Polynomials over Power Series and their Applications to Limit Computations (tutorial version)

> Marc Moreno Maza University of Western Ontario IBM Center for Advanced Studies

> > CASC 2018 Tutorial Université de Lille Bâtiment M³ May 14, 2021

Plan

Polynomials over Power Series • Weierstrass Preparation Theorem

Plan

Polynomials over Power Series • Weierstrass Preparation Theorem

Plan

Polynomials over Power Series • Weierstrass Preparation Theorem

Weierstrass Polynomials (1/4)

Remark

Let $f \in \mathbb{K}[[X_1, \ldots, X_n]]$. We write $f = \sum_{j=0}^{\infty} f_j X_n^j$ with $f_j \in \mathbb{K}[[X_1, \ldots, X_{n-1}]]$ for $j \in \mathbb{N}$. Let $\rho = (\rho_1, \ldots, \rho_n) \in \mathbb{R}_{>0}^n$. We write $\rho' = (\rho_1, \ldots, \rho_{n-1})$. Then we have

$$|| f ||_{\rho} = \sum_{j=0}^{\infty} || f_j ||_{\rho'} \rho_n^j.$$

Hence, if $f \in \mathbb{K}\langle X_1, \ldots, X_n \rangle$ holds, then so does $f_j \in \mathbb{K}\langle X_1, \ldots, X_{n-1} \rangle$ for all $j \in \mathbb{N}$.

Definition

- Let $f \in \mathbb{K}[[X_1, \dots, X_n]]$ with $f \neq 0$. We write $f(0, X_n) = f(0, \dots, 0, X_n)$. Let $k \in \mathbb{N}$. We say that f is
 - general in X_n if $f(0, X_n) \neq 0$ holds,
 - general in X_n of order k if $\operatorname{ord}(f(\underline{0}, X_n)) = k$,

Clearly $\operatorname{ord}(f) \leq \operatorname{ord}(f(\underline{0}, X_n))$ holds. However, we have the following.

Weierstrass Polynomials (2/4)

Lemma 1

Let $f \in \mathbb{K}[[X_1, \dots, X_n]]$ with $f \neq 0$ and $k := \operatorname{ord}(f)$. Then there is a shear:

$$X_i = Y_i + c_i Y_n \quad i = 1, \dots, n-1$$
$$X_n = Y_n$$

such that $g(Y) = f(X(Y)) \in \mathbb{K}[[Y_1, \dots, Y_n]]$ is general in Y_n of order k.

Proof (1/2)

• Let $d \in \mathbb{N}$. We write

$$f_{(d)} = \sum_{|e|=d} a_e X_1^{e_1} \cdots X_{n-1}^{e_{n-1}} X_n^{e_n}.$$

Since the coordinate change is linear, we have

$$g_{(d)}(Y) = f_{(d)}(X(Y)).$$

Weierstrass Polynomials (3/4)

Proof (2/2)

• For d = k in particular, we have

$$g_{(k)}(Y) = \sum_{|e|=k} a_e (Y_1 + c_1 Y_n)^{e_1} \cdots (Y_{n-1} + c_{n-1} Y_n)^{e_{n-1}} Y_n^{e_n} = \left(\sum_{|e|=k} a_e c_1^{e_1} \cdots c_{n-1}^{e_{n-1}} Y_n^k \right) + h(Y)$$

where h(Y) necessarily satisfies $h(\underline{0}, Y_n) = 0$.

- Observe also that the coefficient of Y_n^k is a polynomial in c_1, \ldots, c_{n-1} , which is not identically zero.
- Indeed, if it would, then all its coefficients would be, that is, $f_{(k)} = 0$ would hold, in contradiction to our assumption $k := \operatorname{ord}(f)$.
- Since this polynomial in c_1, \ldots, c_{n-1} is not zero, the variables c_1, \ldots, c_{n-1} can be specialized to values that ensure that $g_{(k)}(Y)$ has degree k in Y_n . Quod erat demonstrandum!

Weierstrass Polynomials (4/4)

Remark

- Let $f \in \mathbb{K}[[X_1, \ldots, X_n]]$ such that $f \in \mathbb{K}\langle X_1, \ldots, X_{n-1}\rangle[X_n]$ holds and $k := \deg(f, X_n)$. Assume (just for this remark) that $\mathbb{K} = \mathbb{C}$.
- Hence, we write $f = \sum_{j=0}^{k} f_j X_n^j$ with $f_j \in \mathbb{K} \langle X_1, \dots, X_{n-1} \rangle$ for all $j = 0 \cdots k$.
- In this case, the power series f_0, \ldots, f_k have a common radius of convergence $\rho' \in \mathbb{R}_{>0}^{n-1}$ so that they are holomorphic in the polydisk $D' := \{x \in \mathbb{K}^{n-1} \mid |x_i| < \rho_i\}.$
- Consequently f is holomorphic in $D' \times \mathbb{K}$.

Definition

Let $k \in \mathbb{N}$. Let $f = \sum_{j=0}^{k} f_j X_n^j \in \mathbb{K}[[X_1, \dots, X_{n-1}]][X_n]$ with $f_j \in \mathbb{K}\langle X_1, \dots, X_{n-1}\rangle$ for $j = 0 \cdots k$ and with $f_k \neq 0$. We say that f is a *Weierstrass polynomial* if we have

$$f_0(\underline{0}) = \dots = f_{k-1}(\underline{0}) = 0$$
 and $f_k = 1$.

Weierstrass preparation theorem

Theorem 3

Let $g \in \mathbb{K}\langle X_1, \ldots, X_n \rangle$ be general of order k. Then, there is a unique pair (α, p) with $\alpha \in \mathbb{K}\langle X_1, \ldots, X_n \rangle$ and $p \in \mathbb{K}\langle X_1, \ldots, X_{n-1} \rangle [X_n]$ such that α is a unit.

2 p is a Weierstrass polynomial of degree k,

3 we have
$$g = \alpha p$$
.

Thus we have

$$g = \alpha(\underline{X}) \left(X_n^k + a_1(X_1, \dots, X_{n-1}) X_n^{k-1} + \dots + a_k(X_1, \dots, X_{n-1}) \right),$$

with $a_1(\underline{0}) = \cdots = a_k(\underline{0}) = 0$. Moreover, if $g \in \mathbb{K}\langle X_1, \ldots, X_{n-1}\rangle[X_n]$ then $\alpha \in \mathbb{K}\langle X_1, \ldots, X_{n-1}\rangle[X_n]$ also holds.

Remark

The above theorem implies that in some neighborhood of the origin, the zeros of g are the same as those of the Weierstrass polynomial p.

Weierstrass division theorem

Theorem 4

Let $f, g \in \mathbb{K}\langle X_1, \dots, X_n \rangle$ with g general in X_n of order k. Then, there exists a unique pair (q, r) with $q \in \mathbb{K}\langle X_1, \dots, X_n \rangle$ and $r \in \mathbb{K}\langle X_1, \dots, X_{n-1} \rangle [X_n]$ such that we have $\textcircled{1} \deg(r, X_n) \leq k - 1$, 2 f = qg + r. Moreover, if $f, g \in \mathbb{K}\langle X_1, \dots, X_{n-1} \rangle [X_n]$ with $g = g_0 + g_1 X_n + \dots + g_k X_n^k$ and $g_k(0) \neq 0$, then g_k is a unit in the ring $\mathbb{K}\langle X_1, \dots, X_{n-1} \rangle$ and the classical division

theorem (in polynomial rings) gives $q \in \mathbb{K}\langle X_1, \ldots, X_{n-1} \rangle [X_n]$.

Proof of the division theorem (1/7)

Proof of existence (1/5)

• We write $f = \sum_{j=0}^{\infty} f_j X_n^j$ with $f_j \in \mathbb{K} \langle X_1, \dots, X_{n-1} \rangle$ for $j \in \mathbb{N}$.

• We write
$$f = \hat{f} + \tilde{f}X_n^k$$
 with
 $\hat{f} = \sum_{j=0}^{k-1} f_j X_n^j$ and $\tilde{f} = \sum_{j=k}^{\infty} f_j X_n^{j-k}$.

• Let
$$\rho = (\rho_1, \dots, \rho_n) \in \mathbb{R}_{>0}^n$$
. We have $||f||_{\rho} = ||\hat{f}||_{\rho} + ||\tilde{f}||_{\rho} \rho_n^k$.
In particular

$$\| \tilde{f} \|_{\rho} \le \rho_n^{-k} \| f \|_{\rho}.$$

$$\tag{1}$$

• Similarly, we write $g = \hat{g} + \tilde{g}X_n^k$.

- Since g is general in X_n at order k, it follows that \tilde{g} is a unit.
- Let ρ be chosen such that all of f, g, \tilde{g}^{-1} are in B_{ρ} .
- We consider the auxiliary function h defined as

$$h = X_n^k - g\tilde{g}^{-1} = -\hat{g}\tilde{g}^{-1}.$$

Proof of the division theorem (2/7)

Proof of existence (2/5)

• We claim that for all $\nu \in \mathbb{R},$ with $0 < \nu < 1,$ we can choose ρ such that we have

$$\|h\|_{\rho} \le \nu \rho_n^k. \tag{2}$$

- Recall that we have $h = X_n^k g\tilde{g}^{-1}$ and $\tilde{g}^{-1}(0_1, \ldots, 0_n) \neq 0$.
- $\bullet\,$ More precisely, since $g=\hat{g}+\tilde{g}X_n^k$ holds, we have

$$h = X_n^k - g\tilde{g}^{-1} = X_n^k - \left(\hat{g} + \tilde{g}X_n^k\right)\tilde{g}^{-1} = -\tilde{g}^{-1}\left(\sum_{j=0}^{k-1}g_jX_n^j\right),$$

with
$$g_j \in \mathbb{K}\langle X_1, \ldots, X_{n-1} \rangle$$
 and $g_j(0_1, \ldots, 0_{n-1}) = 0$ for $j = 0, \ldots, k - 1$. Therefore $h(0_1, \ldots, 0_{n-1}, X_n)$ is identically zero.
• Writing $h = \hat{h} + \tilde{h}X_n^k$ with $\hat{h} = \sum_{j=0}^{k-1} h_j X_n^j$ and $h_j \in \mathbb{K}\langle X_1, \ldots, X_{n-1} \rangle$, we deduce $\tilde{h}(0_1, \ldots, 0_n) = 0$.

Proof of the division theorem (3/7)

Proof of existence (3/5)

• Since $\tilde{h}(0_1,\ldots,0_n)=0$, we can decrease ρ such that we have

$$\|\tilde{h}\|_{\rho} \leq \frac{\nu}{2}, \text{ thus } \|\tilde{h}X_{n}^{k}\|_{\rho} \leq \frac{\nu}{2}\rho_{n}^{k}.$$
(3)

• With
$$\rho' = (\rho_1, \dots, \rho_{n-1})$$
, and writing $\hat{h} = \sum_{j=0}^{k-1} h_j X_n^j$, we have
 $\| \hat{h} \|_{\rho} \leq \sum_{j=0}^{k-1} \| h_j \|_{\rho} \rho_n^j$.

• Since $h_0(\underline{0}) = \cdots = h_{k-1}(\underline{0}) = 0$ holds, we can decrease ρ (actually ρ') while holding ρ_n fixed such that for $j = 0, \ldots, k-1$, we have

$$\|h_{j}\|_{\rho'} \leq \frac{\nu}{2} \rho_{n}^{k-j}, \text{ thus } \|\hat{h}\|_{\rho} \leq \frac{\nu}{2} \rho_{n}^{k}.$$
 (4)

• Finally, the claim of (2) follows from (3) and (4).

Proof of the division theorem (4/7)

Proof of existence (4/5)

- The function h is used as follows. For every $\phi \in \mathbb{K}\langle X_1, \ldots, X_n \rangle$, we define $h(\phi) = h\tilde{\phi}$ where $\tilde{\phi}, \hat{\phi}$ are defined as \tilde{f}, \hat{f} .
- By combining (1) and (2), we deduce $\|h(\phi)\|_{\rho} \leq \|h\|_{\rho} \|\tilde{\phi}\|_{\rho} \leq \nu \rho_n^k \rho_n^{-k} \|\phi\|_{\rho} = \nu \|\phi\|_{\rho}.$
- This lets us write an iteration process

$$\phi_0 := f, \ \phi_{i+1} := h(\phi_i) = h\tilde{\phi}_i.$$

• Observe that the series $\phi := \sum_{i=0}^{\infty} \phi_i$ converges for the metric topology of B_{ρ} since

 $\| \phi \|_{\rho} \leq \sum_{i=0}^{\infty} \| \phi_i \|_{\rho} \leq \sum_{i=0}^{\infty} \nu^i \| f \|_{\rho} = \| f \|_{\rho \frac{\nu}{1-\nu}}.$ We define

$$q := \tilde{\phi} \tilde{g}^{-1}$$
 and $r := \hat{\phi}$.

• Observe that $q \in B_{\rho}$ and $r \in B_{\rho'}[X_n]$ hold.

Proof of the division theorem (5/7)

Proof of existence (5/5)

• Clearly we have

$$\tilde{\phi} = \sum_{i=0}^{\infty} \tilde{\phi}_i$$
 and $\hat{\phi} = \sum_{i=0}^{\infty} \hat{\phi}_i$.

• Observe also that we have

$$\phi_i - \phi_{i+1} = \phi_i - h\tilde{\phi}_i = \hat{\phi}_i + X_n^k \tilde{\phi}_i - (X_n^k - g\tilde{g}^{-1}) \tilde{\phi}_i = \hat{\phi}_i + g\tilde{g}^{-1}\tilde{\phi}_i.$$

Putting everything together

$$f = \phi_0 = \sum_{i=0}^{\infty} (\phi_i - \phi_{i+1}) = \sum_{i=0}^{\infty} \hat{\phi}_i + g \tilde{g}^{-1} \sum_{i=0}^{\infty} \tilde{\phi}_i = r + g q.$$

• This proves existence.

Proof of the division theorem (6/7)

Proof of uniqueness (1/2)

- Proving the uniqueness is equivalent to prove that for all q, r satisfying $\deg(r, X_n) < k$ and 0 = qg + r we have q = r = 0.
- So let $q \in \mathbb{K}\langle \underline{X} \rangle$ and $r \in \mathbb{K}\langle X_1, \dots, X_{n-1} \rangle [X_n] \deg(r, X_n) < k$ and 0 = qg + r.
- We have seen that there exists $\rho \in \mathbb{R}^n_{>0}$ such that $g, q, r, \tilde{g}^{-1} \in B_{\rho}$ holds.
- For $h = X_n^k g\tilde{g}^{-1}$ as above, we have $q\tilde{g}h = q\tilde{g}X_n^k - q\tilde{g}g\tilde{g}^{-1} = q\tilde{g}X_n^k + r.$

Proof of the division theorem (7/7)

Proof of uniqueness (2/2)

• We assume that ρ is chosen such that (2) holds, that is, $\|h\|_{\rho} \leq \nu \rho_n^k$. Defining $M = \|q\tilde{g}\|_{\rho} \rho_n^k$, and using $\deg(r, X_n) < k$, we have: $M = \|q\tilde{a}X_n^k\|$.

$$\begin{aligned}
\mathcal{A} &= & \| q \tilde{g} X_{n}^{k} \|_{\rho} \\
&\leq & \| q \tilde{g} X_{n}^{k} + r \|_{\rho} \\
&= & \| q \tilde{g} h \|_{\rho} \\
&\leq & \| q \tilde{g} \|_{\rho} \| h \|_{\rho} \\
&\leq & \| q \tilde{g} \|_{\rho} \nu \rho_{n}^{k} \\
&= & \nu M.
\end{aligned}$$

- Since $0 < \nu < 1$, we deduce M = 0.
- Since $\rho_n \neq 0$, we have $\| q \tilde{g} \|_{\rho} = 0$.
- Since $\tilde{g} \neq 0$, we finally have q = 0, and thus r = 0.

Proof of the first point of the preparation theorem

Proof of the existence

- We apply the division theorem and divide $f = X_n^k$ by g leading to $X_n^k = qq + \sum_{i=1}^k a_i X_n^{k-i}$ with $a_i \in \mathbb{K}\langle X_1, \dots, X_{n-1} \rangle$.
- That is,

$$qg = X_n^k - \sum_{i=1}^k a_i X_n^{k-i}.$$

- We substitute $X_1 = \cdots = X_{n-1} = 0$ leading to $q(\underline{0}, X_n)(cX_n^k + \cdots) = X_n^k - \sum_{i=1}^k a_i(\underline{0})X_n^{k-i}.$ with $c \in \mathbb{K}$ and $c \neq 0$.
- Comparing the coefficients of X_n^{ℓ} for all $\ell \in \mathbb{N}$ shows that $q(0,0) = \frac{1}{c} \neq 0$ and $a_1(0) = \cdots = a_k(0) = 0$
- Thus q is a unit and setting $\alpha = q^{-1}$ completes the proof of the existence statement.

Proof of the uniqueness

Follows immediately from the uniqueness of the division theorem.

Proof of the second point of the preparation theorem

Proving $g \in \mathbb{K}\langle X_1, \dots, X_{n-1}\rangle[X_n] \Rightarrow \alpha \in \mathbb{K}\langle X_1, \dots, X_{n-1}\rangle[X_n]$

- Let (α, p) be given by the first point of the preparation theorem, thus, $g = \alpha p$ and p is a Weierstrass polynomial of degree k,
- We further assume $g \in \mathbb{K}\langle X_1, \ldots, X_{n-1} \rangle [X_n]$.
- Since p is a monic polynomial in X_n , we can divide g by p in $\mathbb{K}\langle X_1, \ldots, X_{n-1}\rangle[X_n]$ yielding $q, r \in \mathbb{K}\langle X_1, \ldots, X_{n-1}\rangle[X_n]$ such that g = qp + r and $\deg(r, X_n) < k$.
- Applying the uniqueness of the Weierstrass preparation theorem, we deduce

$$\alpha = q$$
 and $r = 0$.

Quod erat demonstrandum!

Implicit Function Theorem (1/3)

Remark

An important special case of the Weierstrass preparation theorem is when the polynomial f has order k = 1 in X_n . In this case, we change the notations for convenience.

Notations and assumptions

- Let $f = \sum_{j=0}^{\infty} f_j Y^j$ with $f_j \in \mathbb{K}\langle X_1, \dots, X_n \rangle$, f(0) = 0 and $\frac{\partial(f)}{\partial(Y)}(0) \neq 0$. Then f is general in Y of order 1.
- By the preparation theorem, there exists a unit $\alpha \in \mathbb{K}\langle X_1, \dots, X_n, Y \rangle$ and $\phi \in \mathbb{K}\langle X_1, \dots, X_n \rangle$ such that $f = \alpha(Y \phi)$ and $\phi(0) = 0$.
- In this section on the Implicit Function Theorem we also assume that $\mathbb{K} = \mathbb{C}$ holds.

Implicit Function Theorem (2/3)

Observations

• We have

 $f(\underline{X}, \phi(\underline{X})) = \alpha(\underline{X}, \phi(\underline{X})) \left(\phi(\underline{X}) - \phi(\underline{X})\right) = 0.$

- Now consider an arbitrary series $\psi(\underline{X}) \in \mathbb{K} \langle \underline{X} \rangle$ such that $\psi(0) = 0$ and $f(\underline{X}, \psi(\underline{X})) = 0$ hold.
- From $f(\underline{X}, \psi(\underline{X})) = 0$, we deduce $0 = f(\underline{X}, \psi(\underline{X})) = \alpha(\underline{X}, \psi(\underline{X})) (\psi(\underline{X}) - \phi(\underline{X})) = 0.$ • Since $\psi(0) = 0$ and $\alpha(0, 0) \neq 0$, we have $\alpha(0, \psi(0)) \neq 0$.
- Since α and ψ are continuous, there exists a neighborhood of $\underline{0} \in \mathbb{K}^n$ in which $\alpha(x, \psi(x)) \neq 0$.
- It follows that $\psi(x) = \phi(x)$ holds in this neighborhood.
- Therefore, we have proved the following.

Implicit Function Theorem (3/3)

Theorem 5 Let $f \in \mathbb{C}\langle X_1, \ldots, X_n, Y \rangle$ such that f(0) = 0 and $\frac{\partial(f)}{\partial(Y)}(0) \neq 0$. Then, there exists exactly one series $\psi \in \mathbb{C}\langle X_1, \ldots, X_n \rangle$ such that we have $\psi(0) = 0$ and $f(X_1, \ldots, X_n, \psi(X_1, \ldots, X_n)) = 0$.

Hensel Lemma (1/3)

Notations

- Let $f = a_0 Y^k + a_1 Y^{k-1} + \dots + a_k$ with $a_k, \dots, a_0 \in \mathbb{K}\langle X_1, \dots, X_n \rangle$.
- We define $\overline{f} = f(0_1, \dots, 0_n, Y) \in \mathbb{K}[Y]$.

Assumptions

- f is monic in Y, that is, $a_0 = 1$.
- 2 K is algebraically closed. Thus, there exist positive integers k_1, \ldots, k_r and pairwise distinct elements $c_1, \ldots, c_r \in \mathbb{K}$ such that we have $\overline{f} = (Y - c_1)^{k_1} (Y - c_2)^{k_2} \cdots (Y - c_r)^{k_r}.$

Theorem 6

There exist $f_1,\ldots,f_r\in\mathbb{K}\langle X_1,\ldots,X_n
angle[Y]$ all monic in Y s.t. we have

• $f = f_1 \cdots f_r$, • $\deg(f_j, Y) = k_j$, for all $j = 1, \dots, r$, • $\overline{f_j} = (Y - c_j)^{k_j}$, for all $j = 1, \dots, r$.

Hensel Lemma (2/3)

Proof of Hensel Lemma (1/2)

- The proof is by induction on r.
- Assume first r = 1. Observe that $k = k_1$ necessarily holds. Now define $f_1 := f$. Clearly f_1 has all the required properties.
- Assume next r > 1. We apply a change of coordinates sending c_r to 0

$$g(\underline{X}, Y) = f(\underline{X}, Y + c_r)$$

= $(Y + c_r)^k + a_1(Y + c_r)^{k-1} + \dots + a_k$

- By definition of \overline{f} and c_r , we deduce that $g(\underline{X}, Y)$ is general in Y of order k_r .
- By the preparation theorem, there exist $\alpha, p \in \mathbb{K}\langle X_1, \dots, X_n \rangle[Y]$ such that α is a unit, p is a Weierstrass polynomial of degree k_r and we have $g = \alpha p$.

Proof of Hensel Lemma (1/2)

- Then, we set $f_r(Y) = p(Y c_r)$ and $f^* = \alpha(Y c_r)$.
- Thus f_r is monic in Y and we have $f = f^* f_r$.
- Moreover, we have

$$\overline{f^*} = (Y - c_1)^{k_1} (Y - c_2)^{k_2} \cdots (Y - c_{r-1})^{k_{r-1}}.$$

• The existence of f_1, \ldots, f_{r-1} follows by applying the induction hypothesis on f^* .