997 83 12.0 105 9.5 29 344 52 19.2
23 2070 165 12.5 210 9.9 56 37.0 101 20.5
24 4194 330 12.7 418 10.0 113 37.0 201 20.9
25 8611 667 12.9 842 10.2 230 37.4 405 21.2
26 17617 1338 13.2 1686 10.4 473 37.2 822 21.4

The GPU is GTX 285.

Summary

@ The Stockham FFT achieves a speedup factor of 21 for large
FFT degrees, comparing to the modpn serial implementation.

@ The data transfer between GPU memory and main memory is
approximately 42 %.

Computing Subresultants on the GPU

Subresultant Chain Computation

P,Qin

F,Gin

F', G'in Zy[z,y]

F'(w y), G'(w'y) in Zyly]

Direct computation

Zp[”’-'l: sy y]

Kronecker’s substitution

Zp[z,y]

Random translation ¢,

exit, if several random
choices a failed

FFT

Brown’s algorithm

subres(P, Q,y) € Zplxi, ..., &n, Y]

Inverse Kronecker

subres(F'(x, y),

Inverse ¢,

subres(F'(x,y)

Inverse FFT

subres(F'(w', y

G(x,y),y)

LGz y),y)

) Gwhyy),y)

Space Complexity

Assume that
(a) max(deg(P, x;),deg(Q,x;)) < d;, for 1 < i <n,
(b) deg(P,y) = dnt2 > deg(Q,y) = dny1 > 0.

Theorem

The size of the evaluation cube of P and Q in y is

mdp41(1 + dnt1)
2)

where m is the smallest power of 2 such that

n i—1
m > (dnr2 + dat1) | 1+ D di [[(dni2d; + datad) + 1)
i=2 j=1

Space Complexity

When dpi2 = dni1 = --- = di = d, the FFT size is ©(2"d?") and
the size of the evaluation cube is ©(2"d?"+2).

n d FFT Degree | Cube Size || n | d | FFT Degree | Cube Size
1| 80 14 203MB 316 19 42MB
1 | 100 15 632MB 3] 8 22 576MB
1 | 120 15 908MB 3|10 23 1760MB
1 | 140 16 2468MB 41 5 23 480MB
2 15 18 120MB 4 6 25 2683MB
21 20 20 840MB 5| 3 22 96MB
2 25 21 2600MB 5 4 26 2560MB

Algebraic Complexity

Theorem

The number of field operations in Z, for computing the evaluation
cube of P and Q iny is

O(mlog m(dp11 + dni2 +2) + m(dayy + d2.o + dny1dny2))
where m is the smallest power of 2 such that

n i—1

m > (dpy2 + dny1) | di + Z d; H(dn+2dj + dpy1d; +1)
i=2 j=1
When d 12 = dpy1 = -+ = di = d, the cost to build the FFT

based evaluation cube is O(2"d%"+2).

Subresultant Chain by Evaluation/Interpolation

Different Strategies

o FFT based technique

e Fourier prime limitation
e valid grid
e translation

@ subproduct tree technique

4

FFT scube on the GPU

@ Coarse-grained construction

@ Fine-grained construction

Brown's Subresultant Chain Algorithm

Input : Poly. P,Q € k[y] s.t. deg(P) > deg(Q) >0
Output : The subresultant chain of P and @

1S« 0for0<i<deg(Q);

2 B«—pren(P,—Q,y), A— Q, o — deg(P) — deg(Q);
3 while B # 0 do

d «— deg(A), e < deg(B), § — d — ¢;

Sd-1 < B;

Se — 1c(A)*(1=9) 1¢(B)*1 B;

if e = 0 then break;

B « 1c(A)~*lprem(A, —B,y), A« Se, a + 1;

9 return S; for 0 < i < deg(Q);

o N o 0o s

Approach (1) : Coarse-grained Implementation

Main Idea

Each CUDA thread runs a univariate Brown's subresultant
algorithm.

| \

Remarks

@ Simple and always works.

@ The number of threads is bounded by the FFT size m, which
is ©(d?) for a random dense square system of partial degree d.

Profiling Coarse-grained Implementation

I memcopy
double_expand_ker
expand_to_list_fft_ker

list_butterfly_ker

—

(=)

=

[list_stride_transpose2a_ker
B list_stride_twiddle2a_ker
3 list_stride_twiddle2b_ker
[list_stride_transpose2b_ker
B memcpyDtoD_aligned

[transpose_ker

[reset_ker

Bl subres_chain_tri_ker

Fit In Window :Yes, Max Bar Width Displayed : 1272
Show CPU Time :No, Start Timestamp at Zero : Yes

0 74692
GPLI Tima

149383 224075

298766

373458

Approach (1) : Fine-grained Implementation

Main ldea

Compute subresultants level by level and parallelize the
pseudo-division in the Brown's subresultant algorithm.

o Complicate.
o The total number of threads is ©(d?).

@ Require the following further assumption:
The degree sequences of all images (P;, Q;) are the same.

Profiling Fine-grained Implementation

=3 memcopy
3 memepyHioD

B double_expand_ker

B reset ker

3 buterty_ker

. stide_transpose2a_ker

1 stide_twiddle2a_ker

1 stide_twiddle2b_ker

I stide_transpose2b_ker
memepyDioD

has_zero_ker

memcpyDIoH
expand._to_list_ft_ker
Ist_butterty_ker
Ist_stride_transpose2a_ker
Ist_stride_twiddle2a_ker
lst_stride_twiddle2b_ker
Vst stide_tianspose2o_ker
ranspose_ker
list_poly_reduce_ker
set_aray_ker
lst_deg_coarse_ker
has_same_val_ker
Iist_poly_reduce_defective_ker
Tst_icoeft_ker
tist_inv_power_ker
Iist_next._subres_scale2_ker
3 extact_flem_ker

B scale_vector_ker

goeoomoROONERNORNOE

FitnWindow : Yes.
ShowGPUTIme : No
Height Zoom : 1

e3-+ cvo

8314

7896 -

7482 -

7066

6650 -

6235 -

5819

5403

4986 |

4572

4156 |

3741

3325 |

2909 -

2494 -

2078

1662 -

12474

1 o7
Method Number

193

1057

1183

1249

1345

Computing Resultants

d to t1 tl/to
8 0.23 0.76 3.3
9 0.24 0.85 35
10 | 0.25 0.98 3.9
11 0.24 1.10 4.6
12 | 0.30 4.96 16.5
13 0.31 5.562 17.8
14 | 0.32 6.07 19.0
15 | 0.78 8.95 11.5
16 | 0.65 | 31.65 | 48.7
17 | 0.66 | 34.55 | 52.3
18 3.46 47.54 13.7
19 | 0.73 | 51.04 | 69.9
20 0.75 43.12 57.5

d to t1 tl/tO
30 0.23 0.29 1.3
40 0.23 0.43 1.9
50 0.27 1.14 4.2
60 0.27 1.53 5.7
70 0.31 3.95 12.7
80 0.32 4.88 15.3
90 0.35 5.95 17.0
100 | 0.50 | 19.10 | 38.2
110 | 0.53 | 17.89 | 33.8
120 | 0.58 | 19.72 34.0

Bivariate dense polynomials of
total degree d.

Trivariate dense polynomials of
total degree d.

o ty, GPU fft code
o t1, CPU fft code
@ Nvidia Tesla C2050

Preconditioning

In our implementation, linear translations are used to enlarge the
feasibility of FFT based evaluations.

Let m be the FFT size and let f be a polynomial of degree at most
%. Then the number of valid linear translations ¢, : x — x + a
for f is at least 5.

An Application to Solving Bivariate Systems

Generic Bivariate Solver

Algorithm 1: ModularGenericSolve2(Fy, F2)

Compute the subresultant chain S of F1, Fo in y by value;
R < sqrfree(Sy), result — 0, i «— 1;
while R ¢ k and / < deg(F;,y) do

while / < deg(F2,y) do
Let S; be the regular subresultant with

i <j < deg(Fy,y) being minimal;
if 1c(Sj,y)=0mod R then j«—i+1;
else break;
if 7> deg(F,,y) then return result U{(R,F1)};
G — ng(RlC(Sj*}/))y
if G € k then return result U {(R, S})};
result «— result U {(R quo G,S;)}, R— G, i — j+1;

return result;

time in seconds

32

30

28

26

24

22

28

18

16

14

12

18

Bivariate Solver

T T T T T T
gpu supported bivariate solving
general bivariate solving

16

24

32

48

48

86 64 72
partial degrees

80

88

96

184 112 128

time in seconds

34
32
38
28
26
24
22
28
18
16
14
12

@ M oA o o@

Bivariate Solver on the CPU

.mnnHHHHH

scube construction =2
total =

18

28 38 48 58 68 FL:]
partial degree

80

90

1688

118

128

Bivariate Solver on the GPU

time in seconds

scube construction =2
total =

.HHHHHHHHHHHHHHHH

18 28 38 48 o8 68 78 88 a8 188 118 128
partial degree

Solving Bivariate Systems in Seconds

d || to(gpu) | ti(total) || t2 (cpu) | t3 (total) || to/to | t3/t1
30 0.25 0.35 0.14 0.25 0.6 0.7
40 0.25 0.46 0.42 0.64 1.7 1.4
50 0.28 0.67 1.14 1.56 4.1 2.3
60 0.29 0.88 1.54 2.20 5.3 25
70 0.31 1.20 3.94 4.94 127 | 4.1
80 0.32 1.42 4.84 6.06 15.1 4.3
90 0.33 1.80 5.94 7.54 18.0 | 4.2
100 0.48 2.56 14.23 16.66 29.7 | 65
110 0.52 2.93 16.78 19.58 32.1 6.7
120 0.55 3.80 24.41 28.60 44 .4 7.5

d : total degree of the input polynomial

to : GPU FFT based scube construction

t; : total time for solving with GPU code

tr : CPU FFT base scube construction

t3 : total time for solving without CPU code

Summary

@ For input of degree d, generic bivariate system solver has two
major components
o the subresultant chain construction: O(d*),
o the univariate gcd computations: O(d?*€).

where d is the total degree of the input polynomials.

@ The subresultant chain construction has been improved by a
factor of (up to) 44 on the GPU.

@ The current dominate part is the univariate gcd computation.

Acknowledgments

| am deeply grateful to my supervisor, Marc Moreno Maza for
his support, guidance, ideas and encouragement during the
past four years. Without his help, this thesis would not exist.

| want to thank my colleagues Francois Lemaire, Yuzhen Xie,
Xin Li, Oleg Golubitsky, Changbo Chen, Sardar Anisul Haque,
Liyun Li, Paul Vrbik, Rong Xiao for providing me help and for
sharing their knowledge.

| want to thank my colleagues at Maplesoft, in particular
Jiirgen Gerhard and Clare So, for our cooperation on the
RegularChains and modpn libraries and for their help during
my internship at Maplesoft.

Many thanks to the members of my committee Mark Daley,
Jan Minac, Jean-Louis Roch and Roberto Solis-Oba for their
reading of this thesis and comments.

Many thanks to all professors and students at ORCCA, where
| spent this wonderful period of my life.

Specifications of GPUs

GPU GTX 285 Tesla C2050
Compute Capability 1.3 2.0
Multiprocessors 30 14
Cores 240 448
Clock Rate 1.15G GHz 1.15 GHz
Memory Bandwidth 159 GB/sec 144 GB/sec
Single MADD 1062.7 GFLOPS 7
Double FMUL 1030.4 GFLOPS | 515.2 GFLOPS

Double Floating Point

Global Memory
Shared Memory
L1 Cache
L2 Cache
Concurrent Kernels

partially
1GB
16KB
none
none
no

fully
3GB
48KB or 16KB
48KB or 16KB
768KB
up to 16

The GFLOPS of our CPU Intel Core Quad Q9400 is 7.48.

Triangular Decomposition in Positive Dimension

@ Given a polynomial system F consisting of two polynomials
with variable ordering x >y >a>b>c>d>e>f

ax+cy—e =0
bx+dy—f = 0

@ A triangular decomposition algorithm transforms F into a set
{T} of regular chains

(ad —bc)y+be—af

T:‘ bx+dy—f

Triangular Decomposition in Positive Dimension

@ Given a polynomial system F consisting of two polynomials
with variable ordering x >y >a>b>c>d>e>f

ax+cy—e =0
bx+dy—f = 0

@ A triangular decomposition algorithm transforms F into a set
{T} of regular chains

(ad —bc)y+be—af

T:‘ bx+dy—f

@ The solution set is preserved during the transformation, i.e.

V(sat(T)) = V(F).

Two FFT formulas

Cooley-Tukey FFT

k
DFTox = <H (hi-1 @ DFT2 ® k1) T,,7,'> R,
i=1

with the twiddle factor matrix T}, ; = hi-1 ® D, o«-i and the
bit-reversal permutation matrix

Ro = (lnj2 ® L3)(Iny2 ® L3) - (h ® L3).

k—1
DFTo = H (DFT2 ® lyk-1) (D272k—i—1 ® i) (L%kil ® byi)
g —————

butterfly twiddling reordering

Break pseudo-divisions

Example

Let f = asx3 + apx? + a1x + ag and g = bpx? + bix + by. To
obtain the pseudo-remainder prem(f, —g, x) of f and g, we
compute

Q@ hy = —bf + asxg — C2X2 + cax + ¢,
Q@ h = —byho + cog = dix + bg.
Alternatively, we compute

_laz a a3 a1 _ |93 o

B @=p b 9|6 o] @ |5 o
_ @2 a _|©2 <

(52) = by b = bo bo

One can do a list of pseudo-divisions with the same input degrees.

Univariate polynomial multiplication over finite fields

50

45 opu fft based polynémial mu\tiplicétion
ro I o . . q
a0 | modpn fft based polynomial multipli —
4 35 |
c
S 30 t
& 25
S 20
a
E 15 ¢
10

5

O L

0 5e+06 1le+07 1.5e+07 2e+07 2.5e+0]

the degree of the input polynomials

Figure: FFT-based polynomial multiplication on GPU and CPU

Generalized CUDA kernels

To realize bivariate FFTs, we implemented some more CUDA
kernels:

I @ DFT o«
0 (Im ® DFT2 ® hyk-1), list_butterfly_kernel
0 (Im ® Dy gi—i-1 ® by), list twiddling kernel

o (In® L%kii ® ki), list_reordering_kernel

4

DF T ® Iy

o (DFT, ® ly—1 ® In,), ext_butterfly_kernel
0 (Djpk-i-1 ® b @ Im), ext_twiddling kernel

o (127 @ by ® Iy), ext_reordering_kernel

List of bivariate FFTs /; ® DFT <, can be derived as well.

Bivariate multiplication

nx(ny) | Kronecker + modpn fft | modpn 2d fft | fftmul2
100 0.020 0.020 0.040
200 0.080 0.080 0.040
300 0.440 0.420 0.070
400 0.500 0.530 0.070
600 2.690 1.980 0.150
800 2.430 1.970 0.140
1000 2.950 2.430 0.160
1200 11.950 10.220 0.460
1400 10.810 8.150 0.470
1600 10.330 8.120 0.490
1800 10.260 8.130 0.500
2000 11.970 9.930 0.520
2200 45.300 35.470 1.780
2400 53.570 44.430 1.820

Figure: Bivariate polynomial multiplication with random dense input
polynomials, timing in seconds. The data transfer between device and
host is counted. The threshold is 100~200 for this machine and GPU.

V(T) and V(sat(T))

e Given ideals I, J C Q[xy, ..., Xx,], we have

V(I)={xeC"|f(x)=0forall fel}
V(InJ)= V() u V().

V(T) and V(sat(T))

e Given ideals I, J C Q[xy, ..., Xx,], we have

V(I)={xeC"|f(x)=0forall fel}
V(InJ)= V() u V().

@ Since sat(T) = (uy +v,xy — 1),

V(sat(T)) = {(x.y, u,v) € C* | xy = L,uy +v = 0}.

V(T) and V(sat(T))

e Given ideals I, J C Q[xy, ..., Xx,], we have

V(I)={xeC"|f(x)=0forall fel}
V(InJ)= V() u V().

@ Since sat(T) = (uy +v,xy — 1),
V(sat(T)) = {(x,y.u,v) € C* | xy = Luy +v = 0},
@ Since (T) =(uy +v,xy —1)N{(u,v),

V(T) = V(sat(T)) U {(x,y,u,v) € C* | u=0,v =0}.

V(T) and V(sat(T))

e Given ideals I, J C Q[xy, ..., Xx,], we have

V(I)={xeC"|f(x)=0forall fel}
V(InJ)= V() u V().

o Since sat(T) = (uy + v,xy — 1),

V(sat(T)) = {(x,y,u,v) €C* | xy =1L,uy + v =0}.
o Since (T) = (uy +v,xy — 1) N {u,v),

V(T) = V(sat(T)) U {(x,y,u,v) € C* | u=0,v =0}.

e 0 =(0,0,0,0) € V(T), but O ¢ V(sat(T)).

A Remark

@ A straightforward generalization of primitivity is not enough.
e Consider T = {t; = uy + v,to = vx + u}. Then

o ty is primitive over k[u, v];
e ty is primitive over k[u, v, y].

e However, sat(T) is strictly larger than (T).

The Question

o Proposition: f = agx? + -+ ag € A[x] is primitive iff

where A is a UFD.

@ Restate this proposition as: For each f € k[xq, ..., Xs]

sat(f) = (f) <= f is primitive in its main variable.

@ When does (T) equal sat(T)? Primitive regular chains?

Example

Consider F; = x>+ y+1and F; = x + y? + 1 in k[x,y]. The
common solution of F; and F» can be encoded by a triangular set

Ax) = x*+2x24+x+2
B(x,y) = y+x*+1.

@ A(x) is the resultant of F; and F, in y,
@ B(x,y) is the gcd of F; and F, modulo the relation A(x) = 0.

4

Structural formulas for DFT matrices

Factorization of DF'T matrices

Most FFTs (Cooley-Tukey, Stockham, etc.) can be derived from
DFT,q = (DFT, ® lg)Dp o(lp ® DFT) LY (2)

where D, 4 is a diagonal matrix of twiddle factors and Lb? is a
stride permutation matrix.

(DFT2 ® l4) D2 4(lh @ DFT4)LS

DFTg =
8 { (DFT4 ® h)Dyo(ly @ DFT,)L8

Bivariate Case

@ Compute the degree bound m = 2¢ with
deg, resultant(P, Q,y) < m.
@ Evaluate P, Qat x=w/ for j=0---m —1,
P = Ipt1 ® DET%(P) and @) = g1 ® DFT%(Q),

with a well-chosen m-primitive root of unity w.

© For each evaluation (P}, Q;), compute
R; = subres(P;j, Qj, y).

Q Theset R ={Ry,...,Rm—1} is called an scube of P, Q iny.

Polynomial Subresultant Chain

Setting

® P,Q € Zplxi,...,xn,y] with deg(P,y) > q = deg(Q,y) >0
@ the subresultant chain of P, @ is a polynomial sequence

subres(P, Q,Y) = (Sq—la oy S, 50)7

computed by a subresultant chain algorithm,

@ The specialization property,
m(subres;(P, Q,y)) = subres;(w(P), 7(Q), y),

if deg(m(P),y) = deg(P, y), and deg(7(Q), y) = deg(Q, y)
where 7 : Zp[x1, ..., Xn] = Zp[x1,...,Xq] is a ring
homomorphism,

Subresultants and Regular GCD

On the left, P and @ have five nonzero subresultants.

P P
Q=257 - Q=25
Se B ——CT

Ss

S Sy

Sa L — Sy

— S S

On the right, P and Q have four nonzero subresultants modulo
sat(T). Our algorithm says that S; is a regular GCD of P, Q
modulo sat(T) if init(S1), init(Sa4) are regular modulo sat(T).

