
Algorithmic Contributions to the Theory of
Regular Chains

Wei PAN

January 25th, 2011

Solving a Polynomial System

Given a polynomial system in Q[x , y , z]8<: f1 = x2y − 2 yz + 1,
f2 = xy2 − z2 + 2 x ,
f3 = y2z − x2 + 5,

its lexicographic Gröbner basis with x < y < z is

G =

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

−1 + 40800 x + 60 x2 − 48320 x3 − 914 x4 + 20832 x5 + 2440 x6−
3840 x7 − 1652 x8 + 256 x9 + 400 x10 + 25 x11 − 32 x12 − 10 x13 + x15,

14381563508743348530 + · · ·+ 22275725783443030880 x3+
17337962129339576800 x4 + · · ·+ 678653188817311360 x7+
417888194856743705 x9 + · · ·+ 1295293069959120 x14+
1438088726195281921 y ,

73368693579709120 + · · ·+ 4519595559439694016 x7+
446923318749103260 x8 + · · ·+ 27806316011036620 x12+
7748578966043840 x13 − 5388716836938020 x14+
1438088726195281921 z

length(G) = 957.

Solving a Polynomial System

Given a polynomial system in Q[x , y , z]8<: f1 = x2y − 2 yz + 1,
f2 = xy2 − z2 + 2 x ,
f3 = y2z − x2 + 5,

a triangular decomposition with x < y < z is

T =

8>>>><>>>>:
t1 = −1 + 40800 x + 60 x2 − 48320 x3 − 914 x4 + 20832 x5 + 2440 x6−

3840 x7 − 1652 x8 + 256 x9 + 400 x10 + 25 x11 − 32 x12 − 10 x13 + x15

t2 = 40− 408 x2 + 240 x4 + x5 − 32 x6 − 10 x7 + 2 x9+`
x7 − 80 x2 + 24 x4 + 4

´
y

t3 = 2 yz − x2y − 1.

length(T) = 286.

Notations

mvar(t1) = x , mvar(t2) = y , mvar(t3) = z .
init(t1) = 1, init(t2) = x7 − 80 x2 + 24 x4 + 4, init(t3) = 2y .

Key References

Gröbner basis Bruno Buchberber in 1960’s

Characteristic set Joseph Fels Ritt in the 1930’s and Wen
Tsun Wu in the 1980’s

Regular chain Michael Kalkbrener and Normal ascending chain
Lu Yang & Jingzhong Zhang in 1990’s.

Theory unification by Philippe Aubry, Daniel Lazard & Marc
Moreno Maza in 1999.

Triangular decomposition algorithms: (Dongming Wang
1993-1998-2000) (M. Kalkbrener 1991) (Daniel Lazard 1992)
(M. Moreno Maza 2000) (Xavier Dahan, M. Moreno Maza,
Éric Schost, Yuzhen Xie 2005) (Changbo Chen & M. Moreno
Maza 2010).

Software: The RegularChains library in Maple.

Contributions of this Thesis

Better understanding of the theory of regular chains:

a notion of primitivity for regular chains and
efficient criterion to remove redundant components.

Better algorithm for computing regular GCDs:

enhanced theoretical foundation of the regular GCDs
proposed a bottom-up algorithm which permits the use of fast
polynomial arithmetic and modular methods.

Parallelization by means of GPU computing:

efficient fast Fourier transform over finite fields
efficient subroutines for computing subresultants by values
compute resultants faster and solve bivariate systems faster

Contributions of this Thesis

Better understanding of the theory of regular chains:

a notion of primitivity for regular chains and
efficient criterion to remove redundant components.

Better algorithm for computing regular GCDs:

enhanced theoretical foundation of the regular GCDs
proposed a bottom-up algorithm which permits the use of fast
polynomial arithmetic and modular methods.

Parallelization by means of GPU computing:

efficient fast Fourier transform over finite fields
efficient subroutines for computing subresultants by values
compute resultants faster and solve bivariate systems faster

Contributions of this Thesis

Better understanding of the theory of regular chains:

a notion of primitivity for regular chains and
efficient criterion to remove redundant components.

Better algorithm for computing regular GCDs:

enhanced theoretical foundation of the regular GCDs
proposed a bottom-up algorithm which permits the use of fast
polynomial arithmetic and modular methods.

Parallelization by means of GPU computing:

efficient fast Fourier transform over finite fields
efficient subroutines for computing subresultants by values
compute resultants faster and solve bivariate systems faster

References for the Thesis

When does 〈T 〉 equal sat(T)? (with François Lemaire, Marc
Moreno Maza, and Yuzhen Xie), Journal of Symbolic
Computation, accepted.

Computations modulo regular chains (with Xin Li, Marc
Moreno Maza), Proceedings of ISSAC 2009.

Fast polynomial multiplication on a GPU (with Marc Moreno
Maza), High Performance Computing Symposium 2010,
Journal of Physics: Conference Series 256.

Solving bivariate polynomial systems on a GPU (with Marc
Moreno Maza), submitted.

Regularity

Let A be a commutative ring.

Element x ∈ A is regular iff x y = 0 implies y = 0.

Example

Consider A = Z/12Z = {0̄, 1̄, . . . , 1̄1}. Regular elements are

{1̄, 5̄, 7̄, 1̄1},

and zero-divisors are

{2̄, 3̄, 4̄, 6̄, 8̄, 9̄, 1̄0}.

Regular Chains and Saturated Ideals

Let T = (t1(x1), . . . , ti (x1, . . . , xi), . . .) ⊂ k[x1 < . . . < xn] be a
triangular set.

The saturated ideal sat(T) of a triangular set T is

sat(T) = 〈T 〉 : h∞

= {f ∈ k[x1, . . . , xn] | he f ∈ 〈T 〉 for some e ≥ 0},

where h is the product of initials of ti
′s.

Regular chain (recursive)

(1) if T = ∅, then it is a regular chain and sat(T) = 〈0〉;
(2) if T = C ∪ {p}, then T is a regular chain, iff C is a regular

chain and init(p) is regular modulo sat(C).

An Example

In k[x1 < x2 < x3 < x4], let

U = {x2 x3 + x1} and T = {x2 x3 + x1, x1 x4 + x2}.

We have

sat(U) = 〈x2 x3 + x1〉 : x∞2 = 〈x2 x3 + x1〉,

and x1 is regular modulo sat(U). Hence T is a regular chain.

The saturated ideal sat(T) may be strictly larger than 〈T 〉.

〈T 〉 = 〈x2 x3 + x1, x4 x3 − 1〉 ∩ 〈x1, x2〉,
sat(T) = 〈x2 x3 + x1, x4 x3 − 1〉.

An Example

In k[x1 < x2 < x3 < x4], let

U = {x2 x3 + x1} and T = {x2 x3 + x1, x1 x4 + x2}.

We have

sat(U) = 〈x2 x3 + x1〉 : x∞2 = 〈x2 x3 + x1〉,

and x1 is regular modulo sat(U). Hence T is a regular chain.

The saturated ideal sat(T) may be strictly larger than 〈T 〉.

〈T 〉 = 〈x2 x3 + x1, x4 x3 − 1〉 ∩ 〈x1, x2〉,
sat(T) = 〈x2 x3 + x1, x4 x3 − 1〉.

Primitive Regular Chains

Inclusion Test for Regular Chains

The inclusion test problem

Does sat(T) ⊆ sat(U) hold?

is hard to answer, which causes certain redundancy in the
output of triangular decomposition algorithms in practice.

If a system of generators of sat(T) is known, then the
inclusion test reduces to the ideal membership problem.

Our objectives are, in positive dimension,

characterizing the T ’s for which sat(T) = 〈T 〉 holds;
deciding sat(T) = 〈T 〉 without Gröbner basis computation.

Main Theorem

Primitivity

Let f ∈ A[x] be a univariateof degree d > 0. Then

f = lc(f)xd + tail(f)

is weakly primitive iff

lc(f) is invertible or,
tail(f) is regular modulo 〈lc(f)〉.

Let T = C ∪ {p} be a regular chain. Then T is primitive if

C is primitive and
p is a weakly primitive polynomial regarded as a univariate
polynomial in its main variable over k[x]/〈C 〉.

Theorem

Regular chain T is primitive iff 〈T 〉 = sat(T) holds.

Main Theorem

Primitivity

Let f ∈ A[x] be a univariateof degree d > 0. Then

f = lc(f)xd + tail(f)

is weakly primitive iff

lc(f) is invertible or,
tail(f) is regular modulo 〈lc(f)〉.

Let T = C ∪ {p} be a regular chain. Then T is primitive if

C is primitive and
p is a weakly primitive polynomial regarded as a univariate
polynomial in its main variable over k[x]/〈C 〉.

Theorem

Regular chain T is primitive iff 〈T 〉 = sat(T) holds.

Main Theorem

Primitivity

Let f ∈ A[x] be a univariateof degree d > 0. Then

f = lc(f)xd + tail(f)

is weakly primitive iff

lc(f) is invertible or,
tail(f) is regular modulo 〈lc(f)〉.

Let T = C ∪ {p} be a regular chain. Then T is primitive if

C is primitive and
p is a weakly primitive polynomial regarded as a univariate
polynomial in its main variable over k[x]/〈C 〉.

Theorem

Regular chain T is primitive iff 〈T 〉 = sat(T) holds.

Application to the Inclusion Test

There is an efficient routine to check if a regular chain T is
primitive. Implemented as a command IsPrimitive of the
RegularChain library in Maple.

The inclusion sat(T) ⊆ sat(U) holds iff 〈T 〉 ⊆ sat(U)
holds, provided that T is primitive. The latter can be
efficiently checked by pseudo-division computations.

This new criterion together with the previous criteria covers
most cases in practice.

Regular GCD and a Bottom-up Algorithm

Subresultant and GCD

Let x < y and{
F = 3y 4 + 6y 3 − yx2 − 2x2 + 2y + 4,
G = y 3x2 − 2− 2y 3 + x2

Subresultants
S2 = (−x6 + 3 x4 − 4)y + 6 x4 − 2 x6 − 8,
S1 =

(
x10 − 4 x8 + x6 + 10 x4 − 4 x2 − 8

)
y + 2 x10

−8 x8 + 2 x6 + 20 x4 − 8 x2 − 16,
S0 = −7 x14 + 35 x12 − 21 x10 − 119 x8 + 112 x6

+168 x4 − 112 x2 − 112.

S0 has two squarefree factors A1 = x2 + 1 and A2 = x2 − 2.

{(A1, S1), (A2,F)} is a triangular decomposition of F and G .

Regular GCD

Let P,Q ∈ A[y] be non-constant with regular leading
coefficients.

G is a regular GCD of P,Q if we have:

lc(G , y) is regular in A,
G ∈ 〈P,Q〉 in A[y],
deg(G , y) > 0 ⇒ prem(P,G , y) = prem(Q,G , y) = 0.

In practice A = k[x1, . . . , xn]/sat(T) for a regular chain T .

Such a regular GCD may not exist. However one can compute
Ii = sat(Ti) and non-zero polynomials Gi such that

√
I = ∩e

i=1

√
Ii and Gi regular GCD of P,Q mod Ii

Regular GCD

Let P,Q ∈ A[y] be non-constant with regular leading
coefficients.

G is a regular GCD of P,Q if we have:

lc(G , y) is regular in A,
G ∈ 〈P,Q〉 in A[y],
deg(G , y) > 0 ⇒ prem(P,G , y) = prem(Q,G , y) = 0.

In practice A = k[x1, . . . , xn]/sat(T) for a regular chain T .

Such a regular GCD may not exist. However one can compute
Ii = sat(Ti) and non-zero polynomials Gi such that

√
I = ∩e

i=1

√
Ii and Gi regular GCD of P,Q mod Ii

Related Work

This regular GCD was proposed in (Moreno Maza 2000)

In previous work (Kalkbrener 1993) and (Rioboo & Moreno
Maza 1995), other regular GCDs modulo regular chains were
introduced, but with limitations.

In other work (Wang 2000), (Yang etc. 1995) and (Jean Della
Dora, Claire Dicrescenzo, Dominique Duval 85), related
techniques are used to construct triangular decompositions.

Regular GCDs modulo regular chains generalize GCDs over
towers of field extensions for which specialized algorithms are
available, (van Hoeij and Monagan 2002 & 2004).

The complexity of computing regular GCDs (Dahan, Moreno
Maza, Schost, and Xie)

Main Theorem

Let P,Q ∈ k[x1, . . . , xn][y] and S0, . . . ,Sq−1 be their subresultants
in y , and T ⊂ k[x1, . . . , xn] be a regular chain.

Sd is called a candidate regular GCD of P,Q if the following hold

1 Si ∈ sat(T) for all 0 ≤ i < d

2 Sd /∈ sat(T)

3 init(Sd) is regular modulo sat(T)

Theorem

Candidate Sd is a regular GCD of P,Q w.r.t T , if for each ` > d
either condition holds

1 coeff(S`, y
`) ∈ sat(T),

2 coeff(S`, y
`) is regular modulo sat(T).

Implications of the Main Theorem

Separate the computation of regular GCDs and that of
subresultants

reduce the algebraic complexity by recycling subresultants
reduce the memory consumption

Permit to use fast polynomial arithmetic by pushing
computations to the ground field

represent subresultants by values (FFT evaluations)
interpolate subresultants only needed (FFT interpolations)
exposure the parallelism

Implications of the Main Theorem

Separate the computation of regular GCDs and that of
subresultants

reduce the algebraic complexity by recycling subresultants
reduce the memory consumption

Permit to use fast polynomial arithmetic by pushing
computations to the ground field

represent subresultants by values (FFT evaluations)
interpolate subresultants only needed (FFT interpolations)
exposure the parallelism

The Complexity of the Regular GCD Algorithm

Let di = max(deg(P, xi), deg(Q, xi))

dn+1 = deg(Q, y) and Dk = d1 · · · dk

Assume that T zero-dimensional prime ideal

Corollary

If d = d1 = · · · = dn+1 ≥ 2, then

GCD(d1, . . . , dn, dn+1) ∈ O∼(n22nd2n+2).

Theorem

GCD(d1, . . . , dn, dn+1) ∈ O∼(n2 2n)dn+2
n+1 Dn+O∼(2n)

n∑
i=2

(
i2 d i

i Di

)
.

Fast Fourier Transform on GPUs

Fast Fourier Transform on GPUs

Background

FFTs over finite fields is the starting point for asymptotically
fast algorithms in symbolic computation.

In the literature, most FFTs on GPUs are for complex
numbers, such as NVIDIA CUFFT library.

Main Results

Our Stockham FFT implementation is highly efficient. Even
though the ratio between the algebraic complexity and the
output size is Θ(log n), it still achieves a reasonable amount
speedup.

Our CUDA kernels can be extended to realize a list of 1D
FFTs, one of the building blocks for computing subresultants.

Bandwidth for CPUs and GPUs

Testing in GB/s

log2 n memset Main Mem to GPU GPU to Main Mem GPU Kernel
23 1.56 1.33 1.52 61.6
24 1.56 1.34 1.52 69.9
25 1.39 1.35 1.53 75.0
26 1.39 1.28 1.50 77.4
27 1.43 1.35 1.49 79.0

“memset” for CPU to main memory

“cudaMemcpy” between main memory and GPU memory

Intel Core 2 Quad Q9400 @ 2.66GHz, 6GB memory, memory
interface width 128 bits

GeForce GTX 285, 1GB global memory, 30× 8 cores, memory
interface width 512 bits

Discrete Fourier Transform (DFT)

Definition

Given a primitive n-th root of unity ω (i.e. ωn/2 = −1), and

f (t) = x0 + x1t + · · ·+ xn−1tn−1,

DFTω
n (f) is y = (y0, . . . , yn−1) with yk = f (ωk) for 0 ≤ k < n. As

a matrix-vector product, it is

y = DFTn x, DFTn = [ωk`]0≤k, `<n. (1)

Example {
y0 = x0 + x1

y1 = x0 − x1
⇐⇒

[
y0

y1

]
=

[
1 1
1 −1

] [
x0

x1

]
That is, DFT2 =

[
1 1
1 −1

]
.

Kronecker Product

The Kronecker (or tensor) product of A and B is

A⊗ B = [ak`B]k,` with A = [ak`]k,`

For example, let

A =

[
1 2
3 4

]
and I =

[
1 0
0 1

]
.

Then their tensor products are

I ⊗ A =

1 2 0 0
3 4 0 0
0 0 1 2
0 0 3 4

 and A⊗ I =

1 0 2 0
0 1 0 2
3 0 4 0
0 3 0 4

 .

Extract Parallelism from Structural Formulas

In ⊗ A: block parallelism

I4 ⊗DFT2 =

1 1
1 −1

1 1
1 −1

1 1
1 −1

1 1
1 −1

Extract Parallelism from Structural Formulas

A⊗ In: vector parallelism

DFT2 ⊗ I4 =

1
1

1
1

1
1

1
1

1
1

1
1

−1
−1

−1
−1

Stockham FFT

DFT2k =
k−1∏
i=0

(DFT2 ⊗ I2k−1)︸ ︷︷ ︸
butterfly

(D2,2k−i−1 ⊗ I2i)︸ ︷︷ ︸
twiddling

(L2k−i

2 ⊗ I2i)︸ ︷︷ ︸
reordering

void stockham_dev(int *X_d, int n, int k, const int *W_d, int p)

{

int *Y_d;

cudaMalloc((void **)&Y_d, sizeof(int) * n);

butterfly_dev(Y_d, X_d, k, p);

for (int i = k - 2; i >= 0; --i) {

stride_transpose2_dev(X_d, Y_d, k, i);

stride_twiddle2_dev(X_d, W_d, k, i, p);

butterfly_dev(Y_d, X_d, k, p);

}

cudaMemcpy(X_d, Y_d, sizeof(int)*n, cudaMemcpyDeviceToDevice);

cudaFree(Y_d);

}

Stockham FFT

DFT2k =
k−1∏
i=0

(DFT2 ⊗ I2k−1)︸ ︷︷ ︸
butterfly

(D2,2k−i−1 ⊗ I2i)︸ ︷︷ ︸
twiddling

(L2k−i

2 ⊗ I2i)︸ ︷︷ ︸
reordering

__global__ void butterfly_ker(int *Y, const int *X, int k, int p)

{

int bid = blockIdx.y * gridDim.x + blockIdx.x;

int halfn = ((int)1 << (k - 1));

const int *A = X + bid * blockDim.x;

int *B = Y + bid * blockDim.x;

int m = threadIdx.x + halfn;

B[threadIdx.x] = add_mod(A[threadIdx.x], A[m], p);

B[m] = sub_mod(A[threadIdx.x], A[m], p);

}

Implementation of Stockham FFT

Cooley-Tukey FFT

DFT2k =

(
k∏

i=1

(I2i−1 ⊗DFT2 ⊗ I2k−i) Tn,i

)
Rn

with the twiddle factor matrix Tn,i = I2i−1 ⊗ D2,2k−i and the
bit-reversal permutation matrix

Rn = (In/2 ⊗ L2
2)(In/22 ⊗ L4

2) · · · (I1 ⊗ Ln
2).

Implementation of Cooley-Tukey FFT

The problem comes from the read to the “scattered” powers

1, ω2i
, (ω2i

)2, . . . , (ω2i
)2k−i−1

Implementation of Cooley-Tukey FFT

Pre-compute “scattered” powers for each i

1, ω2i
, (ω2i

)2, . . . , (ω2i
)2k−i−1

Timing FFT in Milliseconds

e modpn Cooley-Tukey C-T + Mem Stockham S + Mem
time ratio time ratio time ratio time ratio

12 1 1 1.0 1 1.0 2 0.5 2 0.5
13 1 2 0.5 2 0.5 2 0.5 3 0.3
14 3 1 3.0 2 1.5 2 1.5 3 1.0
15 4 2 2.0 2 2.0 3 2.0 3 1.3
16 10 3 3.3 3 3.3 3 3.3 4 3.3
17 16 4 4.0 5 3.2 3 5.3 5 3.2
18 37 6 6.2 9 4.1 4 9.3 7 5.3
19 71 11 6.5 15 6.5 6 11.8 10 7.1
20 174 22 7.9 28 6.2 9 19.3 16 10.9
21 470 44 10.7 56 8.4 16 29.4 28 16.8
22 997 83 12.0 105 9.5 29 34.4 52 19.2
23 2070 165 12.5 210 9.9 56 37.0 101 20.5
24 4194 330 12.7 418 10.0 113 37.0 201 20.9
25 8611 667 12.9 842 10.2 230 37.4 405 21.2
26 17617 1338 13.2 1686 10.4 473 37.2 822 21.4

The GPU is GTX 285.

Summary

The Stockham FFT achieves a speedup factor of 21 for large
FFT degrees, comparing to the modpn serial implementation.

The data transfer between GPU memory and main memory is
approximately 42 %.

Computing Subresultants on the GPU

Subresultant Chain Computation

Space Complexity

Assume that

(a) max(deg(P, xi), deg(Q, xi)) ≤ di , for 1 ≤ i ≤ n,

(b) deg(P, y) = dn+2 ≥ deg(Q, y) = dn+1 > 0.

Theorem

The size of the evaluation cube of P and Q in y is

mdn+1(1 + dn+1)

2
,

where m is the smallest power of 2 such that

m > (dn+2 + dn+1)

d1 +
n∑

i=2

di

i−1∏
j=1

(dn+2dj + dn+1dj + 1)

 .

Space Complexity

Corollary

When dn+2 = dn+1 = · · · = d1 = d, the FFT size is Θ(2nd2n) and
the size of the evaluation cube is Θ(2nd2n+2).

n d FFT Degree Cube Size n d FFT Degree Cube Size
1 80 14 203MB 3 6 19 42MB
1 100 15 632MB 3 8 22 576MB
1 120 15 908MB 3 10 23 1760MB
1 140 16 2468MB 4 5 23 480MB
2 15 18 120MB 4 6 25 2688MB
2 20 20 840MB 5 3 22 96MB
2 25 21 2600MB 5 4 26 2560MB

Algebraic Complexity

Theorem

The number of field operations in Zp for computing the evaluation
cube of P and Q in y is

O(m log m(dn+1 + dn+2 + 2) + m(d2
n+1 + d2

n+2 + dn+1dn+2))

where m is the smallest power of 2 such that

m > (dn+2 + dn+1)

d1 +
n∑

i=2

di

i−1∏
j=1

(dn+2dj + dn+1dj + 1)

 .

When dn+2 = dn+1 = · · · = d1 = d , the cost to build the FFT
based evaluation cube is O(2nd2n+2).

Subresultant Chain by Evaluation/Interpolation

Different Strategies

FFT based technique

Fourier prime limitation
valid grid
translation

subproduct tree technique

FFT scube on the GPU

Coarse-grained construction

Fine-grained construction

Brown’s Subresultant Chain Algorithm

Input : Poly. P,Q ∈ k[y] s.t. deg(P) ≥ deg(Q) > 0
Output : The subresultant chain of P and Q

1 Si ← 0 for 0 ≤ i < deg(Q);
2 B ← prem(P,−Q, y), A← Q, α← deg(P)− deg(Q);
3 while B 6= 0 do
4 d ← deg(A), e ← deg(B), δ ← d − e;
5 Sd−1 ← B;

6 Se ← lc(A)α(1−δ) lc(B)δ−1 B;
7 if e = 0 then break;

8 B ← lc(A)−αδ−1 prem(A,−B, y), A← Se , α← 1;

9 return Si for 0 ≤ i < deg(Q);

Approach (I) : Coarse-grained Implementation

Main Idea

Each CUDA thread runs a univariate Brown’s subresultant
algorithm.

Remarks

Simple and always works.

The number of threads is bounded by the FFT size m, which
is Θ(d2) for a random dense square system of partial degree d .

Profiling Coarse-grained Implementation

Approach (II) : Fine-grained Implementation

Main Idea

Compute subresultants level by level and parallelize the
pseudo-division in the Brown’s subresultant algorithm.

Remarks

Complicate.

The total number of threads is Θ(d3).

Require the following further assumption:
The degree sequences of all images (Pj ,Qj) are the same.

Profiling Fine-grained Implementation

Computing Resultants

d t0 t1 t1/t0

30 0.23 0.29 1.3
40 0.23 0.43 1.9
50 0.27 1.14 4.2
60 0.27 1.53 5.7
70 0.31 3.95 12.7
80 0.32 4.88 15.3
90 0.35 5.95 17.0

100 0.50 19.10 38.2
110 0.53 17.89 33.8
120 0.58 19.72 34.0

Bivariate dense polynomials of
total degree d .

d t0 t1 t1/t0

8 0.23 0.76 3.3
9 0.24 0.85 3.5

10 0.25 0.98 3.9
11 0.24 1.10 4.6
12 0.30 4.96 16.5
13 0.31 5.52 17.8
14 0.32 6.07 19.0
15 0.78 8.95 11.5
16 0.65 31.65 48.7
17 0.66 34.55 52.3
18 3.46 47.54 13.7
19 0.73 51.04 69.9
20 0.75 43.12 57.5

Trivariate dense polynomials of
total degree d .

t0, GPU fft code

t1, CPU fft code

Nvidia Tesla C2050

Preconditioning

In our implementation, linear translations are used to enlarge the
feasibility of FFT based evaluations.

Theorem

Let m be the FFT size and let f be a polynomial of degree at most
p

2m . Then the number of valid linear translations φa : x 7→ x + a
for f is at least p

2 .

An Application to Solving Bivariate Systems

Generic Bivariate Solver

Algorithm 1: ModularGenericSolve2(F1,F2)

Compute the subresultant chain S of F1, F2 in y by value;
R ← sqrfree(S0), result ← ∅, i ← 1;
while R /∈ k and i ≤ deg(F2, y) do

while i ≤ deg(F2, y) do
Let Sj be the regular subresultant with
i ≤ j ≤ deg(F2, y) being minimal;
if lc(Sj , y)≡ 0 mod R then i ← i + 1;
else break;

if i > deg(F2, y) then return result ∪ {(R,F1)};
G ← gcd(R, lc(Sj , y));
if G ∈ k then return result ∪ {(R, Sj)};
result ← result ∪ {(R quo G , Sj)}, R ← G , i ← j + 1;

return result;

Bivariate Solver

Bivariate Solver on the CPU

Bivariate Solver on the GPU

Solving Bivariate Systems in Seconds

d t0(gpu) t1(total) t2 (cpu) t3 (total) t2/t0 t3/t1

30 0.25 0.35 0.14 0.25 0.6 0.7
40 0.25 0.46 0.42 0.64 1.7 1.4
50 0.28 0.67 1.14 1.56 4.1 2.3
60 0.29 0.88 1.54 2.20 5.3 2.5
70 0.31 1.20 3.94 4.94 12.7 4.1
80 0.32 1.42 4.84 6.06 15.1 4.3
90 0.33 1.80 5.94 7.54 18.0 4.2

100 0.48 2.56 14.23 16.66 29.7 6.5
110 0.52 2.93 16.78 19.58 32.1 6.7
120 0.55 3.80 24.41 28.60 44.4 7.5

d : total degree of the input polynomial

t0 : GPU FFT based scube construction

t1 : total time for solving with GPU code

t2 : CPU FFT base scube construction

t3 : total time for solving without CPU code

Summary

For input of degree d , generic bivariate system solver has two
major components

the subresultant chain construction: O(d4),
the univariate gcd computations: O(d2+ε).

where d is the total degree of the input polynomials.

The subresultant chain construction has been improved by a
factor of (up to) 44 on the GPU.

The current dominate part is the univariate gcd computation.

Acknowledgments

I am deeply grateful to my supervisor, Marc Moreno Maza for
his support, guidance, ideas and encouragement during the
past four years. Without his help, this thesis would not exist.

I want to thank my colleagues François Lemaire, Yuzhen Xie,
Xin Li, Oleg Golubitsky, Changbo Chen, Sardar Anisul Haque,
Liyun Li, Paul Vrbik, Rong Xiao for providing me help and for
sharing their knowledge.

I want to thank my colleagues at Maplesoft, in particular
Jürgen Gerhard and Clare So, for our cooperation on the
RegularChains and modpn libraries and for their help during
my internship at Maplesoft.

Many thanks to the members of my committee Mark Daley,
Jan Minac, Jean-Louis Roch and Roberto Solis-Oba for their
reading of this thesis and comments.

Many thanks to all professors and students at ORCCA, where
I spent this wonderful period of my life.

Specifications of GPUs

GPU GTX 285 Tesla C2050

Compute Capability 1.3 2.0
Multiprocessors 30 14

Cores 240 448
Clock Rate 1.15G GHz 1.15 GHz

Memory Bandwidth 159 GB/sec 144 GB/sec
Single MADD 1062.7 GFLOPS ??
Double FMUL 1030.4 GFLOPS 515.2 GFLOPS

Double Floating Point partially fully
Global Memory 1GB 3GB
Shared Memory 16KB 48KB or 16KB

L1 Cache none 48KB or 16KB
L2 Cache none 768KB

Concurrent Kernels no up to 16

The GFLOPS of our CPU Intel Core Quad Q9400 is 7.48.

Triangular Decomposition in Positive Dimension

Given a polynomial system F consisting of two polynomials
with variable ordering x > y > a > b > c > d > e > f

F :

∣∣∣∣ a x + c y − e = 0
b x + d y − f = 0

A triangular decomposition algorithm transforms F into a set
{T} of regular chains

T :

∣∣∣∣ (a d − b c) y + b e − a f
b x + d y − f

The solution set is preserved during the transformation, i.e.

V (sat(T)) = V (F).

Triangular Decomposition in Positive Dimension

Given a polynomial system F consisting of two polynomials
with variable ordering x > y > a > b > c > d > e > f

F :

∣∣∣∣ a x + c y − e = 0
b x + d y − f = 0

A triangular decomposition algorithm transforms F into a set
{T} of regular chains

T :

∣∣∣∣ (a d − b c) y + b e − a f
b x + d y − f

The solution set is preserved during the transformation, i.e.

V (sat(T)) = V (F).

Two FFT formulas

Cooley-Tukey FFT

DFT2k =

(
k∏

i=1

(I2i−1 ⊗DFT2 ⊗ I2k−i) Tn,i

)
Rn

with the twiddle factor matrix Tn,i = I2i−1 ⊗ D2,2k−i and the
bit-reversal permutation matrix

Rn = (In/2 ⊗ L2
2)(In/22 ⊗ L4

2) · · · (I1 ⊗ Ln
2).

Stockham FFT

DFT2k =
k−1∏
i=0

(DFT2 ⊗ I2k−1)︸ ︷︷ ︸
butterfly

(D2,2k−i−1 ⊗ I2i)︸ ︷︷ ︸
twiddling

(L2k−i

2 ⊗ I2i)︸ ︷︷ ︸
reordering

Break pseudo-divisions

Example

Let f = a3x3 + a2x2 + a1x + a0 and g = b2x2 + b1x + b0. To
obtain the pseudo-remainder prem(f ,−g , x) of f and g , we
compute

1 h2 = −b2f + a3xg = c2x2 + c1x + c0,

2 h1 = −b2h2 + c2g = d1x + b0.

Alternatively, we compute

(S1) c2 =

∣∣∣∣a3 a2

b2 b1

∣∣∣∣ c1 =

∣∣∣∣a3 a1

b2 0

∣∣∣∣ c0 =

∣∣∣∣a3 a0

b2 0

∣∣∣∣
(S2) d1 =

∣∣∣∣c2 c1

b2 b1

∣∣∣∣ d0 =

∣∣∣∣c2 c0

b2 b0

∣∣∣∣
One can do a list of pseudo-divisions with the same input degrees.

Univariate polynomial multiplication over finite fields

Figure: FFT-based polynomial multiplication on GPU and CPU

Generalized CUDA kernels

To realize bivariate FFTs, we implemented some more CUDA
kernels:

Im ⊗DFT2k

(Im ⊗DFT2 ⊗ I2k−1), list butterfly kernel

(Im ⊗ D2,2k−i−1 ⊗ I2i), list twiddling kernel

(Im ⊗ L2k−i

2 ⊗ I2i), list reordering kernel

DFT2k ⊗ Im

(DFT2 ⊗ I2k−1 ⊗ Im), ext butterfly kernel

(D2,2k−i−1 ⊗ I2i ⊗ Im), ext twiddling kernel

(L2k−i

2 ⊗ I2i ⊗ Im), ext reordering kernel

List of bivariate FFTs Iq ⊗DFTm×n can be derived as well.

Bivariate multiplication

nx(ny) Kronecker + modpn fft modpn 2d fft fftmul2
100 0.020 0.020 0.040
200 0.080 0.080 0.040
300 0.440 0.420 0.070
400 0.500 0.530 0.070
600 2.690 1.980 0.150
800 2.430 1.970 0.140

1000 2.950 2.430 0.160
1200 11.950 10.220 0.460
1400 10.810 8.150 0.470
1600 10.330 8.120 0.490
1800 10.260 8.130 0.500
2000 11.970 9.930 0.520
2200 45.300 35.470 1.780
2400 53.570 44.430 1.820

Figure: Bivariate polynomial multiplication with random dense input
polynomials, timing in seconds. The data transfer between device and
host is counted. The threshold is 100∼200 for this machine and GPU.

V (T) and V (sat(T))

Given ideals I , J ⊆ Q[x1, . . . , xn], we have

V (I) = {x ∈ Cn | f (x) = 0 for all f ∈ I}
V (I ∩ J) = V (I) ∪ V (J).

Since sat(T) = 〈u y + v , x y − 1〉,

V (sat(T)) = {(x , y , u, v) ∈ C4 | x y = 1, u y + v = 0}.

Since 〈T 〉 = 〈u y + v , x y − 1〉 ∩ 〈u, v〉,

V (T) = V (sat(T)) ∪ {(x , y , u, v) ∈ C4 | u = 0, v = 0}.

O = (0, 0, 0, 0) ∈ V (T), but O /∈ V (sat(T)).

V (T) and V (sat(T))

Given ideals I , J ⊆ Q[x1, . . . , xn], we have

V (I) = {x ∈ Cn | f (x) = 0 for all f ∈ I}
V (I ∩ J) = V (I) ∪ V (J).

Since sat(T) = 〈u y + v , x y − 1〉,

V (sat(T)) = {(x , y , u, v) ∈ C4 | x y = 1, u y + v = 0}.

Since 〈T 〉 = 〈u y + v , x y − 1〉 ∩ 〈u, v〉,

V (T) = V (sat(T)) ∪ {(x , y , u, v) ∈ C4 | u = 0, v = 0}.

O = (0, 0, 0, 0) ∈ V (T), but O /∈ V (sat(T)).

V (T) and V (sat(T))

Given ideals I , J ⊆ Q[x1, . . . , xn], we have

V (I) = {x ∈ Cn | f (x) = 0 for all f ∈ I}
V (I ∩ J) = V (I) ∪ V (J).

Since sat(T) = 〈u y + v , x y − 1〉,

V (sat(T)) = {(x , y , u, v) ∈ C4 | x y = 1, u y + v = 0}.

Since 〈T 〉 = 〈u y + v , x y − 1〉 ∩ 〈u, v〉,

V (T) = V (sat(T)) ∪ {(x , y , u, v) ∈ C4 | u = 0, v = 0}.

O = (0, 0, 0, 0) ∈ V (T), but O /∈ V (sat(T)).

V (T) and V (sat(T))

Given ideals I , J ⊆ Q[x1, . . . , xn], we have

V (I) = {x ∈ Cn | f (x) = 0 for all f ∈ I}
V (I ∩ J) = V (I) ∪ V (J).

Since sat(T) = 〈u y + v , x y − 1〉,

V (sat(T)) = {(x , y , u, v) ∈ C4 | x y = 1, u y + v = 0}.

Since 〈T 〉 = 〈u y + v , x y − 1〉 ∩ 〈u, v〉,

V (T) = V (sat(T)) ∪ {(x , y , u, v) ∈ C4 | u = 0, v = 0}.

O = (0, 0, 0, 0) ∈ V (T), but O /∈ V (sat(T)).

A Remark

A straightforward generalization of primitivity is not enough.

Consider T = {t1 = uy + v , t2 = vx + u}. Then

t1 is primitive over k[u, v];
t2 is primitive over k[u, v , y].

However, sat(T) is strictly larger than 〈T 〉.

The Question

Proposition: f = adxd + · · ·+ a0 ∈ A[x] is primitive iff

〈f 〉 : a∞d = 〈f 〉,

where A is a UFD.

Restate this proposition as: For each f ∈ k[x1, . . . , xn]

sat(f) = 〈f 〉 ⇐⇒ f is primitive in its main variable.

When does 〈T 〉 equal sat(T)? Primitive regular chains?

Example

Consider F1 = x2 + y + 1 and F2 = x + y 2 + 1 in k[x , y]. The
common solution of F1 and F2 can be encoded by a triangular set

A(x) = x4 + 2 x2 + x + 2
B(x , y) = y + x2 + 1.

A(x) is the resultant of F1 and F2 in y ,

B(x , y) is the gcd of F1 and F2 modulo the relation A(x) = 0.

Structural formulas for DFT matrices

Factorization of DFT matrices

Most FFTs (Cooley-Tukey, Stockham, etc.) can be derived from

DFTpq = (DFTp ⊗ Iq)Dp,q(Ip ⊗DFTq)Lpq
p (2)

where Dp,q is a diagonal matrix of twiddle factors and Lpq
p is a

stride permutation matrix.

Example

DFT8 =

{
(DFT2 ⊗ I4)D2,4(I2 ⊗DFT4)L8

2

(DFT4 ⊗ I2)D4,2(I4 ⊗DFT2)L8
4

Bivariate Case

1 Compute the degree bound m = 2` with

degx resultant(P,Q, y) < m.

2 Evaluate P, Q at x = ωj for j = 0 · · ·m − 1,

Pj = Ip+1 ⊗DFTω
m(P) and Qj = Iq+1 ⊗DFTω

m(Q),

with a well-chosen m-primitive root of unity ω.

3 For each evaluation (Pj ,Qj), compute

Rj = subres(Pj ,Qj , y).

4 The set R = {R0, . . . ,Rm−1} is called an scube of P,Q in y.

Polynomial Subresultant Chain

Setting

P,Q ∈ Zp[x1, . . . , xn, y] with deg(P, y) ≥ q = deg(Q, y) > 0

the subresultant chain of P, Q is a polynomial sequence

subres(P,Q, y) = (Sq−1, . . . ,S1,S0),

computed by a subresultant chain algorithm,

The specialization property,

π(subresj(P,Q, y)) = subresj(π(P), π(Q), y),

if deg(π(P), y) = deg(P, y), and deg(π(Q), y) = deg(Q, y)
where π : Zp[x1, . . . , xn]→ Zp[x1, . . . , xn] is a ring
homomorphism,

Subresultants and Regular GCD

On the left, P and Q have five nonzero subresultants.

On the right, P̄ and Q̄ have four nonzero subresultants modulo
sat(T). Our algorithm says that S1 is a regular GCD of P,Q
modulo sat(T) if init(S1), init(S4) are regular modulo sat(T).

