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Weierstrass Polynomials (1/4)

Remark

Let f € K[[X1, ..., Xu]]. We write f = Y72 f;X3, with

fi € K[[X1,...,X51]] for j € N. Let p= (p1,...,pn) € RJy. We write

o =(p1,-..,pn-1). Then we have
If 1l =225 I i 1l o

Hence, if f € K(Xy,...,X,) holds, then so does f; € K(Xq,...

for all j € N.

7Xn—1>

Definition

Let f € K[[X1,...,Xy]] with f # 0. We write
f(0,X,) = f(0,...,0,X,). Let k € N. We say that f is

e general in X, if f(0,X,) # 0 holds,
e general in X,, of order k if ord(f(0,X,)) =k,

Clearly ord(f) < ord(f(0, X,,)) holds. However, we have the following.

v




Weierstrass Polynomials (2/4)

Lemma 1

Let f € K[[X1,...,X,]] with f # 0 and k := ord(f). Then there is a
shear:

X, =Y, +¢Y, i=1,...,n—1
X,=Y,

such that g(Y) = f(X(Y)) € K[[Y1,...,Y,]] is general in Y, of order k.

Proof (1/2)
o Let d € N. We write
flay = Xjejmq @e X7t X0 X
@ Since the coordinate change is linear, we have

9a)(Y) = fla)(X(Y)).




Weierstrass Polynomials (3/4)

Proof (2/2)
@ For d = k in particular, we have
9 (Y) = Yoz ae(Y1 + 1Y) - (Yoo1 + cua Y)Y
= (Djejp accit - YE) + A(Y)
where h(Y') necessarily satisfies h(0,Y,,) = 0.

o Observe also that the coefficient of Y* is a polynomial in
c1,...,Ch—1, which is not identically zero.

@ Indeed, if it would, then all its coefficients would be, that is, f(k) =0
would hold, in contradiction to our assumption k := ord(f).

@ Since this polynomial in ¢1,...,c,_1 is not zero, the variables

c1,---,Cn—1 can be specialized to values that ensure that g(;)(Y’) has
degree k in Y,,. Quod erat demonstrandum!

v




Weierstrass Polynomials (4/4)

Remark

o Let f € K[[X1,...,X,]] such that f € K(X1,...,X,—1)[X,] holds
and k := deg(f, X,,). Assume (just for this remark) that K = C.

@ Hence, we write f = E?:o ij% with f; € K(X1,..., X,_1) for all
j=0---k.

@ In this case, the power series fy,..., fi have a common radius of
convergence o’ € R>"0*1 so that they are holomorphic in the polydisk
D = {.r S K1 ‘ ’{Ez’ < pi}.

e Consequently f is holomorphic in D’ x K.

Definition

Let k € N. Let f =% £;X3, € K[[X1, ..., Xp_1]][X] with
fi e K(Xq,...,X,—1) for j =0---k and with f; # 0. We say that f is a
Weierstrass polynomial if we have

fo(Q) == fr_1(0) =0 and fp = 1.




Weierstrass preparation theorem

Theorem 3

Let g € K(X1,...,X,) be general of order k. Then, there is a unique pair
(o, p) with v € K(X71,...,X,,) and p € K(X7,...,X,,—1)[Xy] such that

@ « is a unit,
@ p is a Weierstrass polynomial of degree k,
© we have g = ap.

Thus we have

9=a(X) <X,]§ +ar(Xy, . X)X 4 ap(X, 7Xn—1)> ;

with a1(0) = - (Q) = 0. Moreover, if g € K(X1,..., Xp—1)[X5]
then o € K(Xl, . —1)[X»] also holds.
Remark

The above theorem implies that in some neighborhood of the origin, the
zeros of g are the same as those of the Weierstrass polynomial p.




Weierstrass division theorem

Theorem 4

Let f,9 € K(X1,...,X,) with g general in X,, of order k. Then, there
exists a unique pair (g, r) with ¢ € K(X1,...,X,,) and
r € K(Xy,...,Xn-1)[X,] such that we have

O deg(r, X,,) <k-1,
Q@ f=qg+r.
Moreover, if f,g € K(X1,..., Xp—1)[X,] with

g=go+ 1 Xn+ -+ gXF and gx(0) £0,

then gy is a unit in the ring K(X71,..., X,,—1) and the classical division
theorem (in polynomial rings) gives ¢ € K(X1,..., X, —1)[X5].




Proof of the division theorem (1/7)

Proof of existence (1/5)
o We write f = 3-5° f; X, with f; € K(X1,... X,_1) for j €N.
o We write f = f + fX,’f with
=020 fiXh and f=32, f;X0"

o Let p= (p1,....pn) € B2 We have | £1I,= I FII,+ Il FIl, 0k
In particular

N —k
[0 Py v i [ (1)
o Similarly, we write g = g + gXF.
@ Since g is general in X,, at order k, it follows that g is a unit.

o Let p be chosen such that all of f,g,57!

are in B,.
@ We consider the auxiliary function h defined as

h = Xy—g57' = —gg7".




Proof of the division theorem (2/7)

Proof of existence (2/5)
@ We claim that for all v € R, with 0 < v < 1, we can choose p such
that we have
IRl < vor. (2)
o Recall that we have h = X*¥ — g3 and §71(0y,...,0,) #0.
@ More precisely, since g = g + ngf holds, we have
h=XE— g5t = X = (3+9X5) 57 = -5 (S50 %7
with g; € K(X1,... X,—1) and g;(01,...,0,—1) = 0 for
j=0,...,k—1. Therefore h(01,...,0,-1,X}) is identically zero.
o Writing b = h + hX% with i = Z?;é h; X3, and
h; € K(X1,...Xn-1), we deduce h(01,...,0,) =0.




Proof of the division theorem (3/7)

Proof of existence (3/5)

e Since A(01,...,0,) = 0, we can decrease p such that we have

A thus || X ||, < 5o (3)

14
p S P—z

e With o/ = (p1,...,pn_1), and writing h = Z;:é th%, we have
Ial, <3520 1 bl ohe

@ Since ho(0) = --- = hx_1(0) = 0 holds, we can decrease p (actually
p') while holding p,, fixed such that for j =0,...,k — 1, we have

Vk

k
Iyl < 2pk7, thus |1, < 2k 4)

e Finally, the claim of (2) follows from (3) and (4).




Proof of the division theorem (4/7)

Proof of existence (4/5)

@ The function  is used as follows. For every ¢ € K(X1,...,X,), we
define h(¢) = h¢ where ¢, ¢ are defined as f, f.

@ By combining (1) and (2), we deduce

Ir@) l, < IR, 1 oll, <vorpn® Noll,=vIel,
@ This lets us write an iteration process

G0 = f, bir1 = () = hoy.
@ Observe that the series ¢ := ) .° | ¢; converges for the metric
topology of B, since

Toll, <>me loill, <XV 1 F1L,= 1l fl,7%-
We define

~

¢:=0¢g " and r:= ¢.
o Observe that ¢ € B, and r € B,[X,] hold.




Proof of the division theorem (5/7)

Proof of existence (5/5)
o Clearly we have
o= Z;.io ¢; and ¢ = Z?io &;-
@ Observe also that we have
bi — i1 = @—hqu'N )

= ¢i+t Xﬁ@j (XE—g57") ¢
= ¢i+95 'oi.

o Putting everything together

I = ¢o

Dico (@i — dir1)
Zz(‘)io i + 957’12520 o
= r+gq.

@ This proves existence.




Proof of the division theorem (6/7)

Proof of uniqueness (1/2)

@ Proving the uniqueness is equivalent to prove that for all ¢, r
satisfying deg(r, X,,) < k and 0 = qg + r we have ¢ =7 = 0.

@ Solet ¢ € K(X) and r € K(X1, ..., X,,—1)[X,] deg(r, X,,) < k and
0=gqg+r.

@ We have seen that there exists p € RY such that g, q,rgte B,
holds.

e For h = X¥ — gg~! as above, we have

qgh = q3X* —qggg~' = qgXk +r.




Proof of the division theorem (7/7)

Proof of uniqueness (2/2)

@ We assume that p is chosen such that (2) holds, that is,
[Al, < vpk. Defining M = || ¢ prﬁ, and using deg(r, X,,) < k,

we have:

I ag X I,
I ag X5+,
I'agh |,
lag ll, [ A1,
I ag II,veh
vM.

M

IA A A

@ Since 0 < v < 1, we deduce M = 0.
@ Since p, # 0, we have [/ gg ||, =0.
@ Since g # 0, we finally have ¢ = 0, and thus r = 0.




Proof of the first point of the preparation theorem

Proof of the existence
o We apply the division theorem and divide f = X* by ¢ leading to
XE = qg+ 38 0 XE with a; € K(X1,..., X 1)
@ That is,
g9 = XF—2iL aXi
o We substitute X; =--- = X,,_1 = 0 leading to
a(0, Xa)(eXE+--) = X = YL ai(0XF
with ¢ € K and ¢ # 0.

@ Comparing the coefficients of Xf; for all £ € N shows that
q(0,0) =1 #0and a;(0) =+ = a,(0) =0

@ Thus ¢ is a unit and setting v = ¢+

existence statement.

completes the proof of the

Proof of the uniqueness

Follows immediately from the uniqueness of the division theorem.




Proof of the second point of the preparation theorem

Proving g € K(X1,..., Xp—1)[Xn] = a e K(X1,...,Xn_1)[Xy]

@ Let («,p) be given by the first point of the preparation theorem, thus,
g = ap and p is a Weierstrass polynomial of degree k,

e We further assume g € K(X1,..., Xp—1)[Xn].

@ Since p is a monic polynomial in X,,, we can divide g by p in
K(X1,...,Xn-1)[Xy] yielding ¢,r € K(X7, ..., X,,—1)[Xy] such that

g=gqp+r and deg(r,X,) <k.

@ Applying the uniqueness of the Weierstrass preparation theorem, we

deduce
a=gq and r=0.

Quod erat demonstrandum!




Implicit Function Theorem (1/3)

Remark

An important special case of the Weierstrass preparation theorem is when
the polynomial f has order £ =1 in X,,. In this case, we change the
notations for convenience.

Notations and assumptions

° Let f = E]OOOfJYj with f; € K(Xy,...,X,), f(0) =0 and
8(Y ( ) # 0. Then f is general in Y of order 1.

o By the preparation theorem, there exists a unit
aeK(Xy,...,X,,Y) and ¢ € K(Xq,...,X,) such that

f=aY —¢) and ¢(0) =

@ In this section on the Implicit Function Theorem we also assume that

K = C holds.




Implicit Function Theorem (2/3)

Observations
o We have
(X, 0(X)) = (X, (X)) (¢(X) — ¢(X)) = 0.
@ Now consider an arbitrary series ¢)(X) € K(X) such that ¢(0) =0
and f(X,4(X)) =0 hold.

e From f(X,¥(X)) =0, we deduce
0=f(X,9(X)) = a(X, (X)) (¥(X) — ¢(X)) = 0.
@ Since ¢(0) = 0 and «(0,0) # 0, we have «(0,1(0)) # 0.

@ Since o and ) are continuous, there exists a neighborhood of 0 € K™
in which a(z,v¢(z)) # 0.

o It follows that ¢(x) = ¢(x) holds in this neighborhood.

@ Therefore, we have proved the following.




Implicit Function Theorem (3/3)

Theorem 5

Let f € C(Xy,...,X,,Y) such that

Then, there

F(0) =0 and 53(0) # 0.
exists exactly one series ¢ € C(X},.

(0) =0 and F(X1,..., X0, (X1, .

.., Xp) such that we have

., Xn)) = 0.




Hensel Lemma (1/3)

Notations

o Let f=agY*+a1Y* 1 4. +ay with ay,...,a0 € K(X1,...,X,).
o We define f = f(01,...,0,,Y) € K[Y].

Assumptions
@ fismonicinY, thatis, ag = 1.

@ K is algebraically closed. Thus, there exist positive integers k1, ..., k;,
and pairwise distinct elements ¢y, ..., c, € K such that we have

= =) (Y —c)f2-- - (Y —¢,)kr.

Theorem 6
There exist f1,..., fr € K(X1,...,X,)[Y] all monic in Y s.t. we have
Q@ f=hH-fn

@ deg(f;,Y) =kj, forall j =1,.

@ fi=( —cj) J,foralljzl,...,r.




Hensel Lemma (2/3)

Proof of Hensel Lemma (1/2)

The proof is by induction on 7.

Assume first » = 1. Observe that & = kj necessarily holds. Now
define f1 := f. Clearly f1 has all the required properties.

Assume next > 1. We apply a change of coordinates sending ¢, to 0

Q(X7Y) = f(X7Y+CT’)
= Y+e)tralV +e)f '+t

By definition of f and ¢,, we deduce that g(X,Y) is general in Y of
order k.

By the preparation theorem, there exist a, p € K(X1,..., X,,)[Y]
such that « is a unit, p is a Weierstrass polynomial of degree k, and
we have g = ap.




Hensel Lemma (3/3)

Proof of Hensel Lemma (1/2)
@ Then, we set f(Y) =p(Y —¢,) and f* = a(Y —¢,).
@ Thus f, is monic in Y and we have f = f*f,.
@ Moreover, we have
fF={ )Y )2 (Y —cpn)r

@ The existence of fi,..., fr—1 follows by applying the induction
hypothesis on f*.
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