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Formal Power Series

Let K be an algebraically closed field.

Denote by K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀ the ring of formal power series with
coefficients in K and with variables 𝑋1, . . . , 𝑋𝑛.

ë 𝑋𝑒 = 𝑋𝑒1
1 ⋯𝑋𝑒𝑛

𝑛 , 𝑒 = (𝑒1, . . . , 𝑒𝑛), ⋃︀𝑒⋃︀ = 𝑒1 +⋯ + 𝑒𝑛

For 𝑓 ∈ K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀:
ë 𝑓(𝑘) = ∑⋃︀𝑒⋃︀=𝑘 𝑎𝑒𝑋𝑒 is the homogeneous part of degree 𝑘

ë 𝑓 is known to precision 𝑘 ∈ N, when 𝑓(𝑖) is known for all 0 ≤ 𝑖 ≤ 𝑘.

ë the order of 𝑓 is min{𝑖 ⋃︀ 𝑓(𝑖) ≠ 0}, if 𝑓 ≠ 0, and as ∞ otherwise.

ℳ= {𝑓 ⋃︀ ord(𝑓) ≥ 1} ⊂ K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀ is the only maximal ideal.
ë ℳ𝑘 = {𝑓 ∈ K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀ ⋃︀ ord(𝑓) ≥ 𝑘}.

ë 𝑓(𝑘) ∈ ℳ
𝑘 ∖ℳ𝑘+1
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UPoPS

Denote by A(︀𝑌 ⌋︀ the ring of univariate polynomials over power series
(UPoPS) where, A = K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀.

For 𝑓 = ∑
𝑑
𝑖=0 𝑎𝑖𝑌

𝑖, for 𝑎𝑖 ∈ A, deg(𝑓, 𝑌 ) = 𝑑.

A UPoPS is known up to precision 𝑘 if each of its power series
coefficients are known up to precision 𝑘.

A UPoPS 𝑓 is said to be general (in Y) of order 𝑗 if:
ë 𝑓 mod ℳ(︀𝑌 ⌋︀ has order 𝑗 when viewed as a power series, or

ë for 𝑓 = ∑
𝑑
𝑖=0 𝑎𝑖𝑌

𝑖, 𝑎𝑖 ∈ ℳ for 0 ≤ 𝑖 < 𝑗
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A First Lemma

Lemma (“Lemma 4”)
Let 𝑓, 𝑔, ℎ ∈ K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀ such that 𝑓 = 𝑔ℎ. Let 𝑓𝑖 = 𝑓

(𝑖), 𝑔𝑖 = 𝑔
(𝑖),

ℎ𝑖 = ℎ(𝑖). If 𝑓0 = 0 and ℎ0 ≠ 0, then 𝑔𝑘 is uniquely determined by 𝑓1, . . . , 𝑓𝑘

and ℎ0, . . . , ℎ𝑘−1

Proof: Proceed by induction on 𝑘.

For 𝑘 = 0, 𝑓0 = 𝑔0ℎ0 = 0, ℎ0 ≠ 0. Thus, 𝑔0 = 0 and the statement holds.

Let 𝑘 > 0, assuming hypothesis holds for 𝑘 − 1. Expand 𝑓 = 𝑔ℎ mod ℳ𝑘+1:

𝑓1 + 𝑓2 +⋯ + 𝑓𝑘 = 𝑔1ℎ0 + (𝑔1ℎ1 + 𝑔2ℎ0) +⋯ + (𝑔1ℎ𝑘−1 +⋯ + 𝑔𝑘−1ℎ1 + 𝑔𝑘ℎ0)

Ô⇒ 𝑓𝑘 = 𝑔1ℎ𝑘−1 +⋯ + 𝑔𝑘−1ℎ1 + 𝑔𝑘ℎ0

recalling ℎ0 ∈ K ∖ {0}, we have 𝑔𝑘 =
1

ℎ0
(𝑓𝑘 − 𝑔1ℎ𝑘−1 −⋯ − 𝑔𝑘−1ℎ1) ◻
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WPT (1/3)

Theorem (Weierstrass Preparation Theorem)
Let 𝑓 = ∑

𝑑+𝑚
𝑖=0 𝑎𝑖𝑌

𝑖 ∈ K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀ be general of order 𝑑 (i.e. 𝑑 is
smallest integer s.t. 𝑎𝑑 ⇑∈ ℳ) and 0 ≤ 𝑚 ∈ N. Assume that 𝑓 ⇑≡ 0
modℳ(︀𝑌 ⌋︀. Then, there exists a unique pair 𝑝, 𝛼 satisfying the following:

1 𝑓 = 𝑝 𝛼,
2 𝛼 is an invertible element of K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀(︀𝑌 ⌋︀⌋︀,
3 𝑝 is a monic polynomial of degree 𝑑,
4 writing 𝑝 = 𝑌 𝑑 + 𝑏𝑑−1𝑌 𝑑−1 +⋯𝑏1𝑌 + 𝑏0, we have 𝑏𝑑−1, . . . , 𝑏0 ∈ ℳ.

Proof: If 𝑛 = 0, 𝑓 = 𝛼𝑌 𝑑, 𝑝 = 𝑌 𝑑, 𝛼 = ∑
𝑚
𝑖=0 𝑎𝑖+𝑑𝑌 𝑖.

Now assume 𝑛 > 0. Let 𝛼 = ∑
𝑚
𝑖=0 𝑐𝑖𝑌

𝑖, with 𝑐𝑖 ∈ K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀. From
the theorem statement 𝑝 = 𝑌 𝑑 +∑

𝑑−1
𝑖=0 𝑏𝑖𝑌

𝑖.

We will determine 𝑏0, . . . , 𝑏𝑑−1, 𝑐0, . . . , 𝑐𝑚 modulo successive powers of ℳ.
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WPT (2/3)

𝑓 = ∑
𝑑+𝑚
𝑖=0 𝑎𝑖𝑌

𝑖 𝑝 = 𝑌 𝑑 +∑
𝑑−1
𝑖=0 𝑏𝑖𝑌

𝑖 𝛼 = ∑
𝑚
𝑖=0 𝑐𝑖𝑌

𝑖

Equating coefficients in 𝑓 = 𝑝𝛼 gives:

𝑎0 = 𝑏0𝑐0
𝑎1 = 𝑏0𝑐1 + 𝑏1𝑐0

⋮

𝑎𝑑−1 = 𝑏0𝑐𝑑−1 + 𝑏1𝑐𝑑−2 +⋯ + 𝑏𝑑−2𝑐1 + 𝑏𝑑−1𝑐0
𝑎𝑑 = 𝑏0𝑐𝑑 + 𝑏1𝑐𝑑−1 +⋯ + 𝑏𝑑−1𝑐1 + 𝑐0

⋮

𝑎𝑑+𝑚−1 = 𝑏𝑑−1𝑐𝑚 + 𝑐𝑚−1
𝑎𝑑+𝑚 = 𝑐𝑚

The first 𝑑 equations define 𝑝, the remaining 𝑚 + 1 equations define 𝛼.

Since 𝛼 is a unit, 𝑐0 ⇑∈ ℳ. By definition, 𝑎0, . . . , 𝑎𝑑−1 are all 0 mod ℳ.
and thus 𝑏0, . . . , 𝑏𝑑−1 are also all 0 mod ℳ.
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WPT (3/3)
All 𝑎0, . . . , 𝑎𝑑+𝑚 are sufficiently known as they are the input.
Inductively assume all 𝑏0, . . . , 𝑏𝑑−1, 𝑐0, . . . , 𝑐𝑚 are known mod ℳ𝑘.
We now determine them mod ℳ𝑘+1. Rearranging prev. equations gives:

𝑎0 = 𝑏0𝑐0
𝑎1 − 𝑏0𝑐1 = 𝑏1𝑐0

𝑎2 − 𝑏0𝑐2 − 𝑏1𝑐1 = 𝑏2𝑐0
⋮

𝑎𝑑−1 − 𝑏0𝑐𝑑−1 −⋯ − 𝑏𝑑−2𝑐1 = 𝑏𝑑−1𝑐0

𝑐𝑚 = 𝑎𝑑+𝑚

𝑐𝑚−1 = 𝑎𝑑+𝑚−1 − 𝑏𝑑−1𝑐𝑚

𝑐𝑚−2 = 𝑎𝑑+𝑚−2 − 𝑏𝑑−2𝑐𝑚 − 𝑏𝑑−1𝑐𝑚−1
⋮

𝑐0 = 𝑎𝑑 − 𝑏0𝑐𝑑 −⋯ − 𝑏𝑑−1𝑐1

Recall 𝑐0 ⇑∈ ℳ. By Lemma 4 and 𝑎0 = 𝑏0𝑐0, we determine 𝑏0 mod ℳ𝑘+1

Since 𝑏0 ∈ ℳ, knowing 𝑐1 mod ℳ𝑘 is sufficient to know 𝑏0𝑐1 mod ℳ𝑘+1.
Then, 𝑎1 − 𝑏0𝑐1 is known mod ℳ𝑘+1 and we determine 𝑏1 mod ℳ𝑘+1 by
Lemma 4. This follows for 𝑏2, . . . , 𝑏𝑑−1.

Since 𝑏𝑖 ∈ ℳ for 0 ≤ 𝑖 < 𝑑, all products 𝑏𝑖𝑐𝑗 now known mod ℳ𝑘+1.
Determining 𝑐0, . . . , 𝑐𝑚 mod ℳ𝑘+1 follows with simple poly. arithmetic. ◻
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Hensel’s Lemma

Theorem (Hensel’s Lemma)
Let 𝑓 = 𝑌 𝑑 +∑

𝑑−1
𝑖=0 𝑎𝑖𝑌

𝑖 be a monic polynomial with 𝑎𝑖 ∈ K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀.
Let 𝑓 = 𝑓(0, . . . , 0, 𝑌 ) = (𝑌 − 𝑐1)

𝑑1(𝑌 − 𝑐2)
𝑑2⋯(𝑌 − 𝑐𝑟)

𝑑𝑟 ,
for 𝑐1, . . . , 𝑐𝑟 ∈ K and positive integers 𝑑1, . . . , 𝑑𝑟. Then, there exists
𝑓1, . . . , 𝑓𝑟 ∈ K(︀(︀𝑋1, . . . , 𝑋𝑛⌋︀⌋︀(︀𝑌 ⌋︀, all monic in Y, such that:

1 𝑓 = 𝑓1⋯𝑓𝑟,
2 deg(𝑓𝑖, 𝑌 ) = 𝑑𝑖 for 1 ≤ 𝑖 ≤ 𝑟, and
3 𝑓𝑖 = (𝑌 − 𝑐𝑖)

𝑑
𝑖 for 1 ≤ 𝑖 ≤ 𝑟.

We proceed by induction on 𝑟. For 𝑟 = 1, 𝑑1 = 𝑑 and we have 𝑓1 = 𝑓 ,
where 𝑓1 has all the required properties.

Now assume 𝑟 > 1. A change of coordinates in 𝑌 , sends 𝑐𝑟 to 0 as 𝑔:
𝑔(𝑋1, . . . , 𝑋𝑛, 𝑌 ) = 𝑓(𝑋1, . . . , 𝑋𝑛, 𝑌 + 𝑐𝑟)

= (𝑌 + 𝑐𝑟)
𝑑
+ 𝑎𝑑−1(𝑌 + 𝑐𝑟)

𝑑−1
+⋯ + 𝑎0
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Hensel’s Lemma (2/2)

𝑔(𝑋1, . . . , 𝑋𝑛, 𝑌 ) = 𝑓(𝑋1, . . . , 𝑋𝑛, 𝑌 + 𝑐𝑟)

= (𝑌 + 𝑐𝑟)
𝑑
+ 𝑎𝑑−1(𝑌 + 𝑐𝑟)

𝑑−1
+⋯ + 𝑎0

By construction, 𝑔 is general of order 𝑑𝑟 and WPT can be applied to
obtain 𝑔 = 𝑝 𝛼 with 𝑝 being of degree 𝑑𝑟 and 𝑝 = 𝑌 𝑑𝑟 .

Reversing the change of coordinates we set 𝑓𝑟 = 𝑝(𝑌 − 𝑐𝑟) and
𝑓∗ = 𝛼(𝑌 − 𝑐𝑟), and we have 𝑓 = 𝑓∗𝑓𝑟.

𝑓𝑟 is a monic polynomial of degree 𝑑𝑟 in 𝑌 with 𝑓𝑟 = (𝑌 − 𝑐𝑟)
𝑑𝑟 .

We have 𝑓∗ = (𝑌 − 𝑐1)
𝑑1(𝑌 − 𝑐2)

𝑑2⋯(𝑌 − 𝑐𝑟−1)
𝑑𝑟−1 . The inductive

hypothesis applied to 𝑓∗ implies the existence of 𝑓1, . . . , 𝑓𝑟−1.

◻
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Sources

On the Complexity and Parallel Implementation of
Hensel’s Lemma and Weierstrass Preparation
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http://bpaslib.org/media/ComplexityParallelImplementationHenselWeierstrass-CASC2021.pdf
http://bpaslib.org/media/ComplexityParallelImplementationHenselWeierstrass-CASC2021.pdf

