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Weierstrass Polynomials (1/4)

Remark

Let f ∈ K[[X1, . . . , Xn]]. We write f =
∑∞

j=0 fjX
j
n with

fj ∈ K[[X1, . . . , Xn−1]] for j ∈ N. Let ρ = (ρ1, . . . , ρn) ∈ R n
>0. We write

ρ′ = (ρ1, . . . , ρn−1). Then we have

‖ f ‖ρ =
∑∞

j=0 ‖ fj ‖ρ′ ρ
j
n.

Hence, if f ∈ K〈X1, . . . , Xn〉 holds, then so does fj ∈ K〈X1, . . . , Xn−1〉
for all j ∈ N.

Definition

Let f ∈ K[[X1, . . . , Xn]] with f 6= 0. We write
f(0, Xn) = f(0, . . . , 0, Xn). Let k ∈ N. We say that f is

general in Xn if f(0, Xn) 6= 0 holds,

general in Xn of order k if ord(f(0, Xn)) = k,

Clearly ord(f) ≤ ord(f(0, Xn)) holds. However, we have the following.



Weierstrass Polynomials (2/4)

Lemma 1

Let f ∈ K[[X1, . . . , Xn]] with f 6= 0 and k := ord(f). Then there is a
shear:

Xi = Yi + ciYn i = 1, . . . , n− 1
Xn = Yn

such that g(Y ) = f(X(Y )) ∈ K[[Y1, . . . , Yn]] is general in Yn of order k.

Proof (1/2)

Let d ∈ N. We write

f(d) =
∑
|e|=d aeX

e1
1 · · ·X

en−1

n−1 X
en
n .

Since the coordinate change is linear, we have

g(d)(Y ) = f(d)(X(Y )).



Weierstrass Polynomials (3/4)

Proof (2/2)

For d = k in particular, we have

g(k)(Y ) =
∑
|e|=k ae(Y1 + c1Yn)e1 · · · (Yn−1 + cn−1Yn)en−1Y en

n

=
(∑

|e|=k aec
e1
1 · · · c

en−1

n−1 Y
k
n

)
+ h(Y )

where h(Y ) necessarily satisfies h(0, Yn) = 0.

Observe also that the coefficient of Y k
n is a polynomial in

c1, . . . , cn−1, which is not identically zero.

Indeed, if it would, then all its coefficients would be, that is, f(k) = 0
would hold, in contradiction to our assumption k := ord(f).

Since this polynomial in c1, . . . , cn−1 is not zero, the variables
c1, . . . , cn−1 can be specialized to values that ensure that g(k)(Y ) has
degree k in Yn. Quod erat demonstrandum!



Weierstrass Polynomials (4/4)

Remark

Let f ∈ K[[X1, . . . , Xn]] such that f ∈ K〈X1, . . . , Xn−1〉[Xn] holds
and k := deg(f,Xn). Assume (just for this remark) that K = C.

Hence, we write f =
∑k

j=0 fjX
j
n with fj ∈ K〈X1, . . . , Xn−1〉 for all

j = 0 · · · k.

In this case, the power series f0, . . . , fk have a common radius of
convergence ρ′ ∈ R n−1

>0 so that they are holomorphic in the polydisk
D′ := {x ∈ Kn−1 | |xi| < ρi}.
Consequently f is holomorphic in D′ ×K.

Definition

Let k ∈ N. Let f =
∑k

j=0 fjX
j
n ∈ K[[X1, . . . , Xn−1]][Xn] with

fj ∈ K〈X1, . . . , Xn−1〉 for j = 0 · · · k and with fk 6= 0. We say that f is a
Weierstrass polynomial if we have

f0(0) = · · · = fk−1(0) = 0 and fk = 1.



Weierstrass preparation theorem

Theorem 3

Let g ∈ K〈X1, . . . , Xn〉 be general of order k. Then, there is a unique pair
(α, p) with α ∈ K〈X1, . . . , Xn〉 and p ∈ K〈X1, . . . , Xn−1〉[Xn] such that

1 α is a unit,

2 p is a Weierstrass polynomial of degree k,

3 we have g = αp.

Thus we have

g = α(X)
(
Xk
n + a1(X1, . . . , Xn−1)X

k−1
n + · · ·+ ak(X1, . . . , Xn−1)

)
,

with a1(0) = · · · = ak(0) = 0. Moreover, if g ∈ K〈X1, . . . , Xn−1〉[Xn]
then α ∈ K〈X1, . . . , Xn−1〉[Xn] also holds.

Remark

The above theorem implies that in some neighborhood of the origin, the
zeros of g are the same as those of the Weierstrass polynomial p.



Weierstrass division theorem

Theorem 4

Let f, g ∈ K〈X1, . . . , Xn〉 with g general in Xn of order k. Then, there
exists a unique pair (q, r) with q ∈ K〈X1, . . . , Xn〉 and
r ∈ K〈X1, . . . , Xn−1〉[Xn] such that we have

1 deg(r,Xn) ≤ k − 1,

2 f = qg + r.

Moreover, if f, g ∈ K〈X1, . . . , Xn−1〉[Xn] with

g = g0 + g1Xn + · · ·+ gkX
k
n and gk(0) 6= 0,

then gk is a unit in the ring K〈X1, . . . , Xn−1〉 and the classical division
theorem (in polynomial rings) gives q ∈ K〈X1, . . . , Xn−1〉[Xn].



Proof of the division theorem (1/7)

Proof of existence (1/5)

We write f =
∑∞

j=0 fjX
j
n with fj ∈ K〈X1, . . . Xn−1〉 for j ∈ N.

We write f = f̂ + f̃Xk
n with

f̂ =
∑k−1

j=0 fjX
j
n and f̃ =

∑∞
j=k fjX

j−k
n .

Let ρ = (ρ1, . . . , ρn) ∈ R n
>0. We have ‖ f ‖ρ = ‖ f̂ ‖ρ + ‖ f̃ ‖ρρkn.

In particular
‖ f̃ ‖ρ ≤ ρ

−k
n ‖ f ‖ρ. (1)

Similarly, we write g = ĝ + g̃Xk
n.

Since g is general in Xn at order k, it follows that g̃ is a unit.

Let ρ be chosen such that all of f, g, g̃−1 are in Bρ.

We consider the auxiliary function h defined as

h = Xk
n − gg̃−1 = −ĝg̃−1.



Proof of the division theorem (2/7)

Proof of existence (2/5)

We claim that for all ν ∈ R, with 0 < ν < 1, we can choose ρ such
that we have

‖ h ‖ρ ≤ νρ
k
n. (2)

Recall that we have h = Xk
n − gg̃−1 and g̃−1(01, . . . , 0n) 6= 0.

More precisely, since g = ĝ + g̃Xk
n holds, we have

h = Xk
n − gg̃−1 = Xk

n −
(
ĝ + g̃Xk

n

)
g̃−1 = −g̃−1

(∑k−1
j=0 gjX

j
n

)
,

with gj ∈ K〈X1, . . . Xn−1〉 and gj(01, . . . , 0n−1) = 0 for
j = 0, . . . , k − 1. Therefore h(01, . . . , 0n−1, Xn) is identically zero.

Writing h = ĥ+ h̃Xk
n with ĥ =

∑k−1
j=0 hjX

j
n and

hj ∈ K〈X1, . . . Xn−1〉, we deduce h̃(01, . . . , 0n) = 0.



Proof of the division theorem (3/7)

Proof of existence (3/5)

Since h̃(01, . . . , 0n) = 0, we can decrease ρ such that we have

‖ h̃ ‖ρ ≤
ν

2
, thus ‖ h̃Xk

n ‖ρ ≤
ν

2
ρkn. (3)

With ρ′ = (ρ1, . . . , ρn−1), and writing ĥ =
∑k−1

j=0 hjX
j
n, we have

‖ ĥ ‖ρ ≤
∑k−1

j=0 ‖ hj ‖ρρ
j
n.

Since h0(0) = · · · = hk−1(0) = 0 holds, we can decrease ρ (actually
ρ′) while holding ρn fixed such that for j = 0, . . . , k − 1, we have

‖ hj ‖ρ′ ≤
ν

2
ρk−jn , thus ‖ ĥ ‖ρ ≤

ν

2
ρkn. (4)

Finally, the claim of (2) follows from (3) and (4).



Proof of the division theorem (4/7)

Proof of existence (4/5)

The function h is used as follows. For every φ ∈ K〈X1, . . . , Xn〉, we
define h(φ) = hφ̃ where φ̃, φ̂ are defined as f̃ , f̂ .

By combining (1) and (2), we deduce

‖ h(φ) ‖ρ ≤ ‖ h ‖ρ ‖ φ̃ ‖ρ ≤ νρknρ−kn ‖ φ ‖ρ = ν ‖ φ ‖ρ.
This lets us write an iteration process

φ0 := f, φi+1 := h(φi) = hφ̃i.

Observe that the series φ :=
∑∞

i=0 φi converges for the metric
topology of Bρ since

‖ φ ‖ρ ≤
∑∞

i=0 ‖ φi ‖ρ ≤
∑∞

i=0 ν
i ‖ f ‖ρ = ‖ f ‖ρ

ν
1−ν .

We define

q := φ̃g̃−1 and r := φ̂.

Observe that q ∈ Bρ and r ∈ Bρ′ [Xn] hold.



Proof of the division theorem (5/7)

Proof of existence (5/5)

Clearly we have

φ̃ =
∑∞

i=0 φ̃i and φ̂ =
∑∞

i=0 φ̂i.

Observe also that we have

φi − φi+1 = φi − hφ̃i
= φ̂i +Xk

nφ̃i −
(
Xk
n − gg̃−1

)
φ̃i

= φ̂i + gg̃−1φ̃i.

Putting everything together

f = φ0
=

∑∞
i=0 (φi − φi+1)

=
∑∞

i=0 φ̂i + gg̃−1
∑∞

i=0 φ̃i
= r + gq.

This proves existence.



Proof of the division theorem (6/7)

Proof of uniqueness (1/2)

Proving the uniqueness is equivalent to prove that for all q, r
satisfying deg(r,Xn) < k and 0 = qg + r we have q = r = 0.

So let q ∈ K〈X〉 and r ∈ K〈X1, . . . , Xn−1〉[Xn] deg(r,Xn) < k and
0 = qg + r.

We have seen that there exists ρ ∈ Rn>0 such that g, q, r, g̃−1 ∈ Bρ
holds.

For h = Xk
n − gg̃−1 as above, we have

qg̃h = qg̃Xk
n − qg̃gg̃−1 = qg̃Xk

n + r.



Proof of the division theorem (7/7)

Proof of uniqueness (2/2)

We assume that ρ is chosen such that (2) holds, that is,
‖ h ‖ρ ≤ νρkn. Defining M = ‖ qg̃ ‖ρρkn, and using deg(r,Xn) < k,

we have:
M = ‖ qg̃Xk

n ‖ρ
≤ ‖ qg̃Xk

n + r ‖ρ
= ‖ qg̃h ‖ρ
≤ ‖ qg̃ ‖ρ ‖ h ‖ρ
≤ ‖ qg̃ ‖ρνρkn
= νM.

Since 0 < ν < 1, we deduce M = 0.

Since ρn 6= 0, we have ‖ qg̃ ‖ρ = 0.

Since g̃ 6= 0, we finally have q = 0, and thus r = 0.



Proof of the first point of the preparation theorem

Proof of the existence

We apply the division theorem and divide f = Xk
n by g leading to

Xk
n = qg +

∑k
i=1 aiX

k−i
n with ai ∈ K〈X1, . . . , Xn−1〉.

That is,

qg = Xk
n −

∑k
i=1 aiX

k−i
n .

We substitute X1 = · · · = Xn−1 = 0 leading to

q(0, Xn)(cXk
n + · · · ) = Xk

n −
∑k

i=1 ai(0)Xk−i
n .

with c ∈ K and c 6= 0.

Comparing the coefficients of X`
n for all ` ∈ N shows that

q(0, 0) = 1
c 6= 0 and a1(0) = · · · = ak(0) = 0

Thus q is a unit and setting α = q−1 completes the proof of the
existence statement.

Proof of the uniqueness

Follows immediately from the uniqueness of the division theorem.



Proof of the second point of the preparation theorem

Proving g ∈ K〈X1, . . . , Xn−1〉[Xn] ⇒ α ∈ K〈X1, . . . , Xn−1〉[Xn]

Let (α, p) be given by the first point of the preparation theorem, thus,
g = αp and p is a Weierstrass polynomial of degree k,

We further assume g ∈ K〈X1, . . . , Xn−1〉[Xn].

Since p is a monic polynomial in Xn, we can divide g by p in
K〈X1, . . . , Xn−1〉[Xn] yielding q, r ∈ K〈X1, . . . , Xn−1〉[Xn] such that

g = qp+ r and deg(r,Xn) < k.

Applying the uniqueness of the Weierstrass preparation theorem, we
deduce

α = q and r = 0.

Quod erat demonstrandum!



Implicit Function Theorem (1/3)

Remark

An important special case of the Weierstrass preparation theorem is when
the polynomial f has order k = 1 in Xn. In this case, we change the
notations for convenience.

Notations and assumptions

Let f =
∑∞

j=0 fjY
j with fj ∈ K〈X1, . . . , Xn〉, f(0) = 0 and

∂(f)
∂(Y )(0) 6= 0. Then f is general in Y of order 1.

By the preparation theorem, there exists a unit
α ∈ K〈X1, . . . , Xn, Y 〉 and φ ∈ K〈X1, . . . , Xn〉 such that

f = α(Y − φ) and φ(0) = 0.

In this section on the Implicit Function Theorem we also assume that
K = C holds.



Implicit Function Theorem (2/3)

Observations

We have

f(X,φ(X)) = α(X,φ(X)) (φ(X)− φ(X)) = 0.

Now consider an arbitrary series ψ(X) ∈ K〈X〉 such that ψ(0) = 0
and f(X,ψ(X)) = 0 hold.

From f(X,ψ(X)) = 0, we deduce

0 = f(X,ψ(X)) = α(X,ψ(X)) (ψ(X)− φ(X)) = 0.

Since ψ(0) = 0 and α(0, 0) 6= 0, we have α(0, ψ(0)) 6= 0.

Since α and ψ are continuous, there exists a neighborhood of 0 ∈ Kn

in which α(x, ψ(x)) 6= 0.

It follows that ψ(x) = φ(x) holds in this neighborhood.

Therefore, we have proved the following.



Implicit Function Theorem (3/3)

Theorem 5

Let f ∈ C〈X1, . . . , Xn, Y 〉 such that

f(0) = 0 and ∂(f)
∂(Y )(0) 6= 0.

Then, there exists exactly one series ψ ∈ C〈X1, . . . , Xn〉 such that we have

ψ(0) = 0 and f(X1, . . . , Xn, ψ(X1, . . . , Xn)) = 0.



Hensel Lemma (1/3)

Notations

Let f = a0Y
k + a1Y

k−1 + · · ·+ ak with ak, . . . , a0 ∈ K〈X1, . . . , Xn〉.
We define f = f(01, . . . , 0n, Y ) ∈ K[Y ].

Assumptions

1 f is monic in Y , that is, a0 = 1.

2 K is algebraically closed. Thus, there exist positive integers k1, . . . , kr
and pairwise distinct elements c1, . . . , cr ∈ K such that we have

f = (Y − c1)k1(Y − c2)k2 · · · (Y − cr)kr .

Theorem 6

There exist f1, . . . , fr ∈ K〈X1, . . . , Xn〉[Y ] all monic in Y s.t. we have

1 f = f1 · · · fr,
2 deg(fj , Y ) = kj , for all j = 1, . . . , r,

3 fj = (Y − cj)kj , for all j = 1, . . . , r.



Hensel Lemma (2/3)

Proof of Hensel Lemma (1/2)

The proof is by induction on r.

Assume first r = 1. Observe that k = k1 necessarily holds. Now
define f1 := f . Clearly f1 has all the required properties.

Assume next r > 1. We apply a change of coordinates sending cr to 0

g(X,Y ) = f(X,Y + cr)
= (Y + cr)

k + a1(Y + cr)
k−1 + · · ·+ ak

By definition of f and cr, we deduce that g(X,Y ) is general in Y of
order kr.

By the preparation theorem, there exist α, p ∈ K〈X1, . . . , Xn〉[Y ]
such that α is a unit, p is a Weierstrass polynomial of degree kr and
we have g = αp.



Hensel Lemma (3/3)

Proof of Hensel Lemma (1/2)

Then, we set fr(Y ) = p(Y − cr) and f∗ = α(Y − cr).

Thus fr is monic in Y and we have f = f∗fr.

Moreover, we have

f∗ = (Y − c1)k1(Y − c2)k2 · · · (Y − cr−1)kr−1 .

The existence of f1, . . . , fr−1 follows by applying the induction
hypothesis on f∗.


	Polynomials over Power Series
	Weierstrass Preparation Theorem


