Hensel's Lemma and Weierstrass Preparation for UPoPS

Alex Brandt

Department of Computer Science University of Western Ontario, Canada

May 28, 2021

Outline

2 Weierstrass Preparation Theorem

3 Hensel's Lemma

Formal Power Series

- \blacksquare Let \mathbbm{K} be an algebraically closed field.
- Denote by K[[X₁,...,X_n]] the ring of formal power series with coefficients in K and with variables X₁,...,X_n.

 ↓ X^e = X₁^{e₁}...X_n<sup>e_n</sub>, e = (e₁,...,e_n), |e| = e₁ + ... + e_n

 </sup>
- $\begin{aligned} & \blacksquare \ \mathcal{M} = \{f \mid \operatorname{ord}(f) \ge 1\} \subset \mathbb{K}[[X_1, \dots, X_n]] \text{ is the only maximal ideal.} \\ & \sqcup \ \mathcal{M}^k = \{f \in \mathbb{K}[[X_1, \dots, X_n]] \mid \operatorname{ord}(f) \ge k\}. \\ & \sqcup \ f_{(k)} \in \mathcal{M}^k \smallsetminus \mathcal{M}^{k+1} \end{aligned}$

UPoPS

■ Denote by A[Y] the ring of univariate polynomials over power series (UPoPS) where, A = K[[X₁,...,X_n]].

For
$$f = \sum_{i=0}^{d} a_i Y^i$$
, for $a_i \in \mathbb{A}$, $\deg(f, Y) = d$.

- A UPoPS is known up to precision k if each of its power series coefficients are known up to precision k.

Outline

2 Weierstrass Preparation Theorem

3 Hensel's Lemma

A First Lemma

Lemma ("Lemma 4")

Let $f, g, h \in \mathbb{K}[[X_1, \ldots, X_n]]$ such that f = gh. Let $f_i = f_{(i)}$, $g_i = g_{(i)}$, $h_i = h_{(i)}$. If $f_0 = 0$ and $h_0 \neq 0$, then g_k is uniquely determined by f_1, \ldots, f_k and h_0, \ldots, h_{k-1}

Proof: Proceed by induction on k.

For k = 0, $f_0 = g_0 h_0 = 0$, $h_0 \neq 0$. Thus, $g_0 = 0$ and the statement holds.

Let k > 0, assuming hypothesis holds for k - 1. Expand $f = gh \mod \mathcal{M}^{k+1}$:

$$f_1 + f_2 + \dots + f_k = g_1 h_0 + (g_1 h_1 + g_2 h_0) + \dots + (g_1 h_{k-1} + \dots + g_{k-1} h_1 + g_k h_0)$$
$$\implies f_k = g_1 h_{k-1} + \dots + g_{k-1} h_1 + g_k h_0$$

recalling $h_0 \in \mathbb{K} \setminus \{0\}$, we have $g_k = \frac{1}{h_0} \left(f_k - g_1 h_{k-1} - \dots - g_{k-1} h_1 \right)$

WPT (1/3)

Theorem (Weierstrass Preparation Theorem)

Let $f = \sum_{i=0}^{d+m} a_i Y^i \in \mathbb{K}[[X_1, \ldots, X_n]][Y]$ be general of order d (i.e. d is smallest integer s.t. $a_d \notin \mathcal{M}$) and $0 \le m \in \mathbb{N}$. Assume that $f \notin 0 \mod \mathcal{M}[Y]$. Then, there exists a unique pair p, α satisfying the following:

$$f = p \alpha_{i}$$

- **2** α is an invertible element of $\mathbb{K}[[X_1, \ldots, X_n]][[Y]]$,
- $\blacksquare p$ is a monic polynomial of degree d,
- 4 writing $p = Y^d + b_{d-1}Y^{d-1} + \cdots + b_1Y + b_0$, we have $b_{d-1}, \dots, b_0 \in \mathcal{M}$.
- *Proof:* If n = 0, $f = \alpha Y^d$, $p = Y^d$, $\alpha = \sum_{i=0}^m a_{i+d} Y^i$.

Now assume n > 0. Let $\alpha = \sum_{i=0}^{m} c_i Y^i$, with $c_i \in \mathbb{K}[[X_1, \dots, X_n]]$. From the theorem statement $p = Y^d + \sum_{i=0}^{d-1} b_i Y^i$.

We will determine $b_0, \ldots, b_{d-1}, c_0, \ldots, c_m$ modulo successive powers of \mathcal{M} .

WPT (2/3)

$$f = \sum_{i=0}^{d+m} a_i Y^i \qquad p = Y^d + \sum_{i=0}^{d-1} b_i Y^i \qquad \alpha = \sum_{i=0}^m c_i Y^i$$

Equating coefficients in $f = p\alpha$ gives:

$$\begin{array}{rcl} a_{0} &=& b_{0}c_{0} \\ a_{1} &=& b_{0}c_{1} + b_{1}c_{0} \\ &\vdots \\ \\ a_{d-1} &=& b_{0}c_{d-1} + b_{1}c_{d-2} + \dots + b_{d-2}c_{1} + b_{d-1}c_{0} \\ \\ a_{d} &=& b_{0}c_{d} + b_{1}c_{d-1} + \dots + b_{d-1}c_{1} + c_{0} \\ \\ &\vdots \\ \\ a_{d+m-1} &=& b_{d-1}c_{m} + c_{m-1} \\ \\ a_{d+m} &=& c_{m} \end{array}$$

The first d equations define p, the remaining m + 1 equations define α .

Since α is a unit, $c_0 \notin \mathcal{M}$. By definition, a_0, \ldots, a_{d-1} are all 0 mod \mathcal{M} . and thus b_0, \ldots, b_{d-1} are also all 0 mod \mathcal{M} .

WPT (3/3)

All a_0, \ldots, a_{d+m} are sufficiently known as they are the input. Inductively assume all $b_0, \ldots, b_{d-1}, c_0, \ldots, c_m$ are known mod \mathcal{M}^k . We now determine them mod \mathcal{M}^{k+1} . Rearranging prev. equations gives:

$$\begin{array}{rclrcrcrcrcrc} a_{0} &=& b_{0}c_{0} & c_{m} &=& a_{d+m} \\ a_{1}-b_{0}c_{1} &=& b_{1}c_{0} & c_{m-1} &=& a_{d+m-1}-b_{d-1}c_{m} \\ a_{2}-b_{0}c_{2}-b_{1}c_{1} &=& b_{2}c_{0} & c_{m-2} &=& a_{d+m-2}-b_{d-2}c_{m}-b_{d-1}c_{m-1} \\ &\vdots & &\vdots \\ a_{d-1}-b_{0}c_{d-1}-\cdots-b_{d-2}c_{1} &=& b_{d-1}c_{0} & c_{0} &=& a_{d}-b_{0}c_{d}-\cdots-b_{d-1}c_{1} \end{array}$$

Recall $c_0 \notin \mathcal{M}$. By Lemma 4 and $a_0 = b_0 c_0$, we determine $b_0 \mod \mathcal{M}^{k+1}$

Since $b_0 \in \mathcal{M}$, knowing $c_1 \mod \mathcal{M}^k$ is sufficient to know $b_0c_1 \mod \mathcal{M}^{k+1}$. Then, $a_1 - b_0c_1$ is known mod \mathcal{M}^{k+1} and we determine $b_1 \mod \mathcal{M}^{k+1}$ by Lemma 4. This follows for b_2, \ldots, b_{d-1} .

Since $b_i \in \mathcal{M}$ for $0 \leq i < d$, all products $b_i c_j$ now known mod \mathcal{M}^{k+1} . Determining $c_0, \ldots, c_m \mod \mathcal{M}^{k+1}$ follows with simple poly. arithmetic. \Box

Alex Brandt

Outline

2 Weierstrass Preparation Theorem

3 Hensel's Lemma

Hensel's Lemma

Theorem (Hensel's Lemma)

Let $f = Y^d + \sum_{i=0}^{d-1} a_i Y^i$ be a monic polynomial with $a_i \in \mathbb{K}[[X_1, \dots, X_n]]$. Let $\bar{f} = f(0, \dots, 0, Y) = (Y - c_1)^{d_1} (Y - c_2)^{d_2} \dots (Y - c_r)^{d_r}$, for $c_1, \dots, c_r \in \mathbb{K}$ and positive integers d_1, \dots, d_r . Then, there exists $f_1, \dots, f_r \in \mathbb{K}[[X_1, \dots, X_n]][Y]$, all monic in Y, such that: 1 $f = f_1 \dots f_r$, 2 $\deg(f_i, Y) = d_i$ for $1 \le i \le r$, and 3 $\bar{f}_i = (Y - c_i)_i^d$ for $1 \le i \le r$.

We proceed by induction on r. For r = 1, $d_1 = d$ and we have $f_1 = f$, where f_1 has all the required properties.

Now assume r > 1. A change of coordinates in Y, sends c_r to 0 as g:

$$g(X_1, \dots, X_n, Y) = f(X_1, \dots, X_n, Y + c_r)$$

= $(Y + c_r)^d + a_{d-1}(Y + c_r)^{d-1} + \dots + a_0$

Hensel's Lemma (2/2)

$$g(X_1, \dots, X_n, Y) = f(X_1, \dots, X_n, Y + c_r)$$

= $(Y + c_r)^d + a_{d-1}(Y + c_r)^{d-1} + \dots + a_0$

By construction, g is general of order d_r and WPT can be applied to obtain $g = p \alpha$ with p being of degree d_r and $\bar{p} = Y^{d_r}$.

Reversing the change of coordinates we set $f_r = p(Y - c_r)$ and $f^* = \alpha(Y - c_r)$, and we have $f = f^* f_r$.

 f_r is a monic polynomial of degree d_r in Y with $\overline{f_r} = (Y - c_r)^{d_r}$.

We have $\bar{f}^* = (Y - c_1)^{d_1} (Y - c_2)^{d_2} \cdots (Y - c_{r-1})^{d_{r-1}}$. The inductive hypothesis applied to f^* implies the existence of f_1, \ldots, f_{r-1} .

On the Complexity and Parallel Implementation of Hensel's Lemma and Weierstrass Preparation