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Abstract

This thesis is devoted to the design and implementation of palpmial system solvers
based on symbolic computation. Solving systems of non-lineaidgebraic or di er-
ential equations, is a fundamental problem in mathematical gnces. It has been
studied for centuries and still stimulates many research dev@ments, in particular
on the front of high-performance computing.

Triangular decompositions are a highly promising technique ith the potential
to produce high-performance polynomial system solvers. Thisdhis makes several
contributions to this e ort.

We propose asymptotically fast algorithms for the core operaths on which trian-
gular decompositions rely. Complexity results and compara& implementation show
that these new algorithms provide substantial performance inmpvements.

We present a fundamental software library for polynomial arlimetic in order to
support the implementation of high-performance solvers base&uh triangular decom-
positions. We investigate strategies for the integration of tisilibrary in high-level pro-
gramming environments where triangular decompositions aresually implemented.

We obtain a high performance library combining highly optinzed C routines and
solving procedures written in theMaple computer algebra system. The experimental
result shows that our approaches are very e ective, since oura® often outperforms
pre-existing solvers in a signi cant manner.



Acknowledgments

While my name is the only one that appears on the author list ofhis thesis, there
are several other people deserving recognition. | would like &xpress my sincere
appreciation to my supervisors, Dr. Marc Moreno Maza and Dr. Sphen M. Watt,
for their guidance, support, encouragement and friendship tbugh my entire Ph.D.
study. | wish to extend my appreciation and gratitude to Dr. Mac Moreno Maza
for introducing me to these interesting and challenging proggs.

| would also like to express my sincere appreciation to my dear lleagueskEric,
Yuzhen, Wei, Changbo, Filatei, Liyun, Rageeb, and all the nmbers from the
ORCCA lab for their great help to my research.

Finally, | hope to share my happiness of the achievement from nBh.D. study with
my dear parents, sister and all my loved ones.

Without anyone of you, | couldn't reach the point where | am talay. Thank you
guys!



Contents

Certi cate of Examination il
Abstract i
Acknowledgments Y
1 Introduction 1
1.1 Motivation . . . . . . . . . . e 1
1.2 Research Directions . . . . . . .. ... .. ... .. .. ... ..., 3
1.3 Contributions . . . . . . . . ... 6
1.4 Outline. . . . . . . e 7
2 Background 8
2.1 Pre-existing Fast Algorithms . . . . . . ... ... ... . ....... 8
2.2 Implementation Environment . . . .. .. ... ... .. ... .... '4
2.3 Triangular Decompositions . . . . . . . .. .. ... .. oL Q@
2.3.1 Polynomial ideal and radical . . . .. ... ........... 20
2.3.2 Zero-divisor, regular element, zeroset . . . . .. .. ... ... 21
2.3.3 Triangular set and regularchains . . . . ... ......... 21
234 Subresultants . .. ... ... ... 22
235 RegularGCD . . ... .. . .. .. e 25
3 Foundational Fast Polynomial Arithmetic and its Implemen tation 26
3.1 OVerview. . . . . . 26
3.2 High Level Programming Environment . . . . ... ... ....... 2
3.2.1 TheAldor environment. . .. .. ............... 29
3.2.2 TheAXIOM environment . ... .. ... ... ........ 29
3.3 Implementation Techniques: the GenericCase . .. ... ... .... 30
3.3.1 E ciency-critical operations in Aldor . . . . ... ... ... 30

\Y



3.3.2 Extended Euclidean algorithm . . . . . . .. ... ... ....
3.4 Implementation Techniques: the Non-generic Case . . . . . . .....
3.4.1 Datarepresentation. . . .. ... ... ... .. ... ...,
3.4.2 Theimplementation of FFT . . . . . ... ... . ... ....
3.4.3 SSEZ2, loop unrolling, parallelism . . .. ... ... ......
3.5 Performance . . . . . .. ...
3.5.1 FFT multiplication . . . . . ... .. ... .. .. .......
3.5.2 Multivariate multiplication . . . . . ... ... ... ... ...
3.5.3 Power seriesinversion. . . . . . .. ...
3.5.4 Fast extended Euclidean algorithm . . . . .. ... ... ...
3.6 Summary . ...

E cient Implementation of Polynomial Arithmetic in a Mult iple-
level Programming Environment
41 OVEIVIEW . . . . i i e e e e e e e e e
42 TheSPAD Level . . . . . . . . . . . .
4.3 Thelisp Level . . . .. .. .. . .. .
44 TheClLevel . . .. .. . . . . . e
45 TheAssembly Codelevel ... ... ... ... ... ........
45.1 Controlling register allocation . . . . ... ... ........
4.5.2 Using architecture specic features . . .. .. ... ......
4.6 Experimentation . . . ... .. ... ...
4.6.1 Benchmarks for theLisp level implementation . . . . . .. ..
4.6.2 Benchmarks for the multi-level implementation . . . . . ..
47 SUMMANY . . . o o e e e e e e e e

How Much Can We Speed-up the Existing Library Code in AXIOM

with the C Level Implementation?

51 OVErVIEW . . . . . . o e

5.2 Software Overview . . . . . . . . . .
5.2.1 AXIOM polynomial domain constructors . . . .. ... ...
5.2.2 Finite eld arithmetic . . . .. ... ... ... ........
5.2.3 Polynomial arithmetic . . . .. ... .. ... .........
5.2.4 Codeconnection . ... .. .. ... ... .. ...

5.3 Experimentation . . . . . .. .. .. ... e

54 Summary ... e e e

Vi



6 Fast Arithmetic for Triangular Sets: from Theory to Practi ce

6.1 OVerview. . . . . . . . . e
6.2 Algorithms. . . . . . . . . .. . ..
6.2.1 Notation and preliminaries . . . . . . . ... ... ... ....
6.2.2 The main algorithm . . . ... .. ... ... .. .......
6.2.3 The case of univariate polynomials . . . ... ... ... ...
6.3 Implementation Techniques . . . . . .. ... .. ... ... .....
6.4 Experimental Results . . . . . ... ... .. ... L.
6.4.1 Comparing dierent strategies . . . . . . ... .. ... ....
6.4.2 Comparing implementations . . . . .. ... ... .......
6.4.3 The deformation-based algorithm . . . .. ... ... ... ..
6.5 Summary . . . .. e e e

Fast Algorithms for Regular GCD Computations and Regulari ty
Test
7.1 OVeIVIEW. . . . . o e
7.2 Specication . . . . .. ... e
7.3 Regular GCDS . . . . . . . . .
7.4 A Regular GCD Algorithm . . . . . . ... ... ... .. .......
7.4.1 Case where 2 sat(T): the algorithm RGSZR . . . . ... ..
7.4.2 Casewhere 6Xat(T) . ... ... ... ... ... ......
7.5 Implementation and Complexity . . . . . . .. ... .. ... .. ...
7.5.1 Subresultant chainencoding . .. ... ... ..........
7.5.2 Solving two equations . . . . . ...
7.5.3 Implementation of Regularize . . .. ... ... ........
7.6 Experimentation . . ... .. ... .. ... e
76.1 ResultantandGCD. ... .. ....... ... ........
7.6.2 Regularize . . . . . ...
7.7 SUMMANY . . . o o e e e e e e e e e e e

The Modpn Library: Bringing Fast Polynomial Arithmetic in to

Maple 112

8.1 OVerview. . . . . . .
8.2 A Compiled-Interpreted Programming Environment . . . . .. . . ..
8.2.1 TheClevel ... ... . . .. . ... ..
8.2.2 TheMaple level . .. ... ... . ... ... ... . .....
8.2.3 Maple andC cooperation. . . .. ... ... .........

Vii



8.3 Bivariate Solver . . . . . ... 118

8.3.1 Subresultant sequence and GCD sequence . .. ... ... .. 119
8.3.2 Algorithm . . . . . .. ... ... 121
8.3.3 Implementation . . . . . ... .. ... ... .. 122
8.4 Two-equation Solver and Invertibility Test . . . . . ... .. .. ... 124
8.4.1 Subroutines . . . .. .. ... 124
8.4.2 Two-equationsolver . ... ... ... ... ... ..... 125
8.4.3 Invertibilitytest. . . . . . .. ... . 126
8.5 Experiments . . . . . . . ... e 127
8.5.1 Bivariatesolver . . . . . ... ... 128
8.5.2 Two-equationsolver . ... ... ... ... ... .. ... 131
8.5.3 Invertibilitytest. . . . .. . ... ... . 132
8.5.4 Proling information for the solvers . . . . . ... ... .... 136
8.6 Summary . .. ... 138
9 Multithreaded Parallel Implementation of Arithmetic Ope rations
Modulo a Triangular Set 139
9.1 OVErVIEW . . . . . 139
9.2 Algorithms. . . . . . . .. . e 140
9.3 Implementation . . . .. ... ... ... 141
9.3.1 Multidimensional FFT . . . .. .. ... .. ... ....... 141
9.3.2 Two traversal methods for normal form . . . . . ... ... .. ™
9.3.3 Parallelizing normal form. . . .. ... .. ... ........ 1é
9.4 Benchmarks . . . . . . . . . . .. 148
9.5 Summary . ... e 153
10 Conclusion 154
Bibliography 155
Curriculum Vitae 163

viii



List of Algorithms

© 0 ~NOoO o~ WN P

N NN NDNRRRRRRIRRR R
A WNREFP O OOWMNOOONMNWNDNIERERLRO

The Montgomery Integer Division trick . . . . .. .. ... ...... 9
Power Series Inversion dof to Precision™ . . . . ... ... ...... 12
Fast Division with Remainder Algorithm . . . . . .. ... ... ... 13
Kronecker Multiplication . . . . . . .. ... ... ... ... ... 17
Modular Reduction . . . . . . . . . .. ... 72
MulSplit . . . . . . . e 75
Lit Roots . . . . . . . . . . e 77
MulUnivariate . . . . . . . . . . . e 78
Modular Generic Solve . . . . . . ... ... 121
Modular Solve . . . . . . . . ... 123
Modular Generic Solve N-variable . . . . .. ... ... .. ...... 2b
Invertibility Test . . . . . . . . .. .. .. 127
Normal Form . . . . . . . . . . . . . 143
Fast Univariate Division . . . . . . . . .. ... .. ... ....... 144
Fast Coecients Reduction . . . ... ... ... ........... 144
Normal Form 2 . . . . . . . . . . . e 144
Iterative Reduction . . . . . . . ... ... ... 144
Fast Univariate Division 2 . . . . . . .. . .. ... . .. ... .... 145
Iterative Reduction2 . . . . . ... .. ... .. .. .. ... 145
Parallel Normal Form . . . . . . . .. . .. ... ... ... ...... 146
Creating Tasks . . . . . . . . . . . . 146
Dump Thread-pool . . . . . ... .. .. .. . 146
Parallelism in Bottom-up Level-by-level Method . . ... .. . .. 147
Parallelism in Bottom-up Level-by-level Method Variant. . . . . . . . 148



List

2.1

3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2

of Figures

Algebraic categories' hierarchy iAXIOM (partial). . . . .. .. .. 19

Power series inversion: naive vs. optimized implementatior's. multi-

plication, 27-bit prime. . . . . . . .. .. ... . 31
Power series inversion: space usage of naive vs. optimizedlemen-
tations, 27-bitprime. . . . . . ... 32
FFT multiplication: GMP functions vs. double precision ineger func-
tionsvs. CRT, 64 bitprime. . . . . . ... ... ... .. ....... 37
FFT multiplication: generic assembly vs.SSE2 assembly, 27-bit prime. 38
FFT multiplication: inlined vs. non-inlined, 27-bit prime. . . . . . . . 40
Multiplication modulo a 27-bit prime. . . . . . . .. ... ... .. .. 41
Multiplication modulo a 64-bit prime. . . . . . . ... .. ... .. .. 41
Bivariate multiplication, 27-bit prime. . . . . . . . .. .. ... .. .. 42
Bivariate multiplication, 64-bit prime. . . . . . . .. .. ... ... .. 42
Four-variable multiplication, 64-bit prime. . . . . . . .. .. ... .. 43
Power series inversion: Aldor vs. NTL vs. MAGMA, 27-bit prime. . 43
EEA: ALDOR vs. NTL vs. MAGMA, 27-bit prime. . . . . . . .. .. 44
Benchmark of van Hoeij and Monagan's algorithm . . . . . . . . .. 55
Resultant computation inZ=pZ[x] . . . . . . . .. ... ... ... .. 63
Square-free factorization iZ=pZ[x] . . . . . .. ... ... ... ... 63
Irreducible factorization inZ=pZ[x] . .. ... .. ... ... ..... 63
Resultant computation in =pZ[x]=mi)[y]. . . . . . . . . . ... .. 63
Irreducible factorization in Z=pZ[x]=mi)[y] . . ... ... ... ... 64
Square-free factorization iZ=pZ[x] . . . . . . . ... ... ... ... 64
TFTvs. FRET. . . . 81
TFTvs. FRET. . . . e 84



6.3
6.4

6.5

6.6

6.7
6.8
6.9

6.10

7.1
7.2
7.3
7.4

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

9.1
9.2
9.3
9.4

Multiplication in L, all strategies, using FFT multiplication. . . . . . 85
Multiplication in L,, fast without precomputations vs. fast using
precomputations (top) andplain vs. fast using precomputations. . 85
Multiplication in Lo, time vs. d = d;d,, Plain (left) and Fast using
precomputations (right). . . . . . ... ... ... ... .. .. 86
Multiplication in Lz, plain vs. fast , patterns 1{3 from top left to
bottom. . . . . . .. 86
Multiplication in L3, pattern 3, Magma vs. our code. . .. ... ... 87
Inverse inL s, pattern 1, Maple vs. ourcode. . . . . ... ... .... 88
GCD computations L3[X4], pure AXIOM code vs. combined C-
AXIOM code. . . . . . . . . e 89
General vs. specialized algorithm. . . . . . ... .. ... ... ... 90
Resultant and GCD random dense 2-variable.. . . . . . . ... ... .. 106
Resultant and GCD random dense 3-variable.. . . . . .. ... ... .. 108
Resultant and GCD random dense 4 variable.. . . . . . . ... ... .. 108
Resultant and GCD random dense 3-variable. . . . . . . . ... ... .. 109
The polynomial data representations irmodpn. . . . . . .. .. ... 115
Bivariate solver dense case. . . . . . . . . . . ... e q2
Bivariate solver dense case. . . . . . . . . .. ... oo a2
Bivariate solver non-equiprojectablecase. . . . . ... .. .... ... 130
Bivariate solver non-equiprojectable case. . . . . .. ... .... ... 131
Bivariate case: timingsp=0:98. . ... ... ... ... ... ..., 133
Bivariate case: timingsp=0:5. . . .. .. ... ... ... ... 134
Bivariate case: time spent in conversions. . . . . . . . ... ... .. 134
Trivariate case: time spent in conversions. . . . . .. .. .. .. .. 135
Bivariate solver: proling,p=0:5. . ... .. ... ... ....... 137
Method Ovs. method 1 . . . . . . . . . . . . . ... ... .. ..... 149
Method Ovs. method 2 . . . . . . . . . . . . ... . . ... . ..., 150
Method Ovs. method 3 . . . . . . . . . ... ... ... ... .... 151
Method O vs. method 3 with TFT implementation. . . . . . . . ... .. 152

Xi



List of Tables

7.1
7.2
7.3
7.4

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Random dense 2-variablecase. . . . . . . . . .. . ... ...
Random dense 3-variablecase. . . . . . . . . .. ... ... ...,
Non-equiprojectable 2-variable case.. . . . . . . . . . ... ... ....
Non-equiprojectable 3-variable case.. . . . . . . . . . ... ... ....

Bivariate solver densecase. . . . . . . . . ... ...
Bivariate solver non-equiprojectable, us vs. Maple.

Bivariate solver non-equiprojectable case. . . . . . . ... ... ...
Solving two equations in three variables . . . . . . .. ... ... ..
Trivariate case: timings,p=0:98. . . . . . . ... .. ... ... ...
Trivariate case: timings,p=0:5. . . ... ... ... ... .. ...,
Bivariate solver: proling, p=0:98. . . . . ... .. ... .......
Two-equation solver: proling. . . . . . . . .. ... .. ... .....

List of parallel strategies. . . . . . . . .. .. .. ... .. ... ...
Selected data points from Figure 9.1. . . . . . . . . . ... ... ...
Selected data points from Figure 9.2. . . . . . . .. ... ... ... ..
Selected data points from Figure 9.3. . . . . . . .. ... ...
Selected data points from Figure 9.4. . . . . . . . . ... .00,
Larger benchmark 1. . . . . . . . . . . . . ...
Larger benchmark 2. . . . . . . . . . . . .

Xii

149
150
151
152



Chapter 1

Introduction

1.1 Motivation

This thesis is devoted to the design and implementation of patpmial system solvers
based on symbolic computation. Solving systems of non-lineatgebraic or di eren-
tial equations is a fundamental problem in mathematical sciees. It has been studied
for centuries and still continues to stimulate research.

Solving polynomial systems is also a driving subject for symbol@omputation.
In many computer algebra systems, theolve command involves nearly all libraries
in the system, challenging the most advanced operations on mags, polynomials,
algebraic numbers, polynomial ideals, etc.

Symbolic solvers are powerful tools in scienti c computing: ey are well suited
for problems where the desired output must be exact and they havbeen applied
successfully in mathematics, physics, engineering, chemistry aeducation, with im-
portant outcomes. See Chapter 3 in [48] for an overview of theapplications. While
the existing computer algebra systems have met with some pracalcsuccess, symbolic
computation is still under-utilized in areas like mathemaital modeling and computer
simulation. Part of this is due to the fact that much larger andmore complex com-
puters are required - often beyond the scope of existing systems.

The implementation of symbolic solvers is, indeed, a highly dicult task. Sym-
bolic solvers are extremely time-consuming when applied tor¢ge problems. Even
worse, intermediate expressions can grow to enormous size andyrhalt the com-
putations, even if the result is of moderate size [45]. Therefgrthe implementation
of symbolic solvers requires techniques that go far beyond tmeanipulation of al-
gebraic or di erential equations; these include e cient memoy management, data
compression, parallel and distributed computing, etc.



The development of polynomial system solvers, as computer pragrs based on
symbolic computation, started four decades ago with the discery of Grebner bases
in the Ph.D. thesis of B. Bucherger [20], whereas e cient imn@mentation capable of
tackling real-world applicationsis very recent [39].

Triangular decompositions are an alternative way for solvingystems of algebraic
equations symbolically. They focus on extracting geometat information from the
solution setV (F) of the input polynomial systemF rather than insisting on revealing
algebraic properties as Grebner bases do. A triangular deoposition of V (F) is given
by nitely many polynomial sets, each of them with a triangularshape and so-called a
triangular set!; these sets describe the di erent components & (F), such as points,
curves, surfaces, etc. Triangular decompositions were inveditey J.F. Ritt in the 30's
for systems of di erential polynomials [81]. Their stride staréd in the late 80's with
the method of W.T. Wu dedicated to algebraic systems [91]. Dirent concepts and
algorithms extended the work of Wu. At the end of 90's the notin of a regular chain,
introduced independently by M. Kalkbrener in [55] and by L. ¥ng and J. Zhang
in [92], led to important algorithmic improvements, such as ta Triade algorithm (for
TRIANngular Decompositions) by M. Moreno Maza [75]. The era of ggnomial system
solvers based on triangular decompositions could commence.

Since 2000, exciting complexity results [29] and algorithnj&7] have boosted the
development of implementation techniques. From these worksjangular decomposi-
tions appear at the start of this Ph.D. thesis as highly promisig techniques with the
potential to produce high-performance solvers. The goals dfi¢ proposed research
were then the following ones.

(1) Develop a high performance software library for polynomialrahmetic in order
to support the implementation of high-performance solvers lsad on triangular
decompositions.

(2) Integrate these routines in high-level programming enviranents where trian-
gular decompositions are implemented.

(3) Design theoretically and/or practically e cient algorithm s, based on the asymp-
totically fast algorithms and modular methods, for the key rotines on which
triangular decompositions rely.

(4) Evaluate the performances, including speed-up factors andthenecks, of this
approach and compare it with the pre-existing polynomial syste solvers.

1This notion extends to non-linear systems that of a triangular system, well-knownin linear
algebra.



With these goals in mind, we have developed the research dinects described in
the next section.

1.2 Research Directions

Polynomial arithmetic is at the foundation of our research sulect. Since the early
days of computer algebra systems, one of the main focuses has bmesparse polyno-
mial arithmetic and classical algorithms (by opposition to asymptotically fast ones).
A tentative explanation for this historical fact is given in the overview of Chapter 3. In
the last decade, asymptotically fast algorithms for dense polgmial arithmetic have
been proved to be practically e cient. Among them are FFT-basd algorithms which
are well adapted for supporting operations like the Euclideadivision, Euclidean Al-
gorithm and their variants which are at the core of methods focomputing triangular
decompositions. Indeed, these types of calculations tend to keaintermediate data
dense even if input and output polynomials are sparse; thus \dea methods" like
FFT-based polynomial multiplication and division t well in t his context. It was,
therefore, necessary to invest signi cant e ort on these algotitms, which we actually
started in the Masters thesis [64]. The theoretical and experiental results from this
thesis are beyond our initial expectation.

Certainly, fast algorithms and high-performance are alwaypopular topics. The
SPIRAL [79] and FFTW [42] projects are well-known high-performance software
packages based on FFT techniques for numerical computatiomawith application
to areas like digital signal processing. A central feature of &se packages is automatic
code tuning for generating architecture-aware highly e cént code. In the case of our
library for symbolic computation with polynomials, this feaure remains future work.
FFTs in computer algebra are primarily performed over nite elds leading to a range
of di culties which do not occur over the eld of complex numbers. For instance,
primitive roots of unity of large orders may not always existn nite elds, making
the use of the Cooley-Tukey Algorithm [25] not always possible.oF this reason and
others, such as performance considerations, each FFT-based polyial operation
(multiplication, division, evaluation, interpolation, etc.) has several implementations.
Although we have not reached yet the level of automatic tuninghand-tuning was
used a lot. We have considered speci ¢ hardware features such asmory hierarchy,
pipelining, vector instructions. We tried to write compiler{friendly code, relying on
compiler optimization to generate highly e cient code. We tave also considered
the parallelization of polynomial arithmetic (mainly multiplication) and higher-level



operations (normal form computations). Section 3.3 and Sech 3.4 describe our
implementation whereas Section 3.5 at Page 40 presents comgtze experimental
results. Chapter 9 is dedicated to the parallelism study.

Developing a fundamental high-performance software librafor polynomial arith-
metic appeared to be a necessary task. At the time of starting thisork, there were
no such packages that we could extend or build on. All the existgnrelated software
had either technical limitations (as was the case for the NTL ]@8ibrary, limited by its
univariate arithmetic and the characteristic of its elds ofcoe cients) or availability
issues (as was the case for thdagma [5] computer algebra system, that doesn't
make it a research tool which is not open source). Developingigifundamental high-
performance software library was also motivated by the desird adapting it to our
needs. For instance, when we started to develop higher-levegatithms, such as nor-
mal form computations, see Chapter 6, adjustments in our multariate multiplication
had to be done.

Implementing a polynomial system solver based on triangular dempositions from
scratch was, however, out of question. First, because better subtimes for these de-
compositions had to be designed, such as those presented in Chepteand 7, before
engaging an implementation e ort. Secondly, because the ammat of coding would
simply be too large for work of this scale. Polynomial system sohgesuch as=FGb[40]
or the commandTriangularize in the RegularChains library [63] are the results of
20 and 16 years of continuous work respectively! Last, but nadst, implementation
techniques and programing environments are evolving qulgkthese days, stimulated
by progress in hardware acceleration technologies. In order avoid developing code
that could quickly become obsolete, we were looking into stegies driven by code
modularity and reusability. This led us to consider integratng our fundamental high-
performance software library for polynomial arithmetic, witten in the C programing
language, into higher-level algorithms written in the compter algebra systemsAX-
IOM and Maple . (These are presented in Section 3.2.2 and Section 8.2.3 respec
tively.) The overhead of data conversion between di erent dgnomial representations
from di erent language levels may be signi cant enough to slowlown the whole com-
putation. Thus, this technique ofmixing codebrings extra di culties to achieve high
performance for those applications involving frequent crosanguage-level data map-
ping (see Section 3.4.1 and Section 8.2 for details). EachAXIOM and Maple
has its speci es on this front.

AXIOM is a multiple-language-level system (see Section 2.2 for dé&tai We took
advantage of this feature for combining in the same applicath di erent polynomial



data types realized at di erent language levels. Chapter 4 ports on this investigation
and stresses the fact that selecting suitable polynomial data tgs is essential toward
high performance implementation.

With Maple , we have focused on the integration of out library with high-level
algorithms. Our goal was to provide support and speed-up for thRegularChains
library and its commands for computing triangular decomposons of polynomial
systems. Since the technique ahixing codeis much more challenging in the context
of Maple than within AXIOM (See Chapter 8 for details) this objective is not
guaranteed to be successful. In fact, we asked ourselves the falhg questions while
designing thismixing codeframework: to which extent can triangular decomposition
algorithms (implemented in the Maple RegularChains library) take advantage of
fast polynomial arithmetic (implemented in C)? What is a goodiesign for such hybrid
applications? Can an implementation based on this strategy ooérform other highly
e cient computer algebra packages? Does the performance dfis hybrid C-Maple
application comply to its complexity analysis? In Chapter 8, w will provide the
answers to these questions.

Once our fundamental high-performance software library fopolynomial arith-
metic and its interface with AXIOM and Maple have been in place, we could start
investigating the third objective of this PhD work: developng more e cient algo-
rithms for the core operations involved in computing trianglar decompositions, with
an emphasis in dimension zero. (see Section 2.3 for the de nitiof triangular de-
compositions). We started with multiplication modulo a triangular set in Chapter 6,
followed by regular GCD computations and regularity test wih respect to a regular
chain, see Chapter 7.

Triangular decompositions rely intensively on polynomial athmetic operations
(addition, subtraction, multiplication and division) modulo ideals given by triangu-
lar sets in dimension zero or regular chains in positive dimensio(see Chapter 2 for
these terms.) Modular multiplication and division are expensg (often dominant) op-
erations in terms of computational time when computing triagular decompositions.
Under certain assumptions, the modular division can be achieved lbwo modular
multiplications as reported in Section 2.1 in thefast division algorithm. Thus, mod-
ular multiplication is unarguably a \core" operation.

Triangular decompositions rely also on an univariate and recsive representation
of polynomials. The motivation is to reduce solving systems of rivariate polyno-
mials to univariate polynomials GCD computations. This redation is achieved at
the price of working over non-standard algebraic structures, one precisely modulo



the so-called regular chains. We have designed and implementeé rst algorithm
for this kind of GCD computations which is based on asymptotidly fast polynomial
arithmetic and modular techniques, while not making any resictive assumptions on
the input. Chapter 7 presents this algorithm.

We designed these high-level operations in a way that our preus fast polynomial
arithmetic implementation could e ciently be used. Certainly, these new algorithms
are also better than existing ones in terms of complexity. All aureported new
implementations and algorithms from this thesis have been alized as a solid software
library modprwith its Maple -level wrapperFastArithmeticTools (see Section 8.2):
a C-Maple library dedicated to fast arithmetic for multivariate polynomials over
prime eld including fundamental operations modulo regula chains in dimension
zero.

1.3 Contributions

As mentioned in Section 1.1 one of our motivations of this reseh is to design e -
cient algorithms, based on asymptotically fast algorithms and odular methods for
the key routines. At the end of this research we have designed a sétasymptoti-
cally fast algorithms for core operations supporting polynoral system solvers based
on triangular decompositions. These are fast multiplication naulo a triangular set
(modular multiplication, see Chapter 6), fast regular GCD corputation and regular-
ity test, see Chapter 7. As a byproduct, we have obtained highly@ent algorithms
for solving bivariate polynomial systems and multivariate systas of two equations,
see Chapters 7 and 8. Our implementation e ort for polynomiaarithmetic over -
nite elds has led to an improved version of the so-calleMontgomery's trick [74].
More precisely, we have obtained a fast integer reduction tkovhen the modulus is
a Fourier prime number (see Section 6.3).

We have systematically investigated and documented a set of sibta implementa-
tion techniques adapted for asymptotically fast polynomial lgorithms and operations
supporting triangular decompositions (see Section 3.3, Seamti 3.4; Section 4.2-4.5;
Section 5.2, Section 6.3, Section 8.2, and Chapter 9).

As mentioned in Section 1.1 another motivation for this reseeh is to develop
a foundational software library for polynomial arithmetic n order to support the
implementation of high-performance solvers. At the end of thiwork, besides the
theoretical contributions we have also provided a solid softwe result: the modpn
library. The library modpnconsists of a set of highly optimizedC implementations



including the base-level routines and operations modulo rglgr chains. Essentially,
all the research results reported in this thesis have been impiented in the modpn
library. The modpnlibrary has been integrated into the computer algebra system
Maple (version 13). Concretely, this providesMiaple users with fast arithmetic for
multivariate polynomials over the prime elds F,, where p is a machine word-size
prime number. While being easy to use, it mainly focuses on higlegormance.

We present the experimental results in Chapter 7 and in Chaptei8 to compare
our library with pre-existing Maple and Magma implementations. The experimen-
tal result show that our approaches are very e ective, since tlyeoften signi cantly
outperform pre-existing implementations. The experimentabn e ort meets our last
motive mentioned in Section 1.1. Namely, we have systematigakvaluated the per-
formance, including speed-up factors and bottlenecks, of thapproach and compared
it with the pre-existing polynomial system solvers. For operatios such as Regular
GCD, Regularity Test, our new algorithm implementation has aactor of hundreds
faster than pre-existing ones.

1.4 Outline

In Chapter 2, we provide an overview of the background knowdge related to this re-
search, including implementation environment and existingsymptotically fast poly-
nomial algorithms. Chapter 3 is the starting point of this reseh. In this chapter
we investigate the existing fundamental fast polynomial algahms; we demonstrate
that by using suitable implementation techniques, these fast abgithms can outper-
form the classical ones in a signi cant manner; moreover, the wamplementation can
directly support existing popular computer algebra systems suasAXIOM (see Sec-
tion 2.2), thus can speed up related higher-level packages. @hapter 4 and Chapter 5
we focus on our new implementation strategies for asymptotibafast polynomial al-
gorithms. More speci cally, we investigate the implementatio techniques suited to
the multiple-level language environment inAXIOM . In Chapters 6, 7, and 8, we
present the new fast algorithms we have developed and their ilementation result
which is integrated in Maple version 13. The new algorithms includenodular mul-
tiplication, regular GCD, bivariate solver two-equation solverand regularity test In
Chapter 9, we present our parallel implementation of e cieng-critical operations for
fast polynomial arithmetic.



Chapter 2
Background

In this chapter we introduce asymptotically fast polynomial athmetic, our imple-
mentation environment and the concept of a triangular decoposition.

2.1 Pre-existing Fast Algorithms

In this section, we describe, or give references to, a set of bdast algorithms we have
implemented. These algorithms are low-level operations imé sense that they will
be used in almost all upper level algorithms reported in this #sis. We will describe
our new asymptotically fast algorithms in Chapters 6, 7, and 8.In the following
text, all rings are commutative with unity; we denote byM a multiplication time in
De nition 1.

De nition 1. A multiplication time is a mapM : N! R, whereR is the eld of
real numbers, such that:

For any ring R, polynomials of degree less thathin R[X ] can be multiplied in
at most M(d) operations(+; ) in R.

Forany d d the inequality ¥& M) hojgs,
Examples of multiplication times are:
Classical: 2;

Karatsuba: C d°920 with someC 9:

FFT over an arbitrary ring: C dlog(d) log(log(d)) for someC 64 [21].



Note that the FFT-based multiplication in degreed over a ring that supports the
FFT (that is, possessing primitiven-th root of unity, where n is a power of 2 greater
than 2d) can run in C dlog(d) operations inR, with someC  18.

The Montgomery integer division trick. Montgomery integer division trick [74] is a
fast way to compute integer division. Since our algorithms armostly over Z=pZ,
operations modulo prime numbelp are essential. We have designed various versions
of this trick in order to improve performances as reported irSections 5.2.2 and 6.3.
Here we give the original Montgomery trick. The principle ofhis trick is that instead

of computing an Euclidean division, it reduces the input intger w.r.t to a number
which is power of 2. In machine arithmetic, an integer can beidded by a power of

2 can simply by bitwise operations which are very cheap.

Algorithm 1 The Montgomery Integer Division trick

Input: Z; R; v; V2Z, wherev is the modulus andV v 1 mod R, assume
Z <R v,R<v, R usually chosen to be some power of 2, a@CD (R; v) = 1.

Output: T = ZR lremv.

1 A=VZ

2 B = AremR

3 C=Bv

4 T = Z + CquoR

5 ifv<sTthenT=T vV
6 retunT

Fast Fourier transform and truncated Fourier transform. The fast Fourier transform
(FFT) is a fast algorithm for calculating the discrete Fouriertransform (DFT) of a
function, see [44] for details.

This algorithm was essentially known to Gauss and was rediscogdrby Cooley
and Turkey in 1965. In symbolic computations, the FFT algorittm has many appli-
cations [36]. The most famous one is the fast multiplication gfolynomials. Even if
the principles of these calculations are quite simple, theiractical implementation is
still an active area of investigation.

The principle of FFT-based univariate polynomial multipliction is the following.
We consider two polynomials = = = 'ax* andg= [ 'bx* over some eld
K. We do not need to assume that they have the same degree; if they mlot have
the same degree, we add a \zero leading coe cient" to the one amaller degree.
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P .- . .
We want to compute the productfg = t;g“ ?cc. The classical algorithm would

compute the coe cient ¢, of fg by

X =k
G= _ ah (2.1)
fork=0;:::;2n 2, amounting to O(n?) operations inK.
If the values off andgare known at z2h 1 di erent points of K, sayXg;:::;Xon 2,

K such that

(1) evaluating f and g at these points can be done in nearly linear time cost, such
as O(nlog(n)),

overcome this limitation (essentially by considering a eld etension of K where the
desired points can be found). In the end, this leads to an algthhm for FFT-based
univariate polynomial multiplication which runs in O(nlog(n)log(log(n))) operations
in K [21]. This is the best known algorithm for arbitraryK.

In this thesis, we restrict ourselves to the case where we can nd ipts

points for n small enough. (Obviouslyn must be at most equal to the cardinality of
the eld.) More precisely, forn; p > 1, wherep is a prime, the nite eld Z=pZ has
a primitive m-th root of unity if and only if m dividesp 1. (Recall that! 2 K is

a primitive m-th root of unity of the eld K ifandonlyif ! ™ =1 and ! kK 6 1 for

O0<k<m). If Z=pZ has a primitive m-th root of unity ! , m> 2n 2

then we usex, = 'K fork =0;::::2n 2,
Step () isthe FFT of f andg at ! (to be detailed in the next section),
Step (i) isthe FFT of L at! *

Again, we refer to [44] for more details.

In [51], J. van der Hoeven reported a truncated version of the adsical fast
Fourier transform. It is referred as thetruncated Fourier transform (TFT) in the
literature. When applied to polynomial multiplication, this algorithm has the nice
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property of eliminating the jumps in the complexity at powes of two. Essentially,
this algorithm avoids computing the leading zeros during th DFT/evaluation and

inverse-DFT/interpolation stages. We have implemented this Igorithm which in-

deed removed the stair-case like timing curves from FFT based theds. However,
this algorithm requires more complicated programming strduares which may curb
compilers to apply certain loop optimization techniques, wéreas the standard itera-
tive FFT implementation has a much simpler nested loop structwe which is easy for
compiler to optimize the code.

Power series inversion. Power series inversion using Newton iteration method pro-
vides a fast method of computing multiplicative inverses. Givea commutative ring
R witha 1 and ™ 2 N, it computes the inverse of the polynomiaf 2 R[x], such that,

f (0) =1 and degf <" , modulox . The Newton iteration is used in numerical anal-
ysis to compute successive approximations to solutions ofg) = 0. From a suitable
initial approximation gy, subsequent approximations are computed using:

o (9)
9179 99)

(2.2)
where °is the derivative of . This corresponds to intersecting the tangent with an
axis or, in other words, replacing by its linearization at that point. If we apply
this to the problem of nding a g 2 R[x], given ~ 2 N with f (0) = 1, satisfying
fg 1 modx,we wantto approximate a root of g f = 0. The Newton iteration
step becomes:

_ g, Fg 2
G+ =0 1292 —291 fgi (2-3)

Proposition 1 shows that this method converges quickly to a sdian, also in this
algebraic setting.

Proposition 1. Let R be a ring (commutative with 1),f;go;0:;::: 2 R[x], with
f(0)=1,g=1,andg+ 2g fg?modx?™, foralli. Thenfg;, 1 modx?
foralli O.

Proof.  The proof is by induction oni. For i = 0 we have

fgo f(O)gg 11 1modx? (2.4)
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For the induction step, we nd
1 fgiwe 1 f(2g fgd 1 2fgi+f2¢ (1 fg)? Omodx?" (2.5)

O
Based on the above, we obtain the following Algorithm 2 for comybing the inverse
of f modx .

Algorithm 2 Power Series Inversion of to Precision”

Input: f 2 R[x] such thatf (0) =1, ~ 2 N such that degf) <~ and R[x] in variable
X is a ring of power series.

Output: g2 R[x]suchthatfg 1 modx . Runsin 3V(’)+0(") operations inR.
Recall from De nition 1 that M is multiplication time whose value is dependent
on the multiplication algorithm used.

Inv(f;") ==
1 g:==1
2 r:=dlogy,() e
3 fori=1:rrepeat g:=(2g 1 fg; 1°) modx?
4 return g

Proposition 2. If " is a power of 2, then Algorithm 2 uses at mo@&M(") + O(’) 2
O(M(l)) arithmetic operations in R [44, Ch. 9].

Proof.  The correctness stems from Proposition 1 which concludes that

fgi 1 modx? (2.6)
foralli 0. Inline 3, all powers ofx greater than 2 can be dropped, and since,
g G 12 fgi1) g imodx?’ (2.7)

the powers ofx less than 2 * can also be dropped.

The cost for one iteration of line 3 igM(2' 1) for the computation ofg 12, M(2') for
the product f g; 12 mod x?, and then the negative of the upper half ofg; 12 modulo
x? is the upper halfg;, taking 2 * operations. Thus we havéM(2)+ M(2' 1)+2i 1
3M(2") +2' 1, resulting in a total running time:
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X 3 . . 3 X
é|v|(2')+2' ! (él\/|(2f)+2r h 2 "< 3M@2)+2"=3M()+ " (2.8)
1ir 1ir
since M(n) M(2n) for all n 2 N (see De nition 1 at Page 8) [

Fast division. Using fast multiplication enables us to write a fast Euclidean dision
for polynomials, using Cook-Sieveking-Kung's approach thugh power series inver-
sion [43, Chapter 9]. Given two polynomials and b, both 2 R[x] and b monic, where
R is a ring (commutative with 1); assuming thata and b have respective degrees
m and n, with m  n, we can compute the polynomialg and r in R[x] satisfying
a = gb+ r and degf) < deg(. Using standard techniques this take€(n?) op-
erations in R. Equipped with a fast power series inversion, it can be improveid
O(M(n)) operations in R [44].

We de ne A and B as thereversalsof a and b

A(x) = x™a(1=x) (2.9)

B(x) = x" b(1=x) (2.10)

With the inverse C  1=B(x) mod x™ "*1 we obtain g as the reversal ofQ from the
subsequent multiplication:

Q(x) A(x)C(x) mod x™ "+t (2.11)

The full algorithm is shown in Algorithm 3.

Algorithm 3  Fast Division with Remainder Algorithm

Input: a;b2 R[x], whereR is a ring (commutative, with 1) and b6 0 is monic

Output: q;r 2 R[x] such thata= qb+ r anddegr < degb

FDiv (a;b ==
1: s:=Rev(b) ' mod xde9@ deg®)+1
2: Q:=Rev(a)s mod xd9A) deg(T1)+1
3: gq:=Rev(Q)

4 r:=a bq

5. return (q;r)
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Kronecker's substitution. Let A be a commutative ring with units. Let x; < X, <
< X, be n ordered variables and let ;; ,;:::; , be n positive integers with
1 = 1. We consider the ideall of A[xy;Xz;:::;Xn] generated byx,  X;?;Xs3
X% X X", Dene = ( 1; 25 3:ii; n). Let be the canonical map

polynomial of A[x;]. It has the following immediate property.

Proposition 3. The map is a ring-homomorphism. In particular, for all a;b2

(= (& (b: (2.12)

Therefore, if the product (a) (b) has only one pre-image by , one can
compute the product of the multivariate polynomialsa and b via the product of the
univariate polynomials (a)and (b). This is advantageous, when one has at hand
a fast univariate multiplication. In order to study the pre-images of (a) (b we
introduce additional material.

Let dq;dy;:::;d, be non-negative integers. We writel = (d;;d,;:::;d,) and we
denote by , the set of then-tuple e = (e;;&;:::;€,) of non-negative integers such
that we havee di foralli=1;:::;:n. We de ne

n = d1+ 2d2+ + ndn and 0=1; (213)

and we consider the map 4 de ned by

no b [0 n]

: (2.14)
(esexiine) 7! e+ o+ + &

d

that we call the packing exponent map

Proposition 4. The packing exponent map 4 is one-to-one map if and only if the
following relations holds:

1+ d;
1+ di+ o

N
1

-ow
1

X i=n 1
n 1+ dp+ Y idi:
i=
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that we call thepacking relations

Proof. We proceed by induction onn 1. Forn = 1 we have ; = d; and
d(er)=e forall0 e d;. Thus the packing exponent map 4 is clearly one-to-
one map in this case. Since the packing relations trivially hdfor n = 1, the property
is proved in this case. We consider now > 1 and we assume that the property holds
forn 1. We look for necessary and su cient conditions for 4 to be a one-to-one
map. We observe that the partial function

! 0}
(Gdn 1) "l [0 n ] (2.15)

""" :(el; e 1) 70 a(eneyiinie 150)

of 4 needs to be a one-to-one map fory to be a one-to-one map. Therefore, by
induction hypothesis, we can assume that the following relatisnhold.

2 = 1+ dy
3 = 1+ di+ o0
X i=n 2
n1 = 1+ di+ _ idi:
i=2
Observe that the last relation writes
n1=1+ , 2 (2.16)

We consider nowf 2 [0; ,]. Let gandr be the quotient and the remaindenr of the
Euclidean division off by ,. Hence, we have

f=q,+r and 0 r< : (2.17)

Moreover, the couple §; r) is unique with these properties. Assume that, =1+  ;
holds thenf has a unique pre-image in , by ,* which is

E)=( (ghing, ()0 (2.18)

.....

If o> 1+ , 1 holds, thenf = 1+  ; has no pre-images in , by % If

n<1l+ , ;holds, thenf =  has two pre-images in ,,, namely

0;:::;0,1) and by ( n): (2.19)
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Finally, the map 4 is one-to-one if and only if the packing relations hold.

Proposition 5. Lete=(e;;&;:::;6) bein , and X = x§'x3? x% be a mono-

(X) = x,*®; (2.20)

P
Moreover, for allf =, ,5 cx X

X

()= o (X (2.21)

where S is the support off , that is the set of the monomials occurring irp.

Proof.  Relation (2.20) follows easily from the de nition of . Relation (2.21)
follows from Proposition 3.

for every X = x$:x32  x% in the support of p we have €;&;:::;6,) 2 . The
setA[ ,]is not closed under multiplication, obviously. Hence it is ogla A-module.
The same remark holds for the seA[ ] of univariate polynomials overA with degree
equal or less than .

Kronecker's substitution based multivariate multiplicabn. Following the previous
notations and de nitions from Kronecker's substitution we investigate Kronecker's
substitution based multivariate multiplication as follows. Although the restriction
of the map to A[ ] is not a ring isomorphism, it can be used for multiplying

multivariate polynomial as follows. Letf;g 2 A[Xi;X2;:::;X,] and let p be their
product. Forall1 i n we choose
di = deg(p; xi); (2.22)
that is the partial degree ofp w.r.t. x;. Observe thatforall1 i n we have
deg(; xi) = deg(f; x;) + deg(g; x): (2.23)

It follows that the three polynomialsf; g; p belong toA[ ,]. Moreover, from Propo-
sition 3, we have

M= () (9 (2.24)

Therefore, we can computg using the simple following algorithm . Let us assume
that we have at hand a quasi-linear algorithm for multiplyingin A[x4], that is an
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Algorithm 4  Kronecker Multiplication

Input: ;g 2 A[ »] suchthatfg 2 A[ ,] holds.

Output: fg

1 u = (f)
2 ug:= (9
3 Ufg = UsUg
4 p:= 1(Ufg)
5 retun p

algorithm such that the product of two polynomials of degreeeks thatk can be

computed in O(k!* ) operations in A. Such algorithm exists over any ringA [21]. It

follows that step 3 of the above algorithm can be performed i©O( ,** ) for every
> 0. Therefore, we have:

Proposition 6. For every > 0, Algorithm 4 runs in O(((d; +1) (d, +1))¥")
operations in A.

2.2 Implementation Environment

In this section, we introduce the computer algebra systems antidir programming
languages on which we rely to implement our algorithm and teshe performance.
We use two systemsAXIOM and Maple .

AXIOM [52] is a comprehensive Computer Algebra System which has beande-
velopment since 1971. It was originally developed by IBM undéhe direction of
Richard Jenks. AXIOM has a very high level programming language callé&8PAD ,
the abbreviation of Scratchpad. It can be compiled intd€Common Lisp by its own
built-in compiler. There is an external stand-alone compitemplemented in C which
also accepts thesPAD language, calledAldor [1]. AXIOM has both an interactive
mode for user interactions and a programming language for liding library modules.
The typical way of programming inAXIOM is as follows. The programmer creates
an input le de ning some functions for his or her application Then, the programmer
runs the le and tries the functions. Once everything works wg the programmer
may want to add the functions to the localAXIOM library. To do so, the program-
mer needs to integrate his or her code IAXIOM type constructors and then invoke
the compiler.
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By de nition, an AXIOM type constructor is a function that returns a type which
can be either acategory a domain, or a package Roughly speaking, a domain is a class
of objects. For example Polynomial domain denotes polynomialsMatrix domain
denotes matrices. A category is a class of domains which has coom properties. For
example, theAXIOM categoryRing designates the class of all rings with units, any
AXIOM domain that has this property belongs to the categornRing. The source
code for the categoryRing is shown below.

Ring(): Category == Join(Rng,Monoid,LeftModule(%)) with

--operations

characteristic: () -> NonNegativelnteger
++ characteristic() returns the characteristic of the ring
++ this is the smallest positive integer n such that
++ \spad{n*x=0} for all x in the ring, or zero if no such n
++ exists.
-- We can not make this a constant, since some domains are
-- mutable

coerce: Integer -> %
++ coerce(i) converts the integer i to a member of
++ the given domain.

unitsknown
++ recip truly yields
++ reciprocal or "failed" if not a unit.
++ Note: \spad{recip(0) = "failed"}.

add
n:Integer
coerce(n) == n * 1$%

From the above AXIOM source code we can observe another important concept:
categories form a hierarchy. We can see th&ing is extended from the categories
Rng Monoidand LeftModule . In addition, we can observe thatRing has

2 operations: characteristic , coerce,
1 attribute unitsKnown,

and 1 default implementation for the operationcoerce: Integer -> % .
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The programmer can construct her/his own categories by extding existing cat-
egories. This requires knowledge of the existing hierarchieszigure 2.1 shows a
fragment of the hierarchy of theAXIOM algebraic categories.

SetCategor
OrderedSet

SemiGroup

Ordered OrderedMonoid
Abelian

SemiGroup

AbelianGroup

} OrderedRing

Figure 2.1: Algebraic categories' hierarchy idXIOM (partial).

Next to the concept of category, domain is easier to understandlt actually
corresponds to the notion of data type. When a domain is de nedt is asserted to
belong to one or more categories and promises to implement teet of operations
de ned in these categories. After an newly de ned domain is conipd, it becomes
an AXIOM data type which can be used just like a system-provided data typ&.he
programmer usually needs to design a lower level data structute represent the
objects of the domain. When a domain is instantiated, theAXIOM system will
allocate memory for those data structures.

MAPLE is one of the most popular computer algebra systems. It was rst deloped
by the Symbolic Computation Group at the University of Waterla in 1980. Maple in-
corporates a dynamically typed imperative-style interpregd programming language.
The language permits variables of lexical scope. There ares@alinterfaces to other
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languages (C, Fortran, Java, Matlab, and Visual Basic). Maplesi based around a
small kernel, written in C, which provides the Maple language Most functionality
is provided by libraries. Most of the libraries are written in he Maple language.
Symbolic expressions including polynomials are stored in memjas directed acyclic
graphs. Maple has a set of powerful symbolic polynomial computation librags.
The related existing polynomial packages ar®egularChains, Polynomialldeals .
Maple language is interpreted and easy to use. As reported in later ghtars (Chap-
ters 7, 8), the previous triangular decomposition techniqubased implementation in
Maple relies on theMaple interpreted high level language and classical polynomial
arithmetic. Our new Maple library modpnis developed based asymptotically fast
polynomial arithmetic and the majority part written in C. Therefore, the new algo-
rithms and implementation from this thesis practically havesped up the triangular
decomposition packages iMaple . In Chapter 8 we will report the C/ Maple code
integration procedure in details.

2.3 Triangular Decompositions

2.3.1 Polynomial ideal and radical

cients in K, with ordered variablesx; X,. Let K be the algebraic closure of
K. If u is a subset ofx then K(u) denotes the fraction eld of K[u].

polynomials of the form
hifq+ + hpfm

De nition 2.  The radical of the ideal generated by, denoted byp HFi, is the set

p® 2 hFi. The ideal FFi is said to be radical if we havéFi = = HFi.
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a,f, + +anfm=9g and f;=hg for i=1;:::;e:

Therefore, every ideal ofK[x;] is generated by a single element.

De nition 3. A univariate polynomial f 2 K][x;] is said to besquarefreeif for all
non-constant polynomialsg 2 K[x,] the polynomialg? does not dividef .

Remark 2. Let f 2 K[x;] be non-constant. It is not hard to see that the ideal
i  K[x4] is radical if and only if f is squarefree.

2.3.2 Zero-divisor, regular element, zero set

For a subsetF of K[x], let h be a polynomial inK[x], the saturated idealof h~i with
respect toh, denoted byhFi : h' , is the ideal

fq2 K[x]j9m 2 N such that h™g 2 hFig:

A polynomial p 2 K[x] is a zero-divisor modulo hFi if there exists a polynomialq
such that pq2 hFi, and neither p nor g belongs tohFi. The polynomial p is regular
modulo hFi if it is neither zero, nor a zero-divisor moduld¥i. Geometrically, we
denote by V(F) the zero set(or solution set, or variety) of F in K . For a subset
W K, we denote byW its closure in the Zariski topology.

2.3.3 Triangular set and regular chains

Main variable and initial. If p 2 K[x] is a non-constant polynomial, the largest
variable appearing inp is called themain variable of p and is denoted by mvarp).
The leading coe cient of p w.r.t. mvar(p) (p is viewed as an univariate polynomial
in mvar(p)) is its initial , written init( p) whereas Icp; V) is the leading coe cient of p
w.r.t. v 2 x. For example, letp be the polynomial 33x?+3yx+1 2 K[x;y]; x>V,
init( p) = 2y2 but Ic(p;y) = 2x2.

Triangular Set. A subsetT of non-constant polynomials oK[x] is atriangular set if
the polynomials in T have pairwise distinct main variables. Denote by mvail{) the
set of the main variables of the polynomials iT. A variable v 2 x is algebraicwith
respect toT if v 2 mvar(T); otherwise it is free. For a variablev 2 x we denote by
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T, (resp. Tsy ) the subsets ofT consisting of the polynomials with main variable less
than (resp. greater than)v. If v 2 mvar(T), we denote byT, the polynomial in T
with main variable v. If T is not empty, we denote byTax the polynomial of T with
largest main variable.

Quasi-component and saturated idealGiven a triangular setT in K[x], denote by
hr the product of the init(p) for all p 2 T. The quasi-componentW(T) of T is
V(T) nV(ht), that is, the set of the points of V(T) which do not cancel any of the
initials of T. We denote by sat{l) the saturated idealof T, de ned as follows: ifT is
empty then sat(T) is the trivial ideal h0i; otherwise it is the idealhTi : hi .
For the given regular chainT = fxy z2;y* z°g, the quasi-componentV (T) =

V(xy zZy* z9)nV(y)is W(T) = f(x;y;z)jxy z?>=0;y* 2z°=0;y80g. The
saturate ideal of T is sat(T) =<x3 yz;xy z%y* 2z%xz® y3zx?2 y?2>.

Regular chain. A triangular set T is aregular chainif either T is empty, orT f Tnax0
is a regular chain and the initial of T,,ax IS regular with respect to satl f Tnax0).

In this latter case, sat(T') is a proper ideal ofK[x]. From now onT  K][x]is a regular
chain; moreover we writem = jTj, s=mvar(T) and u = x ns. The ideal sat(T)
enjoys several properties. First, its zero-set equal (T). Second, the ideal safl)
is unmixed with dimensionn m. Moreover, any prime idealp associate to saf{)
satis es p\ K[u] = h0i. Third, if n = m, then sat(T) is simply hTi. Given p 2 K[x]
the pseudo-remainder(resp. iterated resultanf) of p w.r.t. T, denoted by premp; T)
(resp. reqp;T)) is de ned as follows. Ifp 2 K or no variables ofp is algebraic
w.r.t. T, then prem(p;T) = p (resp. redp; T) = p). Otherwise, we set premg; T) =

prem(r; T, ) (resp. regp; T) = reqr; T<,)) wherev is the largest variable ofp which
is algebraic w.r.t. T and r is the pseudo-remainder (resp. resultant) gb and T,
w.r.t. v. The following holds: p is null (resp. regular) w.r.t. sat(T) if and only if
prem(p; T) =0 (resp. regp; T) 6 0).

2.3.4 Subresultants

We follow the presentation of [31]. Other references that weatee used are [47, 93, 35].

Determinantal polynomial. Let A be a commutative ring with identity and letm n
be positive integers. LetM be am n matrix with coe cients in A. Let M; be
the square submatrix ofM consisting of the rst m 1 columns ofM and the i-th
column of M, fori = m n; let detM; be the determinant ofM;. We denote by
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dpol(M) the element of A[X], called the determinantal polynomialof M, given by

detM X" M +det M, X" ™ 1+  +detM,:

polynomials of A[X ] of degree less tham. We denote by matP,;:::;Pn)them n
matrix whose i-th row contains the coe cients of P;, sorting in order of decreasing
degree, and such tha®; is treated as a polynomial of degree 1. We denote by

Subresultant.Let P; Q 2 A[X] be non-constant polynomials of respective degrepsg
with g p. Let d be an integer with 0 d <q. Then the d-th subresultantof P and
Q, denoted by Sy4(P; Q), is

This is a polynomial which belongs to the ideal generated by and Q in A[X]. In
particular, Sp(P; Q) is res(P; Q), the resultant of P and Q. Observe that if S4(P; Q)
is not zero then its degree is at most. When Sy4(P; Q) has degreed, it is said
non-defectiveor regular, when S4(P; Q) 6 0 and deg(Sq4(P; Q)) < d, Sy(P; Q) is said
defective We denote bysy the coe cient of S4(P;Q) in X 9. For convenience, we
extend the de nition to the g-th subresultant as follows:

(Q)Q; ifp>qgorlc(Q)2 A is regular
unde ned; otherwise

Sq(P; Q)=

where (Q) =1Ic( Q)" ? 1. Note that when p equalsq and Ic(Q) is a regular element
in A, S4(P; Q) =lc( Q) 'Q is in fact a polynomial over the total fraction ring ofA.

We call specialization property of subresultant sequentiee following statement.
Let B be another commutative ring with identity and a ring homomorphism from
A to B such that we have (Ic(P)) 6 0 and (Ic( Q)) 6 0. Then we have

Se(( P); ( Q)= ( Su(P;Q)):

For example, the subresultant chain of; = x5+ X;x, +1 and F, = 4x3 + x; is as
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follows:
Sy= X3+ X1Xp+ 1
S;=4x3+ X
S = 4(3Xi1x2+4)
Si = 12X1(3x1X2 +4)
So= 274+ 256

Divisibility relations of subresultants. The subresultants S, 1(P;Q); Sy 2(P; Q);
211 So(P; Q) satisfy relations which induce an Euclidean-like algorithnior comput-
ing them. Following [31] we rst assume thatA is an integral domain. In the above,
we simply write Sy instead of S4(P;Q), ford=qgq 1;:::;0. We write A B for
A;B 2 A[X] whenever they are associatedA is associated withB if and only if the
following condition hold

aA = bB; a;RA

(rq 1) Sq 1=prem(P; Q), the pseudo-remainder oP by Q,

(r<g 1) if Sq 1 6 0, with e = deg(Sy 1), then the following holds: premQ; Sy 1) =
Ic(O)P V@ &+l g
C(Q) e 1,

(re) if Sg 160, with e=deg(Sq 1) <d 1,thusSy ; is defective, and we have

(i) deg(Sy) = d, thus Sy is non-defective,
(i) Sg 1 SeandlIc(Sy 1) © 'Sy 1= sq¢¢ © 1S, thus S, is non-defective,
(iii)SdZZSd 3= =Se+1:0,

(re 1) If Sq; Sy 1 are non zero, with respective degreed and e then we have
prem(Sy; Sg 1) =lc(S)? S 4,

We consider now the case wherm& is an arbitrary commutative ring, following The-

orem 4.3 in [35]. IfSy; Sy 1 are non zero, with respective degreesand e and if sy

is regular in A then we have Ic§qy 1)d © 15, ; = s4¢ ¢ 1S, moreover, there exists
Cq 2 A[X] such that we have:

( 1) Yc(Sy 1)coe (Se; X )Sy+ CySq 1 = Ic(Se)*Se 1

In addition Sy = S4 3= = Se+1 = 0 also holds.
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2.3.5 Regular GCD

Regular GCD. Let | be the ideal generated b)P sat(T) in K[x1;:::Xn 1][Xa]. Then
L(T) := K(u)[s]=l is a direct product of elds. It follows that every pair of univariate
polynomials p;t 2 L(T)[y] possesses a GCD in the sense of [76]. The following
GCD notion [75] is convenient since it avoids considering rawdil ideals. LetT

with the same main variablex,. Assume that the initials of p and t are regular
modulo sat(T). A non-zero polynomialg 2 K[x] is aregular GCD of p;t w.r.t. T if
the following conditions hold:

(i) lc(g;x,) is regular with respect to sat{l);
(i) there existu;v 2 K[x] such thatg up vt2 sat(T);
(iii ) if g62K and mvar(g) = X, hold, then hp;ti  sat(T [ g).

In this case, the polynomialg has several properties. First, it is regular with
respect to sat{l). Moreover, if sat(T) is radical andg has positive degree irx,, then
the idealshp;ti and hgi of L(T)[x,] are equal, so thatg is a GCD of (p;t) w.r.t. T in
the sense of [76]. The notion of regular GCD can be used to computtersections of
algebraic varieties. As an example we will make use of the follmg formula which
follows from Theorem 32 in [75]. Assume that the regular chaihis simply f rg where
r = reqp;t;x,), for r 62K, and let h is the product of the initials of p and t. Then,
we have:

V(p;t) = W(r;g) [ V(h;p;t): (2.25)

whereW (r; g) is the algebraic closure of the quasi-component ofand g.

Splitting. Two polynomials p;t may not necessarily admit a regular GCD w.r.t. a
regular chainT, unless sat) is prime, see our Example 1 of Section 7.3 at Page 95.
However, if T is \split" into several regular chains, thenp;t may admit a regular
GCD w.r.t. each of them. To this end, we need a notation. For meempty regular
chainsT;Ty;:::;Te K[x]wewrite T ! (Ty;:::;Te) whenever we have mvai) =
mvar(T;)forall1 i e sat(T) sat(T;)and sat(T)= sat(Ty)\ \  sat(Te).

If this holds, observe that any polynomialh regular w.r.t sat(T) is also regular w.r.t.
sat(Tj) foralll i e
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Chapter 3

Foundational Fast Polynomial
Arithmetic and its Implementation

3.1 Overview

As mentioned in Section 1.2, one of the major contributions dhis thesis is that we
have developed a set of highly e cient implementation operadns of asymptotically
fast polynomial arithmetic and integrated it into several corputer algebra systems.
The existing fast polynomial arithmetic such as fast multiplicéion, division, fast
GCD are the e ciency-critical ones. We report the implementdéion e ort on these
operations in this chapter and Chapters 4, 5, 9. Based on theseglementations, we
have developed new higher level polynomial operations foolgnomial system solving.
The new algorithms and new implementation result will be repted in Chapters 6,
7 and 8.

Asymptotically fast algorithms for polynomial arithmetic have been known for
more than forty years. Among others, the work of Karatsuba [57], &ley and
Tukey [25], and Strassen [88] has initiated an intense activityn this area. Unfortu-
nately, its impact on computer algebra systems has been reddaantil recently. One
reason was, probably, the belief that these algorithms were oény limited practical
interest. In [45] p. 132, referring to [73], the authors statehiat the FFT-based uni-
variate polynomial multiplication is \better than the classical method approximately
whenn+ m 600", wheren and m are the degrees of the input polynomials. In
[58] p. 501, quoting [18], Knuth writes \He (R. P. Brent) estima&ed that Strassen's
scheme would not begin to excel over Winograd's unti 250 and such enormous
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matrices rarely occur in practice unless they are very sparseh&n other techniques
apply."

Moreover, the implementation of asymptotically fast arithméc was not the pri-
mary concern of the early computer algebra systems, which had nyaother challenges
to face. For instance, one of the main motivations for the del@ment of the AX-
IOM computer algebra system [52] was the design of a language wheetghramatical
properties and algorithms could be expressed in a natural anctcent manner. Nev-
ertheless, successful implementations of the FFT-based univadgolynomial multi-
plication [73] and Strassen's matrix multiplication [10] hag been reported for several
decades.

In the last decade, several software for performing symbolic cpotations have put
a great deal of e ort in providing outstanding performances,ncluding successful im-
plementation of asymptotically fast arithmetic. As a result, tre general-purpose com-
puter algebra systemMagma [5] and the Number Theory LibraryNTL [6] have set
world records for polynomial factorization and determinig orders of elliptic curves.
The book Modern Computer Algebral44] has also contributed to increase the gen-
eral interest of the computer algebra community for these algthms. As to linear
algebra, in addition to Magma , let us mention the C++ template library LinBox [7]
for exact linear algebra computation with dense, sparse, and sttured matrices over
the integers and over nite elds. A cornerstone of this libray is the use of BLAS
libraries such as ATLAS to provide high-speed routines for matres over small nite
elds, through oating-point computations [33].

However little has been reported on the details of such e ort.nl this chapter, we
mainly discuss how we achieve high performance for some welleséa fast polynomial
algorithms in two high-level programming environmentsAldor and AXIOM . Two
approaches are investigated. WithAldor we rely only on high-level generic code,
whereas with AXIOM we endeavor to mix high-level, middle-level and low-level
specialized code. We show that our implementations are satisfaxy compared to
other well-known computer algebra systems or libraries such B&agma v2.11-2 and
NTL v5.4.

The outline of this chapter is as follows. Section 3.2 is an aweew of the language
features of AXIOM and Aldor systems. In Sections 3.3 and 3.4, we discuss our
implementation techniques in theAldor and AXIOM . In Section 3.5 we report
our experimentation result. Our implementations inAldor generic code are only
approximately twice slower than the highly optimizedC++ implementation in of
NTL . Our specialized implementation inrAXIOM leads to comparable performance
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and sometimes outperforms those dilagma and NTL . All timings given in this
chapter are obtained on a bi-Pentium 4, 2.80 GHz machine, with Gb of RAM.

NOTE: This chapter is written based on the published paper [6 5].

3.2 High Level Programming Environment

AXIOM andAldor are the rsttwo computer algebra systems on which we conduct
our experimentation. We use the word \experimentation" sinceve have tried a
few methods to speed up polynomial packages in these two systemyspbugging in
our new asymptotically fast implementation. The most appropate methods and
implementation are nally integrated in Maple as reported in Chapter 7 and 8.

Recall that in Section 2.2 at Page 17 we have provided a brieftioduction of
AXIOM and an example of its type system. OriginalhAldor is an extension lan-
guage fromAXIOM , thus it shares many language features. In the following text
we describe the language features of these two systems. PrimardyXKIOM and
Aldor designers attempted to surmount the challenges of providingh&nvironment
for implementing the extremely rich relationships among maematical structures.
Hence, their design is of somewhat di erent direction than thabf other contempo-
rary programming languages. They have a two-level object melof categories(see
the example: theAXIOM Ring category in Section 2.2) anddomainsthat is sim-
ilar to Interfaces and Classesin Java. They provide a type system that allows the
programmer the exibility to extend or build on existing types or create new type
categories as is usually required in algebra.

In AXIOM and Aldor , types and functions can be constructed and manipu-
lated within programs dynamically like the way values are maipulated. This makes
it easy to create generic programs in which independently deeped components
are combined in many useful ways. For instance, for a giveéhXIOM or Aldor
ring R the domains SUP(R)and DUP(R) for sparse and dense univariate polyno-
mials respectively, provide exactly the same operations; thas they have the same
user interface, which is de ned by the categornivariatePolynomialCategory(R)

But, of course, the implementation of the operations c8UP(R)and DUP(R)is quite
di erent. While SUP(R)implements polynomials with linked lists of terms,DUP(R)
implements them with arrays of coe cients indexed by their aegrees. This allows us
to specify a packagefFFTPolynomialMultiplication(R, U) , parametrized byR an
FFTRing that is, a ring supporting the FFT; and by U, a domain ofUnivariatePoly-
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nomialCategory(R) . After discussing the common part inAXIOM and Aldor , we
illustrate the unique features in each system environment. Basen the uniqueness
we have developed suitable implementation techniques forabasystem respectively
(see Section 3.3 and 3.4 for detail).

3.2.1 The Aldor environment

Aldor can be used both as a compiled and interpreted language. Cogrimization
is however only available in the compiled mode. AAldor program can be compiled
into: stand-alone executable programs; object libraries inative operating system
formats; portable byte code libraries; andC or Lisp source [1]. Code improvement by
techniques such as program specialization, cross- le proceduimtegration and data
structure elimination, is performed at the optimization stag of the compilation [90].

3.2.2 The AXIOM environment

The general introduction ofAXIOM has been given in Section 2.2. In this section, we
provide more technical details. Based on these details, we carttbeunderstand how
to make the lower level GCL , C and Assembly ) implementation packages available
for AXIOM system. Recall that in Section 2.2, we have mentioned tha&XIOM
has both an interactive mode for user interactions and a highevel programming
language, calledSPAD , for building library modules. Concretely, the compilation
process inAXIOM is as follows:

The SPAD code will be translated intoCommon Lisp code by a built-in com-
piler.

Then the Common Lisp code will be translated into C code by the GCL
compiler.

Finally, GCL makes use of a nativeC compiler, such asGCC, to generate
machine code.

Since these compilers can generate fairly e cient code, progmmers can concentrate
on their mathematical algorithms and write them inSPAD .

However, to achieve higher performance, our implementatiadso involvesLisp,
C, and assembly level code. By modifying thaXIOM make les, newLisp functions
can be compiled and made available &PAD level. Moreover, by using theGCL
system providedmake-function one can add newC implementation in the format
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of functions into the GCL kernel. These new functionality will be available at the
GCL and SPAD level. Finally Assembly code can either be inlined intaC code or
compiled into Lisp kernel images, and so available fdrisp and SPAD level.

3.3 Implementation Techniques: the Generic Case

Our goal in the generic case is to implement algorithms with @si-linear time com-
plexities in a high-level programming environmen#ldor ), without resorting to low-
level techniques. The primary focus is not to outperform othheimplementations of
similar algorithms on other platforms, but rather to ensure thawe achieve our best in
terms of space and time complexities in our target environmenFor instance, in the
Aldor high level programming environment we write optimizer-fendly and garbage
collector (GC)-friendly code without compromising the higHevel nature of our imple-
mentations. The practically result shows that our e orts are eective. In Section 3.3.1
we describe the implementation techniques we developed foete ciency-critical op-
erations, and in Section 3.3.2 we show that the higher level algthms in Aldor can
be sped up in large scale consequently.

3.3.1 E ciency-critical operations in Aldor

We rst discuss the techniques and results of ouAldor implementation of two
e ciency-critical algorithms: FFT and power series inversionas de ned in Section 2.1
at Page 8.

FFT. We specify a FFT multiplication package that accepts a generipolynomial
type, but performs all operations on arrays of coe cients, with are pre-allocated and
released when necessary, without using the compiler's garbagdlector. For coe -
cient elds Z=pZ, Aldor 's optimizer produces code comparable to hand-optimized
C code.

Power series inversion. We have implemented two versions of the power series
inversion algorithm: a \naive" version without optimization and a space-e cient
version. The latter implementation uses the following ideas:

We pre-determine all array sizes and pre-allocate all needéd ers, so that
there is no memory allocation in the loop.
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Even though we accept a generic polynomial type, we changeetllata repre-
sentation to arrays of coe cients, work only with these arrays, ad reuse DFT
as much as possible.

As in NTL, we use wrapped convolution to compute then middle coe cients
ofa(2n 1) n full product (this is the middle-product operation of [49])

Figure 3.1 shows the running time of our two implementations,ogether with
the time for a single multiplication, in a eld of the form Z=pZ. We measured the
maximum resident set size; Figure 3.2 shows that the naive versiosed a total of
over 16000 Kb to invert a polynomial of degree 8000 while theage e cient version
used less than 2500 Kb for the same polynomial. For examples whigher degrees,
the factor of improvement is larger.

3 T T

"_Naive - .
Optimized
25 Poly Multiplication
2
)
(3]
9,
o 15
E
'_
1
0.5
0 b i i i

1K 2K 3K 4K B5K 6K 7K 8K
Degree (K=1000)

Figure 3.1: Power series inversion: naive vs. optimized implemtation vs. multipli-
cation, 27-bit prime.

We rst give the source code of the naive version as follows:

modularinversion(f:U,n:Z):U ==
assert(one?(trailingCoefficient(f)));
local m,g0,g__ old,g__new,mi:U;

m: == monom;
g0:U:=1; g_ old:U:=1; g_ new:U:=1;
local r,mii:Ml;

if PowerOfTwo?(n) then r := length(n)-1;
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Figure 3.2: Power series inversion: space usage of naive vs. o#d implementa-
tions, 27-bit prime.

else r := length(n);

for i in 1..r repeat {

mi = m~(2MN);

g__new = (2*(g__old)-(f*((g__old)*(g__old)))) mod mi;
g__old := g_ new;

}

return (g__new);

}

Then follows the source code of the e cient version:

macro {
U == DenseUnivariatePolynomial(K:Field);
Z == Aldorinteger;
}
fastModInverse(f:U,n:Z2):U ==
import from Z,MI;
local dftf,dftg,Y,G,workspace,dftw,op,coeff:AK;
local di__1,di,r,mii:MI; local res:U; local wiK;

if PowerOfTwo?(n) then r := length(n)-1;
else r := length(n);
nn:MI := shift(1,r); -- 2°r



{ allocate storage

dftg := new(nn,0$K);

Y := new(nn,0$K);

G := new(nn,0$K);
workspace := new(nn,0$K);
op := new(nn,0$K);

{ stores g 1

G.0 := 1%K;
dftg.0 := 13K;

{ stores truncated f

coeff := new(nn,0$K);

dftf := new(nn,0$K);

dftw := new(nn,0$K);

kk:MI := 0;

for k in coefficients(f) repeat {
kk = nn => break;

coeff.kk := k; kk := next(kk);
}

for i in 1..r repeat {

mii := shift(1,i); -- 27

{ degree of g

di ;= mii - 1;
w:Partial K := primitiveRootOfUnity(mii);
wi = retract(w);

{ op stores OmegaPowers up to mii

OmegaPowers!(op,wi,mii);
dftg := dft!(dftg,mii,i,op,workspace);

{ f modX?2: truncates f

for j in 0..di repeat dftf.j := coeff,;
dftf .= dft!(dftf,mii,i,op,workspace);

{ dftf*dftg pointwise

33
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for j in O..di repeat dftf.j := dftf.j*dftg.j;

dftf := idft!(dftf,mii,i,op,workspace); -- invert dft
di_ 1 := shift(1,i-1) - 1; -- degree of g_i_1
ndi__1 := next di__1;

{ takes the end part

kk:=0;
for j in ndi__1..di repeat {
dftw.kk := dftf.j; kk:=next Kk;
}
dftw := dft!(dftw,mii,i,op,workspace);
for j in O..di repeat dftg.j := dftg.j*dftw.j;
dftg := idftl(dftg,mii,i,op,workspace);

{ X"di-1 vy: the middle product

for j in 0..di__1 repeat Y.(j+(ndi__1)) := dftg.];
for j in ndi__1..di repeat G.j := G.j - Y.j;

{ to allow dft! in-place of G, save G

for j in 0..di repeat dftg.j := G.j;
}

{ convert to polynomial

res := unvectorize(dftg,nn);

freel(dftg); free!(dftf); free!(dftw); free!(workspace );
free!(op); free!(coeff);

return res;

3.3.2 Extended Euclidean algorithm

We implemented the Half-GCD algorithms of [93] and [19], ad#gd to yield monic
remainders. The algorithms given in Section 2.1 at Page 8 camt the adaptation we
made. Our implementation of Euclidean division uses power sesiinversion [43, Ch.
9], when the degree di erence between two consecutive remaéns is large enough. We
use Strassen's algorithm [43, Ch. 13] for the 22 polynomial matrix multiplication;
This implementation outperforms the standard Euclidean algrithm by a factor of 8
at degree 3000.
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3.4 Implementation Techniques: the Non-generic
Case

For AXIOM the non-generic case, we put additional e orts on investigaig the
e ciency of the compiled code. The reasons are as following.irBt, we are curious
that, to what extend, a compiler optimizes our polynomial aplications. Second,
our work is largely motivated by the implementation of moduhr methods. High
performance for these methods relies on appropriately utilng machine arithmetic
as well as carefully constructing underlying data represerttan. This leads us to look
into machine-level questions, such as machine integer arithti,e memory hierarchy,
and processor architecture. At this level,C is preferred and assembly is used if
necessary. Third, we are interested in parallel programming,hich is not available
at SPAD level, but can be achieved irLisp and C (see Chapter 9 at Page 139 for
our parallel implementation result). In the following text, we focus on the major
e orts: suitable data representation, SIMD instructions, loop wrolling and thread-
level parallelism.

3.4.1 Data representation

We usedensepolynomials as the data representation. We have in mind to imi@ment
algorithms for solving polynomial systems by modular methodsver Z=pZ. Polyno-
mials appearing in such applications tend to become \densi édlue to intensive use
of Euclidean algorithm, Hensel lifting techniques, etc.

In concrete terms, elements of the prime eldZ=pZ are encoded by integers in
the range Q:::;p 1. This allows us to useC-like arrays such adixnum-array in
Lisp to encode polynomials iZ=pZ[X]. If p is small enough, we tell the compiler to
use machine integer arithmetic; for larg@, we use the Gnu Multiple Precision library
(GMP).

To test the best performance, we writeC and assembly code for the operations
such as univariate polynomial addition, multiplication : wepass the array of refer-
ences to ourC and assembly code, then return the result back t&XIOM . In the
nal implementation as reported in later chapters, we avoid gsing assembly code for
maintaining the good code portability.

We compare the performance of two univariate polynomial cstructors SUPand
UMASUPis a pure SPAD level implementation, andUMAs written in Lisp, C and
assembly with aSPAD level wrapper. UMAneans Univariate Modular Arithmetic,
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since it is designed for polynomials iZ=pZ[x]. Over a 64-bit prime eld, UMAaddi-
tion of polynomials is up to 20 times faster tharSUPaddition, in degree 30000; the
guadratic UMAmplementation of polynomial multiplication is up to 10 times faster
than SUPmultiplication, in degree 5000. The FFT multiplication will be discussed
in later text. The UMAmplementation is integrated into AXIOM library and used
in an user-transparent way, thanks to the concept ofonditional implementationin
AXIOM . Namely, on the condition where polynomial computation is @r Z=pZ, UMA
will be automatically used.

Similarly, we have implemented a specialized multivariategdynomial domain over
Z=pZ. The operations in this domain are mostly implemented at the.isp level
which o ers us more exibility (less type checking, better suport from the machine
arithmetic) than at the SPAD level. We follow the vector-based approacproposed
by Fateman [38] where a polynomial is either a number or a vext If a coe cient is
a polynomial, then the corresponding slot of the \parent" veair keeps a reference to
that polynomial or, say, another vector; otherwise, if the coeient is a number, the
slot keeps that number.

3.4.2 The implementation of FFT

Our implementation of FFT-based univariate polynomial multplication in Z=pZ[X]

distinguishes the cases of small (single-precision) primes and knultiple-precision)

primes. For the big prime case, one can either directly use thegbinteger arith-

metic, Or use the Chinese Remainder Theorem (CRT) based apprbaclhe general
principle of CRT is to reduce the big integer problem into 2 omore smaller integer
problems [86, 43].

For both small and big prime cases, we used the algorithm of [26]datechniques
discussed in Subsection 3.4.3 below. Figure 3.3 shows a comparisetween these
two approaches. We put special e ort on the big prime case. We reite some GMP
low-level functions for double word size prime arithmetic wbh is the most useful
case in our polynomial computation. Figure 3.3 shows that the spialized double
precision big prime functions and CRT approaches are fasterdah the generic GMP
functions. The CRT recombination part spends a negligible:06% to Q07% percent
of the time in the whole FFT algorithm.
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Figure 3.3: FFT multiplication: GMP functions vs. double precision integer functions
vs. CRT, 64 bit prime.

3.4.3 SSEZ2, loop unrolling, parallelism

Modern compilers can generate highly e cient code, howevéor some cases the hand-
tuned code still outperforms the compiler optimization. We sbw three examples of
hand-tuned improvement from our FFT implementation.

Single precision integer division with SSE2. The single precision modular
reduction uses oating point arithmetic, based on the formulaa ab a 1=pc p [86].
We have implemented this idea in assembly for the Pentium IA-32r¢hitecture with
SSE2 support. This set of instructions is Single Instruction Multipke Data (SIMD);
they make use oXMM registers which pack 2 double oats or 4 single oats/integers
in one single register. The following sample code computes () mod p with SSE2
instructions.

1 | movl RPTR, %edx 11 | movups (Y%eax), %xmmO
2 | movl WD1, %eax 12 | cvitpd2pi Y%oxmmz2, %mm2
3 | movl WPD1, %ecx 13 | cvtpi2pd %mm2, %xmm?2
4 | movq (%edx), Y%ommO 14 | mulpd %xmm2, %xmmO
5 | movups (%eax), Y%oxmml | 15 | subpd %xmmO0, %xmml
6 | cvtpi2zpd %ommO0, %xmm0 | 16 | cvttpd2pi Y%oxmm1, %emml
7 | movups (%ecx), %oxmm2 | 17 | movq %emm1, (%edx)

8 | movl PD, %eax 18 | emms

9 | mulpd %xmm0, %xmml | 19 | ret

10 | mulpd %xmmO0, %xmm2
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Figure 3.4 shows that ourSSE2-based FFT implementation is signi cantly faster
than our generic assembly version.
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Figure 3.4: FFT multiplication: generic assembly vSSSE2 assembly, 27-bit prime.

Reducing loops overhead. Many algorithms operating on dense polynomials have
an iterative structure. One major overhead for such algoriths is loop indexing
and loop condition testing. We can reduce this overhead by uolling loops. This
technique is provided by some compilers. For examp@®CC has a compiler option
funroll-loops  which may unroll the loops when certain conditions are satisa

However, there is a trade-o: although the overhead mentiomeabove can be
reduced after loop unrolling, the transformed code may su erdm code size growth
which will aggravate the burden of instruction caching. If tle loop body contains
branching statements, increased number of branches in eachraton will have a
negative impact on branch prediction. Hence, compilers andterpreters usually do
static or run-time analysis to decide how much to unroll a loopHowever, the analysis
may not be precise when loops become complex and nested. Moeepcompilers
usually do not check if there is a possibility to combine the uniied straight line
statements for better performance. Therefore, we have uniedl some loop structures
by hand to better control the trade-o mentioned above. We hae also recombined
the \ at" code (after the unrolling) into small assembly functions. This allows us
to keep some values in registers or evict those unwanted ones e tmost suitable
time. Our purpose is to investigate how much the hand-tuned cedoutperforms the
compiler optimized code. The assembly implementation is not part of our nal
library implementation due to the portability and maintain ability issue.
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The following is a fragment of our implementation of the FFTbased univariate
polynomial multiplication.

#include "fftdfttab_4.h"
typedef void (* F) (long int *, long int, long int,
long int *, long int, int);
typedef void (* G) (long int *, long int *,
long int *, long int, int);
inline void
fftdftTAB_4( long int * a, long int * b, long int * w,
long int p, F f, G g1, G g2 {
long int w0=1, w4=w[4], * w8=w+8;
f(a, w0, w4, a+2, p, 8); g2(a+4, w8, a+8, p, 4);
g2(a+12, w8, a+16, p, 4); gl(a+8, w8, a+l6, p, 8);
f(b, w0, w4, b+2, p, 8); g2(b+4, w8, b+8, p, 4);
g2(b+12, w8, b+16, p, 4); gl(b+8, w8, b+16, p, 8); return;}

This function is dedicated to compute the case whene = 4 (see Section 2.1 at
Page 8 in the FFT algorithm. The functionsf, g1, g2 are small assembly functions
which recombine the \ at" (straight-line) statements for higher e ciency. We also
developed similar functions for the cases from = 5 to 8. However, starting for
n 6, these straight-line functions are less e cient than the onessing original loop
structure, for the reason of code growth. Figure 3.5 shows thabrfthe small degree
examples, the loop-unrolling version may gain about 10% of thhanning time of the
complete FFT computation. Actually, this is a signi cant improvement, since there
are at least 50% time spending on integer division which is irefant to loop-unrolling.

Parallelism. Parallelism is a fundamental technique used to achieve high nper-

mance. In the FFT-based polynomial multiplication, the DFT d the input polynomi-

als are independent, hence, they can be computed simultanstyu Another example is
the (standard) Chinese remaindering algorithm, where the cqoatations w.r.t. each
modulo can be performed in parallel. This can be achieved byread-level parallelism.
However, AXIOM compiler doesn't generate parallel code. Therefore, we dithy

use the native Posix Thread Library to achieve explicit threadevel parallelism. In
Chapter 9 we report our parallel implementation for more copiex algorithms.
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Figure 3.5: FFT multiplication: inlined vs. non-inlined, 27bit prime.

3.5 Performance

In this section, we provide a set of benchmark results. These bentrk programs are
implemented either inAldor  high level code, or inAXIOM mixing code or in both.
The performance of our code demonstrates that by using suitabimplementation
techniques asymptotically fast polynomial arithmetic can otperform the classical
one with relatively low cut-o .

3.5.1 FFT multiplication

We compared our implementations with their counterparts ilNTL and Magma . For
NTL -v5.4, we used the functiong-FTMulin the classeszz_p and ZZ_p respectively
for small and big primes. ForMagma -v2.11-2, we used the general multiplication
function \*" over GF( p), the prime eld with the prime number p. The input polyno-
mials are randomly generated, with no zero term. In the nonegeric case, as shown
in Figures 3.6 and 3.7, ouAXIOM implementation is faster thanNTL 's over small
primes, but slower thanNTL over big primes; but we are faster tharMagma and
other known computer algebra systems in both cases. One possiblasan is that
NTL re-arranges the computations in a more \cache-friendly" wa In the generic
case, theAldor implementation is comparable to (generally slightly slowerhan)
Magma 's counterpart. Aldor 's implementation is at pure high level with high level
abstraction of coding, thus, the performance is still satisfacty.
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Figure 3.6: Multiplication modulo a 27-bit prime.
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Figure 3.7: Multiplication modulo a 64-bit prime.

3.5.2 Multivariate multiplication

We compute the product of multivariate polynomials via the Konecker substitu-
tion (see the appendix). Recall that we use vector-based recwesirepresentation for
multivariate polynomials, and one-dimensional arrays for uwariate ones. So, the for-
ward substitution simply copies coe cients from the coe cient tree of a multivariate

polynomial to the coe cient array of an univariate polynomial. We use a recursive
depth rst tree walk to compute all the univariate polynomial exponents from the
corresponding multivariate monomials' exponents; at the samae, according to this
correspondence we conduct the forward substitution. We use thensa idea for the
backward substitution. The comparisons betweeiMagma and our AXIOM code
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are given in Figures 3.8 to 3.10, where \degree" denotes thegtee of the univari-
ate polynomials obtained through Kronecker's substitution We used random inputs,
with no zero terms.
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Figure 3.8: Bivariate multiplication, 27-bit prime.
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Figure 3.9: Bivariate multiplication, 64-bit prime.

Our FFT-based multivariate polynomial multiplication over Z=pZ outperforms
Magma 's in these cases. Figure 3.8 may infer thaflagma is in the \classical multi-
plication" stage; our FFT-based implementation is already fster. From Figures 3.9,
3.10 we observe that both our andVlagma's FFT's show the FFT staircase-like
curves.
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Figure 3.10: Four-variable multiplication, 64-bit prime.

3.5.3 Power series inversion

We compare here the power series inversion, in the optimizéddor version, with
NTL's and Magma 's implementations. Magma o ers a built-in InverseMod function
(called \builtin" in the gure), but the behavior of this gen eric function is that of an
extended GCD computation. We have also compared tidagma PowerSeriesRing
domain inversion (called \powerseries" in the gure) with our evn implementation
of the Newton iteration. Figure 3.11 shows the relative perfarances: NTL is the
fastest one in this case, andldor is the second, within a factor of 2 slower.
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Figure 3.11: Power series inversion: Aldor vs. NTL vs. MAGMA, 27-biprime.
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3.5.4 Fast extended Euclidean algorithm
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Figure 3.12: EEA: ALDOR vs. NTL vs. MAGMA, 27-bit prime.

In Section 3.3.2 we have reported the relative performancestawveen the existing
standard (non-fast) Euclidean algorithm inAldor and the implementation of the fast
algorithm. We have also compared oukldor generic fast algorithm with the existing
implementations in NTL and Magma . In the following benchmark, we compare our
fast extended Euclidean algorithm implementation irAldor with NTL and Magma
again. Unlike ours, the NTL implementation is not over a genericeld but over a
nite eld, and uses improvement like FFT-based polynomial marix multiplication.
Magma 's performance di ers, according to whether the&GCbr XGClBommands are
used. Figure 3.12 shows the relative performances; our inputdegreed polynomials,
with a GCD of degreed=2. Again, NTL is the fastest andAldor 's performance is
in between two avors of Magma 's implementation (usingGCbr XGCD

3.6 Summary

The work reported in this chapter is the beginning of a large ate e ort; The re-

sult from this chapter demonstrates that asymptotically fast ptynomial arithmetic

can outperform the classical one with relatively low cut-o. The implementation
technique is highly important for reducing the overhead inhese fast methods. Af-
ter replacing the classical polynomial arithmetic by the fast wes, the higher level
algorithms can be sped up in a signi cant manner.
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Chapter 4

E cient Implementation of
Polynomial Arithmetic in a
Multiple-level Programming
Environment

4.1 Overview

In Chapter 3 we have discussed the asymptotically fast polynomiakithmetic and
our preliminary implementation e ort towards high performance. In this chapter we
proceed to more intensive investigation on the implementatiotechnique itself. More
speci cally, we investigate the implementation techniques $ted to the multiple-level
language environment inAXIOM . We target on the implementation for polynomial
arithmetic in this chapter. Indeed, some polynomial data typs and algorithms can
further take advantage of the unique features in lower levéanguages, such as the
specialized data structures or the direct accessing to machinevél arithmetic. On
the other hand, some data types or algorithms maybe more abstteand suited to be
implemented in a very expressive high level languages. Themefowe are interested
in the integration of polynomial data type and implementaton realized at di erent
language levels. In particular, we consider the situation forlich code from di erent
language levels can be combined together within the same apption.

However, linkage to specialized code is a substantial bonus wHew-level imple-
mentation can take advantage of special software or hardwareatures. The purpose
of this study is to investigate implementation techniques fopolynomial arithmetic
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in a multiple-level programming environment. We are intersted in the integration of

polynomial data type implementations realized at the di eent code levels. In par-
ticular, we consider situations for which code from di erentévels can be combined
together within the same application in order to achieve higiperformance. As a
driving example, we use the modular algorithm of van Hoeij and dhagan [50]. We

the eld Q of the rational numbers. Letf;f, 2 K[y] be univariate polynomials over
K. The algorithm of van Hoeij and Monagan computes gcti{;f,). To do so, for
several prime numberg, a tower of simple algebraic extensions, of the prime eld
Z=pZ is used. Arithmetic operations inK, are performed by means of operations on
multivariate polynomials over Z=pZ, whereas the operations on the images of;f,
modulo p are performed in the univariate polynomial ringK[y]. Therefore, several
types of polynomials are used simultaneously in this algorithmThis is why it is a
good candidate for our study. We chos@&XIOM as our implementation environ-
ment based on the following observationsAXIOM has a high-level programming
language, calledSPAD , which possesses all the essential features of object-oriented
languages. Libraries written inSPAD implement a hierarchy of algebraic structures
(groups, rings, elds, ...) and a hierarchy of algebraic domam(Q, A[x] for a given
rng A, ...).

As mentioned in Section 2.2 at Page 2.2, th8PAD compiler translatesSPAD
code into Common Lisp, then invokes the underlyingLisp compiler to generate
machine code. Today,GCL [3] (GNU Common Lisp) is the underlying Lisp of
AXIOM [2]. The design ofGCL makes use of the nativeC compiler for compiling
to native machine code. In addition, GCL employs the GNU Multi-Precision library
(GMP ) [4] for its arbitrary precision number arithmetic. Therefae, AXIOM is an
e cient multiple language level system. Moreover, the complke AXIOM system is
open-source. Hence, we can implement our packages at any laagpilevel and even
modify the AXIOM kernel. This allows us to take advantage of each language éfg
strength and access machine arithmetic directly when necessamherefore, we believe
that AXIOM , with its di erent implementation levels, all in open source,provides
an exceptional development environment among all computelgebra systems, for
the purpose of our study.

The outline of this chapter is as following. In Sections 4.21.3 and 4.4 we discuss
the unique features (in view of our objectives) of th&PAD , Lisp, C and Assembly
level from AXIOM . Implementation techniques at each level are also discussed re-
spectively. In Section 4.6, we report our experimentation sailt. Our result suggests
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that choosing adapted data structures and writing code at suitae language level are
essential for high-performance for our polynomial applicains.

NOTE: This chapter is written based on the published paper [6 5].

4.2 The SPAD Level

From Section 3.2 at Page 28, we know that th&PAD language ofAXIOM has a
two-level object model ofcategoriesand domains In fact, the user can de ne an
new category or domain and add it into the library modules. Thenew de nition
is called anAXIOM type constructor An AXIOM type constructoris simply a
function which returns an AXIOM type, that is a category or a domain. For in-
stance, SparseUnivariatePolynomial , abbreviated to SUR is a type constructor,
which takes an argumentiRof type Ring and returns an instance of the type: univari-
ate polynomials overR with an underlying sparse polynomial data representation.
The interface (in sense of Java) oBUP(R)is UnivariatePolynomialCategory(R)
where UnivariatePolynomialCategory is a category constructor.

The SPAD language supportgonditional exports This permits to implement the
following statement: if Rhas typeField then SUP(R)implementsEuclideanDomain.
SPAD also supportsconditional implementation This is similar to the concept of
generics in Java. For instance, iR has type PrimeFieldCategory , The specialized
\modular integer arithmetic" package can be automaticallychosen. These features of
the SPAD language are important for combining di erent data types ad achieving
high-performance.

To implement an new domain constructor, the programmer may va to choose
a data representation for this domain type. For exampl&UPRuses sparse polynomial
data representation andDUPuses dense polynomial data representation. After an
newly de ned domain or category is compiled, it becomes aAXIOM data type
which can be used just like any system provided data type.

In the light of these properties of theSPAD language, we describe briey the
polynomial type constructors that we use in this study. Please, eg52] and [64] for
more details. LetRbe anAXIOM Ring and Vbe anAXIOM OrderedSet.

SUP or UPAs mentioned above, the domairSUP(R)implements the ring of uni-
variate polynomials with coe cients in R More precisely, it satises the
AXIOM categoryUnivariatePolynomialCategory(R) . The representation of
these polynomials issparse that is, only non-zero terms are encoded.
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DUP The domain DUP(R)implements UnivariatePolynomialCategory(R) as well.
The representation is dense: all terms, null or not, are encoded

NSMPThe domain NSMP(R,V)mplements the ring of multivariate polynomials with
coe cients in Rand variables inV. (To be precise, it implements theAXIOM
category RecursivePolynomialCategory(R, V) .) A non-constant polynomial
f of NSMP(R)with greatest variablev, is regarded as an univariate polynomial
in v implemented as an element UP(NSMP(R)herefore, the representation
is recursive and sparse.

DRMPThe domain DRMP(R,Vimplements the same category adlSMP(R,V) The
representation is also recursive. However, it is based &tJRather than SUP

The constructors SUPand NSMRre provided by the AXIOM standard distribu-
tion, whereasDUPand DRMRre our implementation. As mentioned in Section 1.2
modular methods tend to \densify" the polynomial computation. Therefore, dense
polynomial representation is the most suitable one for this kth of methods. Our
algorithms in this thesis are mostly related to modular arithretic, thus dense poly-
nomials is our canonical data representation in our implem&tion. One example of
modular algorithms we implemented as a benchmark program this Chapter is van
Hoeij and Monagan's modular GCD algorithm [50]. We will use tlsiimplementation
as the principle benchmark program to test the performance @l the polynomial
data types and their combination.

4.3 The Lisp Level

The domain constructorsSUPDUPNSMBnd DRMRIlow the user to construct polyno-
mials over anyAXIOM Ring. So we say that their code is generic. Ideally, one would
like to use alsoconditional data representations For instance, one could think of a
domain U(R) implementing univariate polynomials ovelRsuch that sparse polynomi-
als have a sparse representation and dense polynomials have asderpresentation.
In addition, if Rimplements a prime eld Z=pZ for a machine word size primgy, one
could encode each dense polynomial 0{R) by an array of machine words (such that
the slot of indexi contains the coe cient in the term of degreei). But this ideal type
constructor Uwould be very di cult to be analyzed by the run-time system. Indeed,
many tests would be needed for selecting the appropriate repentation for the right
computation, at the right moment. Therefore, we use speciaéd domain construc-
tors (say, dense univariate polynomials over a prime eld) camically for a specic
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algorithm (for instance, the modular GCD algorithm by van Hogiand Monagan).
By experimentation, we observe that this approach is more eative than switching
data representation at run-time for our application due to tke overhead mentioned
above.

For these reasons, we have de ned at thBPAD level a specialized polynomial
type constructor MultivariateModularArithmetic , abbreviated to MMAIt takes a
prime integer p and V an OrderedSet as its arguments. MMA(p,V)implements the
same interface aDRMP(PF(p),V)does wherePF(p) is a prime eld of characteristic
p. In fact, all the concrete operations oMMA(p,V)have been implemented atisp
level. The SPAD level MMA(p,V)domain is just a wrapper. The reason we writéIMA
at Lisp level instead atSPAD level is as following:

In MMAwe have used thevector-based recursive dengepresentation proposed by
Richard J. Fateman [38]: a multivariate polynomialf is encoded by a number (to be
precise, an integer modul@) if f is constant and, otherwise, by d.isp vector storing
the coe cients of f w.r.tits leading variable. Atthe SPAD level, such disjunction has
to be implemented by an union type bringing an extra indiregtess. However, this can
be avoided at theLisp level. Not like SPAD doing strict compile time type-checking,
Lisp only does run-time type-checking. Moreover, for theisp implementation such
as GCL , the run-time type-checking can be switched o manually. Ths, f can be
assigned by a number or a vector ihisp without any compilation error and run-time
overhead optionally.

In addition, in Lisp for the machine integer size prime case we can decorate the
code to force theLisp compiler to use machine integer array ( xnum-array). However
this is a non-easy task ir6PAD language. Even we decorate the code 8PAD level,
the array type used is an array of reference to the machine igfers. This array type is
far less e cient than the C-like array \ xnum-array" while the dense polynomials are
over Z=pZ with p a machine integer prime. Therefore, for certain applicatits such as
our example theLisp level code may yield more e cient implementation comparing
to the SPAD level.

We have dened at the SPAD level an univariate type constructor
UnivariateModularArithmetic , abbreviated to UMAtaking a prime integer p as
argument and implementing the same operations &3UP(PF(p)). It is also a SPAD
level wrapper for two Lisp level implementations: one for the machine prime case
and one for the big prime case. In both cases, univariate polyn@afs are again en-
coded byfixnum-array . It is possible directly usingC arrays to encode univariate
polynomials overZ=pZ, but we prefer, at this experimentation stage, the.isp level
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garbage collection system which is more convenient. For the oiane prime case,
each entry infixnum-array is a coe cient. For the big prime case, two or more
entries encode one coe cient up to the size the prime number. Athese specialized
implementations at theLisp level yield signi cant speed up comparing to the original
SPAD level packages. The benchmark result is reported in Sectior64at Page 52.

4.4 The C Level

GCL is implemented inC language and uses the native optimizin@€ compiler to
generate native machine code. This allows us to extend thenfttionality of the Lisp
level in AXIOM by writing new C code. For example, we can integrate an ne@
function into the GCL kernel image, or add it into aGCL library.

This interoperability between Lisp and C has at least two bene ts. First, our
Assembly code (written for some e ciency critical operation previousy, see Sec-
tion 4.5 below) can be inlined in theC code, thus available forLisp function. Sec-
ond, we can directly use existingC libraries such asGMP library [4] or NTL [6] to
speed upLisp level implementation. We illustrate these two bene ts by an inportant
example: the implementation of dense univariate polynomialomain over the prime
eld Z=pZ, i.e the UMAlomain constructor (see Section 4.3 at Page 48).

Recall that we have two implementation cases fddMAone for small prime9 (that
ts in single precious machine word) and one for big primep (that is bigger than
the biggest single precious machine word). For both the small drbig prime cases,
we have the following code which has been integrated into tl@CL kernel:

classical multiplication, addition and Chinese remainderinglgorithm written
in Assembly |,

FFT-based multiplication written in C with Assembly sub-routines.

Moreover, in the big prime case, we have developed a highly aent double precision
big integer arithmetic package by modifyingGMP multiprecision subroutines. This
is motivated by the importance of the double precision integecomputation in our
application. For instance, most prime numbers used in the modad method of [27]
are of that size.
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45 The Assembly Code Level

Primarily, our Assembly level implementation is for univariate polynomial additio
and multiplication. As we know that big integer arithmetic is basically the same as
univariate polynomial arithmetic modulo a prime number. The only di erence is the
\carry" issue. So we can directly modify the existing big integelibraries such as
GMP to perform univarivate polynomial arithmetic over Z=pZ. Since the related
GMP operations are implemented in assembly, we directly modify éir Assembly
level operations and link the modi ed operations intcAXIOM . In this way, we have
avoided extra encoding e ort and obtained highly e cient Assembly level polyno-
mial operations. Besides this, there are two other reasons to udssembly code in
our AXIOM environment: \controlling register allocation” and \using architecture
speci c features".

4.5.1 Controlling register allocation

In a modern computer architecture, CPU registers sit at the topevel of the memory
hierarchy. Although optimizing compilers devote special e ds to make good use of
the target machine's register set, this e ort can be constrairceby numerous factors,
such as:

di culty to estimate the execution frequencies of each part 6the program,
di culty to allocate or evict ambiguous values,
di culty to take advantage of some new hardware features on spec platforms.

Therefore, some high-performance oriented applicationsguire programmers to bet-
ter exploit the power of registers on a target machine. In factwe have spent a
great e ort in this direction in our implementation. First, we directly program the
e ciency-critical parts in Assembly language in order to explicitly manipulate data
in registers. For example, for dense univariate polynomials evZ=pZ, we write the
classical multiplication algorithm in both C and Assembly language. TheAssembly
version is faster than theC version since we always try to keep frequently used vari-
ables in registers instead of a memory location. Although i€ we can declare a
variable to be of \register” type as inGCC, this does not guarantee that the register
is reserved for this variable. According to our benchmark reda| our explicit register
allocation method is always faster than theC compiler's optimization.
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Besides the general purpose registers, we also can use MMX, XMM regstethey
are available. Keeping the working set in registers will yieldigni cant performance
improvement comparing to keeping them in the main memory.

4.5.2 Using architecture speci c features

Polynomial arithmetic in Z=pZ[x] makes an intensive use of integer division. This
integer operation has a dominant cost in crucial polynomialperations like the FFT-
based multiplication over Z=pZ. Therefore, improving the performance of integer
division is one of the key issues in our implementation.

In Section 3.4.3 at Page 37, we have introduced the fast integeivision trick
by using assembly code with SIMD instructions. Our implementatio of the FFT-
based polynomial multiplication overZ=pZ uses this technique. It is faster than using
FPU unit, as reported in Section 4.6 at Page 52. In Section 52at Page 59 and
Section 6.3 at Page 79. we present other integer division trekve have developed
whereas implemented atC level.

4.6 Experimentation

4.6.1 Benchmarks for the Lisp level implementation

The goal of these benchmarks is to measure the performance imy@ments obtained
by our specialized dense multivariate polynomial domain consictor MMAmple-
mented at the Lisp level and described in Section 4.3 of this chapter. We are also
curious about measuring the practical bene t of dense recurgypolynomial domains
in a situation (polynomial GCD computations over algebraic amber elds) where
AXIOM libraries traditionally use sparse recursive polynomials.

As mentioned in the introduction, our test algorithm is that of van Hoeij and

this algorithm computes GCDs inK[y] by means of a small prime modular algorithm,
leading to computations over a tower of simple algebraic extsions K, of Z=pZ.
Recall also that the algorithm involves two polynomial data ypes:

a multivariate one for the elements oK and K,

a univariate one for the polynomials inK[y] and Kp[y].

Figure 4.1 shows the di erent combinations that we have used.
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Q(ag; a;:::; a8e) Kly]
NSMin SPAD | SUFn SPAD
DMPi SPAD | DUAN SPAD
MM#An Lisp SUPn SPAD
MM#An Lisp DURN SPAD

Note that:

the rst two combinations, that is NSMP + SUBparse polynomial domains)
and DMPR + DWd®ense polynomial domains), involve onl\5sPAD code,

the other two combinations use MMA - our dense multivariate pghomials
implemented at theLisp level and SUP/DUP - univariate polynomials written
at the SPAD level.

We would like to stress the following facts:

the algorithms for addition, multiplication, division of DRMRnd MMAre iden-
tical,

none of the above polynomial types uses fast arithmetic, such BET-based or
Karatsuba multiplication.

Remember also that:

the SPAD constructors NSMPDMPRUR and DUPare generic constructors, i.e.
they work over any AXIOM ring,

however, our dense multivariate polynomials implemented ahe Lisp level
(provided by the MMAonstructor) only work over a prime eld.

Therefore, we are comparing here is the performances of
specialized code at thé.isp level versus generic code at th8PAD level,
sparse representation versus dense representation.
We have set the benchmark of van Hoeij and Monagan's algorithrorf
di erent degrees of the extensioQ ! K,
di erent degrees of the input polynomials

and di erent sizes for their coe cients.
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Figure 4.1 p. 55 shows our benchmark results. First, we x the coeient size bound
to 5 and increase the total degree (degree of the extension plsximum degree
of an input polynomial). The charts (a), (b) and (c) correspod to towers of 3, 4
and 5 simple extensions respectively. Second, we x the total giee to 2000 and
increase the coe cient bound. The charts (d), (e) and (f) corespond to towers of 3,
4 and 5 simple extensions respectively. In (a), (b) and (c) xinghe coe cient size

bound, and increase the total degree of input polynomials. Cweersely in (d), (e),

and (f) xing the total degree and increase the coe cient size bund. We observe
the following facts.

Charts (a), (b), (c). For univariate polynomial data types,DURutperformsSUP
and, for the multivariate polynomial data types, MMAutperforms DRMRwvhich
outperforms NSMPFor the largest degrees, the timing ratio between the best
combination, DUP + Miend the worst one, SUP + NSN#in the range 2 3.

Charts (d), (e), (). The best and the worst combinations are the same as
above, however the timing ratio is in the range 3 4. Interestingly, the sec-
ond best combination isSUP + MM#&r small coe cients and DUP + DR
larger ones. This fact maybe explained by following reasons: rét, the SUP
constructor relies on some fast routines which allows it to corege with the
DURconstructor for small input data. Second, memory allocationral garbage
collection of polynomials built with DUP + DRMBpears to be more e cient
than for SUP + MMdlynomials, for large size data.

4.6.2 Benchmarks for the multi-level implementation

In the previous chapter, we have already demonstrated that olAXIOM fast mul-

tivariate multiplication based Kronecker substitution is conpetitive and often out-

performs its counterpart - a similar computer algebra system,amely Magma . This

implementation involves code fromSPAD , Lisp, C and Assembly level. For the

Kronecker substitution part, we write code atSPAD and Lisp levels. However, for
the FFT-based univariate multiplication, we write code atC and Assembly level as
reported in Section 3.4.2 at Page 36, since the optimized gpng of machine level
operations has a huge impact on the performance. As shown in &igs 3.7, this
mix-code approach yields high-performance result.
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Figure 4.1: Benchmark of van Hoeij and Monagan's algorithm
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4.7 Summary

We have investigated implementation techniques for polynaal arithmetic in the
multiple-level programming environment of theAXIOM computer algebra system.
Our benchmark results show that careful integration of data strctures and code
from di erent levels can improve the performances in a signcant manner (a ratio
of 2-4 speed up reported in Section 4.6). The integration press requires deep un-
derstanding of polynomial arithmetic, machine arithmetic ad compiler optimization
techniques. However, we believe that it should be implemented & transparent way
for the end-user.
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Chapter 5

How Much Can We Speed-up the
Existing Library Code in AXIOM
with the C Level Implementation?

5.1 Overview

In Chapter 4 we usevan Hoeij and Monagan's modular GCD algorithnas a benchmark
example. By choosing di erent polynomial data type and implmentation technique
at di erent language level, the performance on the same algthrm are obviously dif-
ferent. Based on this experimentation, we believe that the gpopriate combination
of lower level language implementations are the most e cientvay to realize high
performance packages for our dense classical and asymptoticédist polynomial ap-
plications. However, one problem of this strategy is that the nitiple language level
implementation is di cult to maintain and has limited porta bility. Therefore, we try

to compress the multiple level code into a single level - thé level. From Lisp level
to C level, the code becomes more complex. However, for our apgiion, this step is
relatively simple since ourLisp level code doesn't use too much functional language
features. We also carefully study theC compiler optimization technique. We try
to write highly e cient C code which is close to the performance of our previous
Assembly level code. Therefore, similarly to Chapter 4 we need to systetially
measure the performance improvement f@PAD level algorithms after supplied with

C level support. More precisely, in this chapter our experimeation examples can
be formulated as following: given a high-leveAXIOM packageP parametrized by a
univariate polynomial domainU we compare the performances & when applied to
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dierent Us. One of thels is our C asymptotically fast polynomial arithmetic im-
plementation wrapped in aSPAD level domain constructor. The restk are existing
AXIOM domain constructors implemented alSPAD level.

Our experiments show that wherP relies ourC level fast arithmetic implementa-
tion a signi cant speed-up observed comparing to those relyinghather Us. We also
compare with other systems. For instance, the square-free faagtation in AXIOM
with the new support is 7 times faster than the one iMaple and very close to the one
in Magma . Therefore, we believe our asymptotically fast algorithm impmentation
in C can speed up high level language interfaces generally.

The outline of this chapter is as following. In Section 5.2,1ve review theAXIOM
polynomial domain constructors used in our experimentationln Section 5.2.2 and
5.2.3, we discuss nite eld arithmetic and polynomial arithmetic. In Section 5.3, we
compare the benchmark results.

NOTE: This chapter is written based on the published paper [7 0].

5.2 Software Overview

5.2.1 AXIOM polynomial domain constructors

In Section 4.2 at Page 47, we have introducediXIOM univariate and multivariate
polynomial domain constructors. In this section, we introduce&n new univariate
polynomial domain constructorDUP2(R)YDenseUnivariatePolynomialDomain version
two of the base ringR) DUP2(R)is designed for the one whose base riRyis a prime
eld. In Section 5.2.1 at Page 58 we will review all the relateAXIOM constructors,
then illustrate DUP2(R) In Section 5.3 at Page 61 we will provide the benchmark
betweenDUP2(R)and other constructors. LetRbe anAXIOM Ring. The domain
SUP(R)implements the ring of univariate polynomials with coe cients in R The data
representation of SUP(R)is sparse only non-zero terms are encoded. The domain
constructor SURAs written in the SPAD language.

The domain DUP(R)implements exactly the same operations itsUP(R) More
precisely, these two domains satisfy the same categobynivariatePolynomial-
Category(R) (or interface in the sense of Java). However, the representatiafh the
latter domain is dense all terms, null or not, are encoded. The domain constructor
DURSs also implemented in theSPAD language, see [64] for details.

Another important domain constructor in our study is PE for a prime num-
ber p, the domain PF(p) implements the prime eld Z=pZ. Our C code is ded-
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icated to polynomial computation over Z=pZ with dense polynomial representa-
tion. To make this code available at theAXIOM level, we have implemented a
wrapper domain constructorDUP20 wrap up our C code. For a prime number
p, the domain DUP2(p) implements the same category aBDUP(FP(p)) does , i.e.
UnivariatePolynomialCategory(PF(p))

5.2.2 Finite eld arithmetic

As mentioned in previous chapters, nite eld arithmetic is esgcially important for
our modular fast algorithms. Thus, we have put great e ort on it. On the one hand,
we design more e cient tricks for nite eld arithmetic as rep orted in this section
(and later an new trick in Section 6.3 at Page 79), on the othdrand we implement
these tricks in C code. TheC implementation of the new tricks has even better
performance comparing to the previoufAssembly level implementation (the one
reported in Section 3.4.3 at Page 37). There are two reasons:ittbe arithmetic and
highly optimized C code.

In this section, we focus on somspecial smallnite elds. By a small nite eld,
we mean a eld of the formK = Z=pz, for p a prime that ts in a 26-bit word (so that
the product of two elements reduced modulp ts into a double floating-point
register). Furthermore, the primesp we consider have the formk2 + 1, with k a
special smallodd integer (typically k  7), which enables us to write speci ¢ code for
integer Euclidean division. Although this is a trick for special prime numbers, it is
good enough for the most of our polynomial applications whexege have the freedom
to choose prime numbers.

The elements ofZ=pZ are represented by integers from O tp 1. Additions and
subtractions in Z=pZ are performed in a straightforward way: we perform integer
operations, and the result is then reduced modula Since the result of additions and

a single addition or subtraction ofp; for the reduction, we use routines from Shoup's
NTL library [6, 86]. Multiplication in Z=pZ requires more work. A popular solution
implemented in NTL conducts a multiplication in double precision oating-point
registers, computes numerically the quotient appearing in hEuclidean division by
p, and nally deduces the remainder.

Using the special form of the primep, we have designed the following faster \ap-
proximate" Euclidean division, that shares similarities with Montgomery's REDC
algorithm [74]; for another use of arithmetic modulo specialrpnes, see [37]. Let
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thus Z bein 0:::;(p 1) in actual computations,Z is obtained as the product of
two integers less tharp. The following algorithm computes an approximation of the
remainder ofkZ by p, where we recall thatp has the formk2 + 1:

1. Computeq= b4c.

2. Computer = k(Z @2) q.

Proposition 5.2.1. Let r be as above and laty < p be the remainder okZ by p.
Thenr romodpandr=rg p, withO <k +1.

Proof. Let us write the Euclidean division ofkZ by p askZ = qp+ ro. This

implies that

_ Gt lo
q_q)-l— k2

holds. From the equalitygp+ r = wp+ ro, we deduce that we have

G+ To

r=rog p with = >

The assumptionZ (p 1)? enables us to conclude that< k + 1 holds.

In terms of operations, this reduction is faster than the usuallgorithms which rely
on either Montgomery's REDC or Shoup's oating-point techimques. The computa-
tion of gis done by a logicabhift ; that of r requires a logicakind (to obtain Z 2 g),
and a single multiplication by the constantc. Classical reduction algorithms involve 2
multiplications, and other operations (additions and logial operations). Accordingly,
in practical terms, our approach turns out to be the most e cien one.

There are however drawbacks to this approach. First, the algthm above does
not compute Z mod p, but a number congruent tokZ modulo p (this multiplication
by a constant is also present in Montgomery's approach). This isowever easy to
circumvent in several cases, for instance when doing multiplieans by precomputed
constants (this is the case in FFT polynomial multiplication, see below), since a
correcting factor k * modp can be incorporated in these constants. The second
drawback is that the output of our reduction routine is not reluced modulop. When
results are reused in several computations, errors accumulagy it is necessary to
perform some error reduction regularly which is an overhead.

In Section 6.3 at Page 79, we extend this special prime reduatitrick into a more
generic method. The trick presented in this section has appriowation steps in the
middle stage, and obtain the exact result in the end after remawg the \errors". The
more generic trick will maintain all intermediate results eact and it works for all
Fourier prime numbers.
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5.2.3 Polynomial arithmetic

In Section 2.1 at Page 8 we have introduced a set of FFT-based @ighms. In this
section, we brie y review the fast division and Half-GCD algoribms. We use these
two as benchmark programs in Section 5.3 of at Page 61.

Our implementation of fast Euclidean division is based on CodBieveking-Kung's
approach [43, Chapter 9]. One of the major steps in this apprdais to compute New-
ton's iteration. We have implemented Newton's iteration wih the support of middle
product techniqug49]. This technique can reduce the cost of a direct implemextion
by a constant factor. For the GCD computation, we have implenmged both the
classical Euclidean algorithm and the faster Half-GCD technias [43, Chapter 11].
The classical one has complexity itD(d?), whereas the latter one is inO(dlog(d)?)
with a large multiplicative constant factor.

5.2.4 Code connection

Recall that in Section 3.2.2 at Page 29, we have described thaywto integrate multiple
level code inAXIOM . Actually, the crucial step is converting di erent polynomid
data representations betwee®XIOM and the ones in ourC library via GCL level.
The overhead of these conversions may signi cantly reduce thesetiveness of ourC
implementation. Thus, good understanding of data structureiiAXIOM and GCL
is a necessity to establish an e cient code connection.

5.3 Experimentation

In this section, we compare our specialized domain constructbtJP2vith our generic
domain constructorDURand the existing (default) AXIOM domain constructor SUP
Our experimental computations are in the polynomial rings:

Ap = Z=pZ[X],

B, = (Z=pZ[x]=mi)ly],
for a machine word prime numbep and an irreducible polynomialm 2 Z=pZ[x]. The
ring A, can be implemented by any of the three domain constructoBUP2DUPand
SUPapplied to PF(p), whereasB,, is implemented by eitherDUPand SUPapplied to
A,. In both A, and B,, we compare the performances of factorization and resultant
computation. We have two goals for this experimentation:

(G1) When a large portion of the running time spends on computingrpducts, re-
mainders, quotients, GCDs inA,, we believe that there are opportunities for
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signi cant speed-up when usingDUP2and we want to measure this speed-up
w.r.t. SUPand DUP

(G,) Otherwise, when there is a little portion spends on computingroducts, re-
mainders, quotients, GCDs inA,, we want to check whether usindUP2s still
better than using SUPand DUP

For computing univariate polynomial resultants over a eld, AXIOM calls the
packagePseudoRemainderSequencgising the algorithms of Ducos [32]). This pack-
age takesR: IntegralDomain and polR: UnivariatePolynomialCategory(R) as
parameters. However, this code has its privatdivide operation and does not rely
on the one provided by the domairpolR. In fact, the only non-trivial operation will
be used frompolR is polynomial addition. Therefore, the packagd>seudoRemain-
derSequencedoes not take advantage of our fast division even it's availadl Hence,
for this example, there is very little speedup when usinpUP2nstead SUPand DUP

For square-free factorization over a nite eld, AXIOM calls the package
UnivariatePolynomialSquareFree . It takes RC: IntegralDomain and P: Univa-
riatePolynomialCategory(RC) as parameters. In this case, the code relies on the
operationsgcd and exquo provided by P. Hence, ifP provides fast GCD computations
and fast divisions, UnivariatePolynomialSquareFree can use them. In this case,
DUP2loes help.

We start the description of our experimental results with resulint computations
in Ay = Z=pZ[x]. As mentioned above, this is not a good example for signi cant
performance improvement. Figure 5.1 shows that computatiesnwith DUP2are just
slightly faster than those with SUPIn fact, it is satisfactory to verify that using DUP2
which implies data-type conversions between thAXIOM and C data-structures,
does not slow down computations.

We continue with square-free factorization and irreducibldactorization in A,.
Figure 5.2 (resp. Figure 5.3) shows thaDUP2rovides a speed-up ratio of 8 (resp. 7)
for polynomial with degrees about 9000 (resp. 400). This shotst the combination
of the fast arithmetic (FFT-based multiplication, Fast division, Half-GCD) and highly
optimized code fromDUP2does help.

In the case of irreducible factorization, we could have obtaeéd a better ra-
tio if the code wasmore generic Indeed, the irreducible factorization over nite
elds in AXIOM involves a package which has its private univariate polynoial
arithmetic, leading to a problem similar to that observed withresultant computa-
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tions. The package in question iModMoni¢ parametrized by R: Ring and Rep:
UnivariatePolynomialCategory(R) , which implements the Frobenius map.

SUP(EP(p) - - - SUP(EP(D) - -
DUP2(FP(p)) —— DUP2(FP(p)) ——

Tim
Tim

R - ——
,«;// 4 .
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Figure 5.1: Resultant computation in  Figure 5.2: Square-free factorization
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Figure 5.3: Irreducible factorization in ~ Figure 5.4: Resultant computation in

Z=pZ[x] (Z=pZ[x]=mi)[y]

We conclude this section with our benchmarks iB, = (Z=pZ[x]=mi)[y]. For
resultant computations in B, the speed-up ratio obtained withDUP4s better than
in the case ofA,. This is because the arithmetic operations dbUPZaddition, multi-
plication, inversion) perform better than those ofSUPor DUPFinally, for irreducible
factorization in By, the results are quite surprising. IndeedAXIOM uses Trager's
algorithm (which reduces computations to resultants irB,, irreducible factorization
in A, and GCDs in Bp) and, based on our previous results, we could have antici-
pated a good speed-up ratio. Unfortunately, the packag&lgFactor , which is used
for algebraic factorization, has its private arithmetic. More precisely, it \re-de nes"
By, with SUPand factorizes the input polynomial over this newB,. Therefore, there
iS no impressive speed-up at all.



64

3000

SUPSUPEP)) -
DUP(DUP(FP(p))) ==e 1AQMA-2. 11,2 e
DUP(DUP2(FP(p))): : T

2500
/ 2
2000 / /
1500 /
1000 /
/ 4 ) u
500 /

AXIOM-ADI06 - -
M

Time [sec]
Time [sec]

Figure 5.5: Irreducible factorization in  Figure 5.6: Square-free factorization
b in Z=pZ[x]

The purpose of this Chapter is to measure the impact of ou€ level specialized
implementation for fast polynomial arithmetic on the perfomances ofAXIOM high-
level algorithms. Generic programming is well designed in thAXIOM system.
The experimental results demonstrate that by replacing a fewriportant operations
in DUP(PF(p)) with our C level implementation, the original AXIOM univariate
polynomial arithmetic over Z=pZ has been sped up by a large factor in general. For
algorithm such as univariate polynomial square free factoatrion over Z=pZ, the
improved AXIOM code is 7 times faster than the one iMaple and very close to
the one inMagma (see Figure 5.6 at Page 64).
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Chapter 6

Fast Arithmetic for Triangular
Sets: from Theory to Practice

6.1 Overview

In Chapters 3, 4 and 5 we have presented implementation teclynies for both asymp-
totically fast and classical polynomial arithmetic. From thischapter to Chapter 8 we
focus on developing faster algorithms with comparing to thedst known algorithms
in terms of complexity for triangular decompositions techmjue (see Section 2.3 at
Page 20).

For each new algorithm, we have realized a high performancaplementation
based on our previous techniques. The benchmark result for eachplementation
will be reported at the end of each chapter. As a starting pointfamur new algorithms
development, we study those \core" operations. In this chaptewe have identi ed,
improved and implemented one of these operationsiodular multiplication. Indeed,
all triangular decomposition technique based methods invavolynomial arithmetic
operations (addition, subtraction, multiplication and division) modulo a triangular
set. We call them modular operations. As we explained in this cpger, modular
multiplication and division are expensive (often dominant) perations in terms of
computational time in triangular decompositions based polyomial solving. Under
certain assumptions, the modular division can be achieved by twoodular multi-
plications as described in this chapter. Thusmodular multiplication is unarguably
the \core" operation and at the base level to support all trianglar decompositions
based algorithms such aRegular GCD, Bivariate Solver, regularity test reported in
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Chapters 7 and 8. In the following text, we will give an over@w of the concepts of
triangular set, modular multiplication, and our contributions in this chapter.

Triangular sets. Triangular set is an useful data structure for dealing with a vaety
of problems, from computations with algebraic numbers to theymbolic solution of
polynomial or di erential systems. At the core of the algorithns for these objects, one
nds a few basic operations, such as multiplication and divisiom dimension zero.
Higher-level algorithms can be built on these subroutines, usirigr instance modular
algorithms and lifting techniques [27]. The zero-dimensiah case is discussed in
detail (with worked-out examples) in [62]; a general introdction (including positive
dimensional situations) is given in Section 2.3 at Page 20 (alsoese[9]). In this
chapter, we adopt the following convention: amonic triangular setis a family of

them triangular sets.
The natural approach to arithmetic modulo triangular sets igecursive: to work in

to design elegant recursive algorithms, whose complexity is eft easy to analyze,
and which can be implemented in a straightforward manner in gh-level languages
such asAXIOM or Maple [63]. However, as shown below, this approach is not
necessarily optimal, regarding both complexity and practidgperformance.

Complexity issues. The core of our problematic isnodular multiplication: given A
and B in the residue class rind-, compute their product; here, one assumes that the
input and output are reduced with respect to the polynomialsl. Besides, one can
safely suppose that all degrees are at least 2 (see the discussion ariext section).
In one variable, the usual approach consists in multiplyindA and B and re-
ducing them by Euclidean division. Using classical arithmetic,he cost is about
2d? multiplications and 2d? additions in R, with d; = deg(Ti; X1). Using fast
arithmetic, polynomial multiplication becomes essentialljlinear, the best known re-
sult ([21], after [83, 82]) being of the fornkd, Ig(d,) Iglg(d,), with k a constant and
lg(x) = log, max(2; x). A Euclidean division can then be reduced to two polynomial
multiplications, using Cook-Sieveking-Kung's algorithm [2, 87, 59]. Inn variables,
the measure of complexity is + = deg(T1; X1) deg(Th; X,), since representing a
polynomial modulo T requires storing 1 elements. Then, applying the previous
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results recursively leads to bounds of order"2? for the standard approach, and
(B3k+1)" 1 for the fast one, neglecting logarithmic factors and lowerrder terms.
An important di erence with the univariate case is the presencef the overheads 2
and (3k+1)", which cannot be absorbed in a big-Oh estimate anymore (unlesss
bounded).

Improved algorithms and the advantages of fast arithmetic. Our rst con-
tribution is the design and implementation of a faster algorttm: while still relying
on the techniques of fast Euclidean division, we show in Theore®i2.1 that a mixed
dense / recursive approach yields a cost of ordet 4, neglecting again all lower order
terms and logarithmic factors; this is better than the previas bound for + 2",
Building upon previous work [41], the implementation is doain C, and is dedicated
to small nite eld arithmetic.

The algorithm uses fast polynomial multiplication and Eucligéan division. For
univariate polynomials overf,, such fast algorithms become advantageous for degrees
of approximately 100. In a worst-case scenario, this may suggelsat for multivariate
polynomials, fast algorithms become useful when the partial geee in each variable
is at least 100, which would be a severe restriction. Our secondnt@ution is to
contradict this expectation, by showing that the cut-o values for which the fast
algorithm becomes advantageoudecreasewith the number of variables.

A quasi-linear algorithm for a special case. We next discuss a particular case,
where all polynomials in the triangular set are actually uniariate, that is, with T;
in K[X;] for all i. Despite its apparent simplicity, this problem already contas non-

T = Xidi. For the question of power series multiplication, no quasi-lear algorithm
was known until [85]. We extend this result to the case of arbitry T; 2 K[X], the
crucial question being how toavoid expanding the (polynomial) productAB before
reducing it. Precisely, we prove that forK of cardinality greater than, or equal to,
max; n,d, and for " > 0, there exists a constantk- such that for all n, products
before.

Following [13, 14, 12, 85], the algorithm uses deformationdeniques, and is un-
fortunately not expected to be very practical, except for eémple. when all degrees
equal 2. However, this shows that for a substantial family of exgofes, and in suit-
able (large enough) elds, one can suppress the exponential dvead seen above.
Generalizing this result to an arbitrary T is a major open problem.
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Applications to higher-level algorithms. Fast arithmetic for basic operations
modulo a triangular set is fundamental for a variety of highetevel operations. By
embedding fast arithmetic in high-level environments likéAXIOM (see [41, 65]) or
Maple , one can obtain a substantial speed-up for questions ranging rfifacomputa-
tions with algebraic numbers (GCD, factorization) to polyromial system solving via
triangular decomposition, such as in the algorithm of [75], wth is implemented in
AXIOM and Maple [63].

Our last contribution is to demonstrate such a speed-up on the engle of van
Hoeij and Monagan's algorithm for GCD computation over numbre elds. This algo-
rithm is modular, most of the e ort consisting in GCD computations over small nite
elds. We compare a directAXIOM implementation to one relying on our low-level
C implementation, and obtain improvement of orders of maghide.

Outline of this chapter. Section 6.2 presents our multiplication algorithms, for
general triangular sets and triangular sets consisting of unikate polynomials. We
next describe our implementation in Section 6.3; experimextand comparisons with
other systems are given in Section 6.4.

NOTE: This chapter is written based on the published paper [6 9].

6.2 Algorithms

We describe here our main algorithm. It relies on the Cook-Sieking-Kung idea but
di ers from a direct recursive implementation: recalling tlat we handle multivariate
polynomials makes it possible to base our algorithm on fast mwhariate multiplica-
tion.

6.2.1 Notation and preliminaries

Notation. Triangular sets will be written asT = (Ty;:::; T,). The multi-degree of a
triangular set T is the n-tuple d; = deg(Ti; Xi)1 i n. We will write 1 =d; dy;in
Subsection 6.2.3 at Page 73, we will use the notation =, (di 1)+ 1. Writing

ring. Let Mt be the set of monomialdM+ = X7* X% jO0 e <d;forali ;
then, because of our monicity assumption, the freR-submodule generated by 1 in

R[X], written X
Spar{M+) = ammjamn 2R ;

m2Mr
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is isomorphic toL+. Hence, in our algorithms, elements df; are represented on the
monomial basisMt. Without loss of generality, we always assume thaall degrees
d are at least 2 Indeed, if T; has degree 1 irX;, the variable X; appears neither in
the monomial basisM+y nor in the other polynomialsT;, so one can express it as a
function of the other variables, andT; can be discarded.

Standard and fast modular multiplication. As said before, standard algorithms
have a cost of roughly 2 2 operations in R for multiplication in Lt. This bound
seems not even polynomial int, due to the exponential overhead im. However,
since all degrees| are at least 2, 1 is at least 2'; hence, any bound of the fornK" -
is actually polynomial in 1, since it is upper-bounded by 'Togz(K)“.

Our goal is to obtain bounds of the fornrK" 1 (up to logarithmic factors), that are
thus softly linear in 1 for xed n; of course, we want the constanK as small as pos-
sible. We will use fast polynomial multiplication, denoting byM : N! N a function
such that over any ring, polynomials of degree less thahcan be multiplied in M(d)
operations, and which satis es the super-linearity conditionsf [43, Chapter 8]. Us-
ing the algorithm of Cantor-Kaltofen [21], one can takéM(d) 2 O(dlog(d) log log(d)).
Precisely, we will denote byk a constant such thatM(d) kdlg(d)Iglg(d) holds for
all d, with Ig(d) = log , max(d; 2)

In one variable, fast modular multiplication is done using theCook-Sieveking-
Kung algorithm [24, 87, 59]. GivenT; monic of degreed; in R[X;] and A;B of
degrees less thanl;, one computes rst the productAB. To perform the Euclidean
division AB = QT; + C, one rst computes the inverseS; = U, ! mode1 1 where
U = XflT1(1=X1) is the reciprocal polynomial ofT;. This is done using Newton
iteration, and can be performed as a precomputation, for a sbof 3M(d;) + O(d,).
One recovers rst the reciprocal ofQ, then the remainderC, using two polynomial
products. Taking into account the cost of computingAB , but leaving out precompu-
tations, these operations have cost\8(d;) + d;. Applying this result recursively leads
to a rough upper bound of =, (3M(d;) + d;) for a product in L+, without taking
into account the similar cost of precomputation (see [60] for sifar considerations);
this gives a total estimate of roughly (B+ 1)" 1, neglecting logarithmic factors.

One can reduce the (B+ 1)" overhead: since additions and constant multipli-
cations in Lt can be done in linear time, it is thebilinear cost of univariate mul-
tiplication which governs the overall cost. Over a eld of lage enough cardinality,
using evaluation / interpolation techniques, univariate muliplication in degree less
than d can be done using @ 1 bilinear multiplications; this yields estimates of
rough order (3 2)" 1 = 6" 1. Studying more precisely the multiplication pro-
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cess, we prove in Theorem 6.2.1 that one can compute productsLin using at most
K4" +1g( 1)lglg( 1) operations, for an universal constantk. This is a synthetic
but rough upper bound; we give more precise estimates withinéhproof. Obtaining
results linear in 1, without an exponential factor in n, is a major open problem.
When the base ring is a eld of large enough cardinality, we ohtn rst results in
this direction in Theorem 6.2.2: in the case of families aivariate polynomials, we
present an algorithm of quasi-linear complexitK. 1+ for all ".

Basic complexity considerations. Since we are estimating costs that depend on
an a priori unbounded number of parameters, big-Oh notation is delicat® handle.
We rather use explicit inequalities when possible, all the mores an explicit control
is required in the proof of Theorem 6.2.2. For similar reasons,ewdo not useO~
notation.

We denote byCeya (resp. Cinerp) functions such that over any ringR, a polynomial

in Ceyal(d) (resp. Cinerp(d)) operations, assuminga; & is a unit for i 6 j for
interpolation. From [43, Chapter 10], we can take both quaities in O(M(d) Ig(d)),
where the constant in the big-Oh is universal. In Subsection 632 we will assume
without loss of generality that M(d)  Cgya(d) for all d.

Recall that k is such that M(d) is bounded bykdIg(d) Iglg(d) for all d. Up to
maybe increasing, we will thus assume that bothCeya(d) and Ciyerp (d) are bounded

MM(ds;:idy)  M((2dr 1) (2d, 1))

using Kronecker's substitution. Let = d; d,. Assuming d; 2 for all i, we
deduce the inequalities

(2d, 1) (2d, 1) 20 2

k2" 1g(2" )Iglg(2" ) 4k2" 1g( )lglg( ):
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Up to replacing k by 4k, we thus have
MM(dy;:::5da) k2" Ig( )Iglg( ): (6.1)

Pan [78] proposed an alternative algorithm, that requires #existence of interpolation
points in the base ring. This algorithm is more e cient when fo exampled, are xed

andn!1l . However, using it below would not bring any improvement, duect our
simpli cations.

6.2.2 The main algorithm

Theorem 6.2.1. There exists a constanK such that the following holds. LeR be
aring and let T be a triangular set inR[X]. Given A;B in Ly, one can compute
AB 2 Lt in at most K4" 1 1g( 1)lglg( 1) operations(+; ) in R.

Two subroutines are used, which we describe in Figure 5. In thesebsautines, we
use the following notation:

For D in R[Xq;:::; Xj] such that degD; X;) e, Re\(D; X;;e)is the reciprocal

For D in R[X], Coe (D; X;;€) is the coe cient of X?.

We can now give the speci cation of these auxiliary algorithms.These algorithms
make some assumptions, that will be satis ed when we call them fromuio main
routine.

The rst one is Rem(A; T;S), with A in R[X]. This algorithm computes the
normal form of A modulo T, assuming that deg@; X;) 2d; 2 holds for all
i. Whenn=0, AisinR, T is empty andRen(A;T;S) = A.
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The next subroutine isMulTrundA; B; T; S;dn+1), with A;B in R[X; X+ ]; it
computes the productAB modulo hT;Xﬁ,’i}1 I, assuming that degh; X;) and
deg@®; X;) are bounded byd, 1fori n+1. If n=0, T is empty, so this

function return AB mod X {.

To compute Rem(A; T;S), we use the Cook-Sieveking-Kung idea iht [X,]: we
reduce all coe cients of A moduloT and perform two truncated products inLt [X,]
using MulTrunc. The operation MulTrunc is performed by multiplying A and B as
polynomials, truncating in X,+; and reducing all coe cients moduloT, using Rem

Algorithm 5 Modular Reduction

Ren(A;T;S)

1ifn=Q returnA

2 A° 2 2Ren{Coe (A; X n;i);T ;S )X},
3B Re(A%X,;2d, 2)modXd 1

4 P MulTrundB; S,;T ;S ;d, 1)

5Q Re(P;X,;d, 2)

6 returnAomoerﬁ’n MulTrundQ; T,; T ;S ;dy)

MulTrund(A; B; T; S;dn+1)

1C AB

2 if n = @ return C mod X &t

3return & TRen{Coe (C;Xps1;i); T;S)X .,

For the complexity analysis, assuming for a start that all inverseS have been pre-

CRem(dl; il n) (Zdn 1)CRem(d1; L dn 1) + CMuITrunc (dl; s 0 1)
+ Cuumunc (d1;::150d,) + dp dn;
Cl\/IuITrunc (dl; R n) MM(dl; Lo ;dn) + CRem(dl; Lo ;dn 1)dn:
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forn 1. Write MMO(dl;:::;dn) =2MM(dy;:::;dy)+ d; dy. This yields

X
Crem(d1; 1115 0n) 4" T MMYdy; i d)divg d

i=1

sinceCrem() = 0. In view of the bound on MM given in Equation (6.1), we obtain
MMYdy;:::;d)die dn 3k 1lg( 1)lglg( 1):

Taking e.g. K = 3k gives the boundCgem(ds;:::;dy)  K4" 11g( 1)lglg( 1): The
product A;B 7! AB in Lt is performed by multiplying A and B as polynomials and
returning Ren{AB; T; S). Hence, the cost of this operation admits a similar bound,
up to replacing K by K + k. This concludes our cost analysis, excluding the cost
of the precomputations. We now estimate the cost of precompugnthe inversesS:

modulo Xrﬂjg in Lt [X,] can be performed in

k2" lg( Ylglg( )+ K4 °lg( + )lglg( 1)

operations, with 1+ = d; dy ;1 and °= 1 d2. Up to replacing K by K + k,
and assumingd’  d,, this yields the upper boundK 4" °lg( 1)Iglg( t): Let now
" = dog,(d, 1)e. Using Newton iteration in Lt [X,], we obtain S, by performing
2 multiplications in Lt [X,] in degrees less thaimm and m=2 negations, form =
2:4::::;2 1 see [43, Chapter 9]. By the remark above, the cost is at most

X
t(n) = 3K4%d; d, amlg( 7)lglg( v)  3K4" 1lg( 7)lglg( 7):

The sumt(1) + + t(n) bounds the total precomputation time; one sees that it
admits a similar form of upper bound. Up to increasing, this gives the desired
result. [

6.2.3 The case of univariate polynomials

To suppress the exponential overhead, it is necessary to avoidparding the product
AB . We discuss here the case of triangular sets consisting of univagigolynomials,
where this is possible. We provide a quasi-linear algorithm, # works under mild
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assumptions. However, the techniques used (deformation ideasmuog from fast
matrix multiplication algorithms [13, 14, 12]) induce larg sub-linear factors.

Theorem 6.2.2. For any " > 0, there exists a constanK- such that the following
holds. LetK be a eld and T = (Ty;:::;T,) be a triangular set of multi-degree
(dy;:::;dn) in K[X4] K[Xn], with 2 d j Kj for all i. Given A;B in L,

one can computeAB 2 Lt using at mostK. 1*" operations(+; ; ) in K.

a ring R. Our main assumption is that for alli, T; is in R[X;] and factors as

Ti = (X o) (X idi 1);

with ijoaunitin Rforj 6 j'. Let V R" be the grid
V=[( 15 a,) 0 fi<di];
which is the zero-set of Ty;:::; T) (When the base ring is a domain). Remark that

T; and T; can have non-trivial common factors: all that matters is thatfor a giveni,
evaluation and interpolation at the roots ofT; is possible.

Proposition 6.2.3. GivenA;B in L+, as well as the set of point¥, one can compute
AB 2 Lt using at most

X 2CEvaI(di) + CInterp(di)
d;

T 1+

in
operations(+; ; )in R.

In view of our remarks on the costs of evaluation and interpdi@an, this latter cost
is at most K° 1 1g?( 1)lglg( 1); for an universal constantk® which can be taken as
KO=3k+ 1.
Proof.  The proof uses an evaluation / interpolation process. De ne thevalu-
ation map
Eval: SparfMr) ! RT
F 7 [F()) 2VI

Since all j; ijo are units, the map Eval is invertible. To perform evalua-
tion and interpolation, we use the algorithm in [78, Section ]2 which general-
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izes the multidimensional Fourier transform: to evaluateF, we see it as a poly-

[( 100505 n1, ,) 0 75 <di]. We conclude by performingd;  d, ; univariate
evaluations inX,, in degreed,.

Extending our previous notation, we immediately deduce theecursion for the
cost Cgya Of multivariate evaluation

CEvaI(dl; L dn) CEval(dl; N dn 1) dn + dl dn 1CEvaI(dn);

CEval(di )
d

X
so that Cgya(dy;:::;dy) T :
in
The inverse map oftvalis the interpolation map Interp. Again, we use Pan's algo-

rithm; the recursion and the bounds for the cost are the same, Ying

X C d
Cinterp(d1; 223 dh) T nte+(|):

in :
To compute AB mod T, it su ces to evaluate A and B on V, multiply the + pairs
of values thus obtained, and interpolate the result. The costsémate follows. [
This algorithm is summarized in Figure 6, under the nam#&lulSplit (since it refers

to triangular sets which completely split into linear factors)

Algorithm 6  MulSplit

MulSplit(A; B; V)

1 Vval, EvalA)

2 Vag EvalB)

3Vak [Vah( )Vak( )] 2V]
4 return IntergValk:)

Step 2. We continue with the case where_the polynomial$; do not split anymore.
Recall our de nition of the integer ry = i”:l (di 1)+ 1; since the polynomials
T form a Gmbner basis for any ordery+ is the regularity of the idealhTi. In the
following, the previous exponential overhead disappears, towe introduce a quasi-
linear dependency inrt: these bounds are good for triangular sets made of many
polynomials of low degree.
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Proposition 6.2.4. Under the assumptions of Theorem 6.2.2, give&; B in L1, one
can compute the producfAB 2 Lt using at most

CEval(di) + CInterp(di) .
di ’

o X
K* 1 M(rr)

I n
operations(+; ; ) in K, for an universal constantk’

As before, there exists an universal consta€®such that this estimate simpli es as

K®rrr 1g( 7)lg(rr) *: (6.2)

U =(Xi apo) Xi ag 1);

where for xed i, the valuesa;; are pairwise distinct (these values exist due to our
assumption on the cardinality ofK). Let nally be a new variable, and de ne

VO=(Vy:::VW) K[]X]byVi= T,+(1 )U;; so that V; is monic of degree
di in K[ ][X;]. Remark that the monomial baseM+, My and M are all the same,

that specializing at 1 in VO yields T and that specializing at 0 in V° yields U.

Lemma 6.2.5. Let A;B be in SparfM+) in K[X] and let C = AB modhv% in
K[ ][X]. Then C has degree in at mostrt 1, and C(1;X) equalsAB modulohTi.

Proof. Fix an arbitrary order on the elements ofM, and let Mat(X;; V°) and
Mat(X;; T) be the multiplication matrices of X; modulo respectivelyhv® and hTi in
this basis. HenceMat(X;;V°) has entries inK[ ] of degree at most 1, andat(X;; T)
has entries inK. Besides, specializing at 1 in Mat(X;; V°) yields Mat(X;; T). The
coordinates ofC = AB mod hv° on the basisMt are obtained by multiplying the
coordinates ofB by the matrix Mat(A; V °) of multiplication by A modulohv°i. This

gives the matrix Mat(A; T), proving our last assertion. To conclude, observe that
sinceA has total degree at most; 1, the entries ofMat(A; V °) have degree at most
rr 1as well. O
Let R be the ring K[ ]=h '"i and let A;B be in SparfMt) in K[X]. Dene C =
AB modhv? in R[X]and let C be its canonical preimage itK[ ]J[X]. By the previous
lemma, C(1; X) equalsAB modhrli. To compute C , we will use the evaluation /
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interpolation techniques of Step 1, as the following lemma etvs that the polynomials
VO splitin R[X]. The corresponding algorithm is in Figure 7; it uses a Newton-ieel
lifting algorithm, called Lift, whose last argument indicates the target precision.

Vi = (X i0) (X id; 1)

holds in R[Xj], using O(M(r1)Cegva(d)) operations inK. The constant in the big-Oh
estimate is universal.

Proof. As shown in [17, Section 5], the cost of computing; from its roots is
Ceval(di) + O(M(d;)), which is in O(Cgyq/(di)) by our assumption onCgyy; from this,
one deduces/; with O(d;) operations. The polynomialU; = V;(0; X;) splits into a
product of linear terms in K[X;], with no repeated root, soV; splits into R[X;], by
Hensel's lemma. The power series roots; are computed by applying Newton-Hensel
lifting to the constants &;; , forj =0;:::;d 1. Each lifting step then boils down to
evaluate the polynomialV; and its derivative on the currentd;-tuple of approximate
solutions and deducing the required correction. Hence, as #3] Chapter 15], the
total cost is O(M(r+)Cgval(d;)) operations; one easily checks that the constant hidden
in this big-Oh is universal. [

Algorithm 7  Lift Roots

11U Xy a0 Xi ag 1)
2 VI Ti +(1 )U|

We can nally prove Proposition 6.2.4. To computeAB modhTi, we compute
C = AB mod hv% in R[X], deduceC 2 K[ ]J[X] and evaluate it at 1. By the
previous lemma, we can use Proposition 6.2.3 over the coe cienng R to compute
C . An operation (+; ; ) in R has costO(M(r1)). Taking into account the costs
of Step 1 and Lemma 6.2.6, one sees that there exists a constidhguch that the cost

is bounded by
CEvaI(di) + CInterp(di) .
di '

kK + M X
T M(rv)

I n
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O
The algorithm is given in Figure 8, under the nameéJulUnivariate we use a func-
tion called ChooséK; d), which returns d pairwise distinct elements fromK.

Algorithm 8 MulUnivariate
MulUnivariat€A; B; T)

1.2 goiiii; kg, 1 LiftRoOtg&05: 0 &g, 15 Ti)

2V [ i na)i 0 Ti<di]

3C MulSplit(A; B;V ) (computations done mod ')
4 returnC (1; X) (C is seenirK[ ][X])

Step 3: conclusion. To prove Theorem 6.2.2, we combine the previous two ap-
proaches (the general case and the deformation approach),ngsthe former for large
degrees and the latter for smaller ones. Létbe a positive real, and de nel =2=".
We can assume that the degrees ih are ordered as 2 d; dn, with in particular

t 2". Dene an index " by the condition that d 4 d.;, taking dy = 0 and
dy+1 = 1 for de niteness, and let

Equation (6.2), a product inR can be done inkK® roro Ig( 10)lg(ro) ° operations
in K; additions are cheaper, since they can be done in timg.. By Theorem 6.2.1,
one multiplication in Lt can be done inK4"  tolg( 109 lglg( to) operations inR.
Hence, taking into account that + = 1o o the total cost for one operation inLt
can be roughly upper-bounded by

KK%" 1 rro lg( 7o) lg(rro)lg( 7o) °:

Now, observe thatryo is upper-bounded bydn 4 Ig( ). This implies that the
factor

rro 1g( 1o)lg(rro) Ig( o9 °

is bounded byHIg*°( 1), for a constantH depending on". Next, (4" )' =(@&')"
is bounded byd-,; d, 1. Raising to the power'=2 yields 4 = % thus, the
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previous estimate admits the upper bounds
KKH 1721910 1) KKOHH &+

where H® depends or'.

6.3 Implementation Techniques

The previous algorithms were implemented irC; most e orts were devoted to the
generic algorithm of Section 6.2.2. As in Chapter 5 (or see Pape[41, 65]), theC
code was interfaced withAXIOM . In this section, we describe this implementation.

Arithmetic in  F,. Our implementation is devoted to small nite elds Fy, with pa
machine word prime of the formc2" + 1, for ¢ < 2". Multiplications in F, are done
using Montgomery's REDC routine [74]. A straightforward impémentation does not
bring better performance than the oating point techniquesof Shoup [86]. We use
an improved scheme, adapted to our special primes, presenteddvel Compared to a
direct implementation of Montgomery's algorithm, it lowers the operation count by
2 double word shifts and 2 single word shifts. This approach perfos better on our
experimentation platform (Pentium 4) than Shoup's implematation, the gain being
of 32%. Itis also more e cient and more portable than the one if41], which explicitly
relied on special machine features like SSE registers of lafe32 architectures. We
formally describe this scheme as following:

Let p be a prime of the formp = ¢2" + 1; for ¢ < 2" (in our code, n ranges from
20 to 23 andc is less than 1000). Let = dog,(p)e and let R = 2 . Given a and
I', both reduced modulop, Montgomery's REDC algorithm computesa!=R mod p.
We present our tailor-made version here. Precomputations Wwibe authorized for
the argument! (this is not a limitation for our main application, FFT polyn omial
multiplication). We compute

1. M, = al

N

. (qr;r) = (M7 div R;M; mod R)
3. M, = rch”
4. (p;r2) = (M, div R;M, modR)

5. M3 = r202”
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6. ¢ = M3 div R

7T.A=0q g+ ¢

Proposition 6.3.1. Suppose thatt < 2". Then A satises A a!'=R modp and
(P <A< 2(p 1.

Proof. By construction, we have the equaliteRq = M; r; and R =
M, r,: Remark next that 2" divides M,, and thus r, (sinceR is a power of two
larger than 2"). It follows that 22" divides M;. Since we havec < 2", p is at most
2" soR is at most 2" as well. HenceR divides M3, so that Rgz = M3. Putting
this together yields

RA=M; ri Mo+ r,+ M3:

Recall that M, = r;c2", so that M, = r; mod p. Similarly, M3 = r,c2", so
M3z = r, mod p. Hence,RA = M; mod p, which means thatA = a!=R mod p,
as claimed. As to the bounds o\, we start by remarking that M; < (p  1)?, so
that qy <p 1. Next, sincer; < R, we deduce thatM, < c2"R which implies that
¢ <c2"=p 1. Similarly, we obtain that s <p 1, which implies the requested
inequalities. [

Let us now describe our implementation on 32-bit x86 processon/e use an as-
sembly macroMulHiLo(a; b from the GMP library; this macro computes the product
d of two word-length integersa and b and puts the high part of the result d div 23?)
in the register AXand the lower part (d mod 2%2) in the register DX avoiding shifts.
In our case,R does not equal 2. However, since we allow precomputations dn, we
will actually store and use! °= 232 "I instead of! ; hence,MulHiLo(a;! 9 directly
gives usq and r¢ = 2% r;. Similarly, we do not compute the productr,c2"; in-
stead, we useMulHiLo(r; ¢, where c®is the precomputed constant2", to get ¢, and
rg=23% r,.

To compute g, it turned out to be better to do as follows. We writegs asr.c=2 ".
Now, recall from the proof of the previous proposition that 2 dividesr,. Under the
assumption thatc < 2", we saw in the proof that®  2n, so that 2 " divides ry.
Hence, we obtaings by right-shifting r, by °  n places, or, equivalentlyrd by 32 n
places, and multiplying the result byc. Eventually, we need to bring the resultA
between O andp 1. As in NTL [86], we avoidif statements: using the sign bit of
A as a mask, one can adg to A in the caseA < 0; by subtracting p and correcting
once more, we obtain the correct remainder.
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In the following benchmark we compare our specialized trickevsus the standard
Montgomery trick when applying them into a FFT computation over a 32 bit FFT
prime number. The specialized trick outperforms the standardne. Note that our
specialized trick utilizes an assembly subroutine for multipipg machine integers
whereas the standard one is implemented in pure C language.

0.18

j Special\%ed Mont,'f ---
Standard Mont.
AT LA S |

0.16 |

0.14 |

0.12

Time

7= L L L L L L L L L
0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000
Partial degree

Figure 6.1: TFT vs. FFT.

Arithmetic in  Fp[X]. Univariate polynomial arithmetic is crucial: multiplicati on

modulo a triangular set boils down to multivariate polynomia multiplications, which

can then be reduced to univariate multiplications through Konecker's substitution.
We use classical and FFT multiplication for univariate polynorals overF,. We use
two FFT multiplication routines: the rst one is that from [26] ; its implementation

is essentially the one described in [41], up to a few modi catisnto improve cache-
friendliness. The second one is van der Hoeven's TFT (Truncatedrier Trans-
form) [51], which is less straightforward but can perform beér for transform sizes
that are not powers of 2. We tried several data accessing pattexnthe most suitable
solution is platform-dependent, since cache size, associatyvroperties and register
sets have huge impact. Going further in that direction will rquire automatic code
tuning techniques, as in [54, 53, 79].

Multivariate arithmetic over Fp. We use a dense representation for multivariate
polynomials: important applications of modular multiplicaion (GCD computations,
Hensel lifting for triangular sets) tend to produce dense polynaaids. We use multi-
dimensional arrays (encoded as a contiguous memory block oachine integers) to
represent our polynomials, where the size in each dimension isubded by the cor-
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responding degree ded(; X;), or twice that much for intermediate products. Multi-
variate arithmetic is done using either Kronecker's substitubn as in [41] or standard
multidimensional FFT. While the two approaches share similaties, they do not ac-
cess data in the same manner. In our experiments, multidimenser~FT performed
better by 10-15% for bivariate cases, but was slower for largeumber of variables
with small FFT size in each dimension.

Triangular sets over F,. Triangular sets are represented irC by an array of
multivariate polynomials. For the algorithm of Subsection &.3, we only implemented
the case where all degrees are 2; this mostly boils down to ewalon and interpolation
on n-dimensional grids of size2 over a power series coe cient ring.

More work was devoted to the algorithm of Subsection 6.2.2. Toastrategies for
modular multiplication were implemented, a plain one and tat of Subsection 6.2.2.
Both rst perform a multivariate multiplication then do a mul tivariate reduction;
the plain reduction method performs a recursive Euclidean dsion, while the faster
one implements both algorithmsRemand MulTrunc of Subsection 6.2.2. Remark in
particular that even the plain approach is not the entirely mive, as it uses fast mul-
tivariate multiplication for the initial multiplication. Both approaches are recursive,

they are surprisingly low fori > 1.

The fast algorithm uses precomputations (of the power seriesvarses of the re-
ciprocals of the polynomialsT;). In practice, it is of course better to store and reuse
these elements: in situations such as GCD computation or Hensetilifj, we expect
to do several multiplications modulo the same triangular set. W could push further
these precomputations, by storing Fourier transforms; this is nalone yet.

GCD's. One of the rst applications of fast modular multiplication is GCD com-
putation modulo a triangular set, which itself is central to hgher-level algorithms
for solving systems of equations. Hence, we implemented a prehiany version of
such GCD computations using a plain recursive version of Euclglalgorithm. This
implementation has not been thoroughly optimized. In partular, we have not in-
corporated any half-GCD technique, except founivariate GCD's; this univariate
half-GCD is far from optimal.

The AXIOM level.  Integrating our fast arithmetic into AXIOM s straightforward,
after dealing with the following two problems. First, AXIOM is a Lisp-based system,



83

whereas our package is implemented in C. Second, AXIOM , dense multivariate
polynomials are represented by recursive trees, but in oGrpackage, they are encoded
as multidimensional arrays. Both problems are solved by modifyg the GCL kernel.
For the rst issue, we integrate ourC package into the GCL kernel, so that our C-
level functions from can be used bAXIOM at run-time. For the second problem,
we realized a tree / array polynomial data converter. This aoverter is also linked to
GCL kernel; the conversations, happening at run-time, have ggible cost.

6.4 Experimental Results

The main part of this section describes experimental results tacthed to our main
algorithm of Subsection 6.2.2; we discuss the algorithm of Subsen 6.2.3 in the last
paragraphs. For the entire set of benchmarks, we use random densé/pomials. Our
experiments were done on a 2.80 GHz Pentium 4 PC, with 1GB memyoand 1024
KB cache.

6.4.1 Comparing di erent strategies

We start by experiments comparing di erent strategies for computing products mod-
ulo triangular sets inn = 1; 2; 3 variables, using our general algorithm.

uct C = AB 2 L,, we rst expand P = AB 2 L[X], then reduce it moduloT.
The product P is always computed by the same method; we use three strategies fo
computing C.

Plain. We use univariate Euclidean division; computations are donecursively

Fast, using precomputations. We apply the algorithm Ren(C;T;S) of
Algorithm 5, assuming that the inversesS have been precomputed.

Fast, without precomputations. We apply the algorithm Ren(C; T;S) of
Algorithm 5, but recompute the required inverses on the .

Our ultimate goal is to obtain a highly e cient implementati on of the multiplication
in L,. To do so, we want to compare our strategies ihq, L,, ..., L,. In this report
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we give details forn 3 and leave for future work the case af > 3, as the driving
idea is to tune our implementation inL; before investigating that ofL;.;. This ap-
proach leads to determine cut-o s between our di erent stratgies. The alternative
is betweenplain and fast strategies, depending on the assumption regarding pre-
computations. For applications discussed before (quasi-invessgolynomial GCDs
modulo a triangular set), using precomputations is realistic.

Univariate multiplication. Figure 6.2 compares our implementation of the Trun-
cated Fourier Transform (TFT) multiplication to the classical Fast Fourier Transform
(FFT). Because the algorithm is more complex, especially thaterpolation phase,
the TFT approach does not outperform the classical FFT multigtation in all cases.
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FET e

0.00035 ¢
0.0003 r
0.00025 ¢

Time

0.0002
0.00015 ¢
0.0001 ¢

5e-05

O 1 1 1 1 1 1
0 50 100 150 200 250 300 350

Degree

Figure 6.2: TFT vs. FFT.

Univariate triangular sets. Finding the cut-o s between our strategies is straight-
forward. Figure 6.3 shows the result using classical FFT multiglation; the cut-o
point is about 150. If precomputations are not assumed, then it cut-o doubles.
Using Truncated Fourier Transform, one obtains roughly similaresults.

Bivariate triangular sets. For n = 2, we let in Figure 6.4d; and d, vary in the

ranges 4:::;304 and 2:::;102. This allows us to determine a cut-o ford, as a
function of d;. Surprisingly, this cut-o is essentially independent ofd, and can be
chosen equal to 5. We discuss this point below. To continue ourrmdmarks inL s,

we would like the productd,d, to play the role in L3 that d; did in L,, so as to
determine the cut-o for d; as a function ofd;d,. This leads to the question: for a
xed product d;d,, does the running time of the multiplication inL, stay constant
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Figure 6.3: Multiplication in L, all strategies, using FFT multiplication.

Time A . Time
Fast without precomputation

Fast using precomputation
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Fast using precomputation

Figure 6.4: Multiplication in L,, fast without precomputations vs. fast using
precomputations (top) andplain vs. fast using precomputations.

when (d;;dy) varies in the region 4 d; 304 and 2 d, 102? Figure 6.5
gives timings obtained for this sample set; it shows that the tim varies mostly for
the plain strategy (the levels in thefast case are due to our FFT multiplication).
These results guided our experiments ihs.

Trivariate triangular sets. For our experiments withL 3, we consider three patterns
for (d;;d;). Pattern 1 hasd; = 2, Pattern 2 has d; = d, and Pattern 3 hasd, =

2. Then, we letd;d, vary from 4 to 304 andds; from 2 to 102. For simplicity,
we also report only the comparison between the strategigéain and fast using
precomputations . The timings are in Figure 6.6; they show an impressive speed-
up for the Fast strategy. We also observe that the cut-o between the two stratags
can be set to 3 for each of the patterns. Experiments as in Figufe5 gives similar
conclusion: the timing depends not only on;d, and d; but also on the ratios between
these degrees.
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Figure 6.5: Multiplication in L,, time vs. d = d;d,, Plain (left) and Fast using
precomputations (right).

Figure 6.6: Multiplication in L3, plain vs. fast , patterns 1{3 from top left to
bottom.

Discussion of the cut-0 s. To understand the low cut-o points we observe, we
have a closer look at the costs of several strategies for multgdtion in L,. For a ring
R, classical polynomial multiplication inR[X ] in degree less thaml uses about (2; d?)
operations ( ;+) respectively (we omit linear terms ind). Euclidean division of a
polynomial of degree @ 2 by a monic polynomialT of degreed has essentially the
same cost. Hence, classical modular multiplication uses abouti{22d?) operations
( ;+)in R. Additions modulo hTi take d operations.

Thus, a pure recursive approach for multiplication irL, uses about (45d3; 4d2d2)
operations ( ;+)in K. Our plain approach is less naive. We rst perform a bivariate
product in degrees @,; d;). Then, we reduce all coe cients modulohT;i and perform
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Euclidean division inL4[X ], for a cost of about (22d3; 2d?d2) operations. Hence, we
can already make some advantage of fast FFT-based multiplicati, since we traded
2d2d3 base ring multiplications and as many additions for a bivari@ product.

Using precomputations, thefast approach performs 3 bivariate products in de-
grees about @;; d>) and about 4d, reductions modulohT;i. Even for moderate (;; d,)
such as in the range 20{30, bivariate products can already berk e ciently by FFT
multiplication, for a cost much inferior to d?d3. Then, even if reductions moduldiT;i
are done by theplain algorithm, our approach performs better: the total cost of
these reductions will be about (d3d,; 4d2d,), so we save a factot d,=2 on them.
This explains why we observe very low cut-o s in favor of thdast algorithm.

6.4.2 Comparing implementations

Comparison with Magma. To evaluate the quality of our implementation of
modular multiplication, we compared it with Magma v. 2-11 [16], which has set
a standard of e cient implementation of low-level algorithms. We compared multi-

plication in L3 for the previous three patterns, in the same degree ranges. Figl6.7

gives the timings for Pattern 3. TheMagma code uses iteratedjuo constructs over

UnivariatePolynomial 's, which was the most e cient con guration we found. For

our code, we use the strategylain using precomputations . On this exam-

ple, our code outperformdMlagma by factors up to 7.4; other patterns yield similar
behavior.

Magma
Our code

Figure 6.7: Multiplication in L3, pattern 3, Magma vs. our code.

Comparison with Maple.  Our future goal is to obtain high-performance implemen-
tations of higher-level algorithms in higher-level languges, replacing built-in arith-
metic by our C implementation. Doing it within Maple is not straightforward; our
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Maple experiments stayed at the level of GCD and inversions ibz, for which we
compared our code withMaple 's recden library. We used the same degree pat-
terns as before, but we were led to reduce the degree rangegtto d;d, 204 and
2 d3 20. Our code uses the strategfast using precomputations . The
Maple recden library implements multivariate dense recursive polynomialand can
be called from theMaple interpreter via the Algebraic wrapper library. Our Maple
timings, however, do not include the necessary time for converyy Maple objects
into the recden format: we just measured the time spent by the functionnvpoly

of recden. Figure 6.8 gives the timings for Pattern 3 (the other resultare similar).
There is a signi cant performance gap (our timing surface is vg close the bottom).
When using ourplain strategy, our code remains faster, but the ratio diminishes by
a factor of about 4 for the largest con gurations.

Figure 6.8: Inverse inL 3, pattern 1, Maple vs. our code.

Comparison with AXIOM. Using our arithmetic in AXIOM is made easy by the
C/GCL structure. In [65], the modular algorithm by van Hoeij and Monagan [71] was
used as a driving example to show strategies for such multiplesg language imple-
mentations. This algorithm computes GCD's of univariate pginomials with coe -
cients in a number eld by modular techniques. The coe cient eld is described by a
tower of simple algebraic extensions @; we are thus led to compute GCD's modulo
triangular sets overF,, for several primesp. We implemented the top-level algorithm
in AXIOM . Then, two strategies were used: one relying on the built-iIAXIOM
modular arithmetic, and the other on ourC code; the only di erence between the
two strategies at the top-level resides in which GCD functiona call. The results
are given in Figure 6.9. We use polynomial8; B in Q[X1; Xy; X3]=hTy; Ty; Tai [X4],
with coe cients of absolute value bounded by 2. As shown in Figw 6.9 the gap is
dramatic.
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Figure 6.9: GCD computationsL 3[X4], pure AXIOM code vs. combined C-AXIOM
code.

6.4.3 The deformation-based algorithm

We conclude with the implementation of the algorithm of Subsztion 6.2.3, devoted to
triangular sets made of univariate polynomials only. We foaion the most favorable
case for this algorithm, when all degreed; are 2: in this case, inn variables, the
cost reported in Proposition 6.2.4 become®(2"nM(n)): This extreme situation is
actually potentially useful, see for instance an applicationotthe addition of algebraic
numbers in characteristic 2 in [85]. For most practical purposen should be in the
range of about 1:::;20; for such sizes, multiplication in degrea will rely on naive
or at best Karatsuba multiplication; hence, a reasonable praical estimate for the
previous bound isO(2"n3); which we can rewrite asO( T log( 1)%). We compare
in Figure 6.10 the behavior of this algorithm to the generalme. As expected, the
former behaves better: the general algorithm starts by mullying the two input
polynomials, before reducing them. The number of monomials the product before
reduction is 3' = ';’92(3). Hence, for this family of problems, the general algorithm
has a non-linear complexity.

6.5 Summary

We have provided new estimates for the cost of multiplication odulo a triangu-
lar set. The outstanding challenge for this question remains ¢hsuppression of ex-



variables T general (Subsection 6.2.2) specialized (Subsection 6.2.3)
3 8 0:000188 0:000043
4 16 0:001288 0:000126
5 32 0:007888 0:000337
6 64 0:045804 0:000983
7 128 0:254427 0:002720
8 256 1:434127 0:008141
9 512 7682161 0:019928
10 1024 40519331 0:052337
11 2048 204719505 0:131778

Figure 6.10: General vs. specialized algorithm.

ponential overheads; a tempting approach is a higher-dimensial extension of the
Cook-Sieveking-Kung idea, or the related Montgomery appach.

On the software level, our experiments show the importance obth fast algo-
rithms and implementation techniques. While most of our e ors were limited to
multiplication, the next steps are well-tuned inversion and GD computations. The-
ory and practice revealed that, as far as multivariate mulplication is concerned, fast
algorithms become faster than plain ones for very low degrees.
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Chapter 7

Fast Algorithms for Regular GCD
Computations and Regularity Test

Recall that in Chapters 3, 4 and 5 we have studies and implemext a set of asymp-
totically fast operations such as univariate/multivariate polynomial multiplication,
division, GCD. In chapter 6 we have advanced our study further yb considering
operations modulo triangular sets, i.e. polynomial multiptation, inversion, GCD
modulo a monic triangular set. In this and next chapters we deop new higher-level
algorithms. They are fundamental subroutines for trianguladecompositions based
polynomial solving. Besides the algorithmic design, their higperformance rely on
the highly e cient implementations reported in previous chapters. In following sec-
tions, we report two new algorithms: polynomial GCDs modulo glar chains and
regularize modulo saturated ideals.

NOTE: This chapter is written based on the submitted Paper [6 7].

7.1 Overview

representing the zero seV(F) of F. Each regular chainT; may encode several
irreducible components ofV (F) provided that those share some properties (same
dimension, same free variables, ...).

Triangular decomposition methods are based on an univariat@d recursive vision
of multivariate polynomials. Most of their routines manipuldae polynomial remainder
sequences (PRS). Moreover, these methods are usually \fackation free", which ex-
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plains why two di erent irreducible components may be reprgented the same regular
chain. An essential routine is then to check whether a hyper-sadef = 0 contains
one of the irreducible components encoded by a regular chain This is achieved
by testing whether the polynomialf is a zero-divisor modulo the so-calledaturated
ideal (see Section 2.3) of . The univariate approach allows to perform thigegularity
test by means of GCD computations. However, since the saturated ideall T may
not be prime, the concept of a GCD used here is not standard.

The rst formal de nition of this type of GCDs was given by Kalkbrener in his
PhD thesis [55]. However GCDs over non-integral domains wer&remdy used in
several papers [34, 62, 46] since the introduction of the celated D5 Principle [30]
by Della Dora, Dicrescenzo and Duval. Indeed, this brillianand simple observation
allows one to carry out over direct product of elds computabns that are usually
conducted over elds. For instance, computing univariate pghomial GCDs by means
of the Euclidean Algorithm.

To de ne a polynomial GCD of two (or more) polynomials modula regular chain
T, Kalkbrener refers to the irreducible components thafl represents. In order to
improve the practical e ciency of those GCD computations by neans of subresultant
techniques, Rioboo and the second author proposed a more absti@e nition in [76].
Their GCD algorithm is, however, limited to regular chains wth zero-dimensional
saturated ideals.

While Kalkbrener's de nition cover the positive dimensionalcase, his approach
cannot support triangular decomposition methods solving pohomial systems incre-
mentally, that is, by solving one equation after another. Thigs a serious limitation
since incremental solving is a powerful way to control the congxity of intermediate
computations and develop e cient sub-algorithms, by means ofjeometrical consid-
eration. The rst incremental triangular decomposition mettod was proposed by
Lazard in [61], without proof nor a GCD de nition. Another such method was pre-
sented and established by the second author in [75] together wighformal notion of
GCD adapted to the needs of incremental solving. This conceptalled regular GCD,
is reviewed in Section 2.3.5 of this Chapter. It is stated therin the context of regular
chains. A more abstract de nition is as follows.

Let A be a commutative ring with unity. Let p;t; g be non-zero univariate polyno-
mials in A[x]. We say that g is aregular GCD of p;t if the following three conditions
hold: (i) the leading coe cient of g in x is a regular element ofA,

(i) g belongs to the ideal generated bp and t in A[x], and
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(iii ) if g has positive degree w.r.tx, then g pseudo-divides both op and t, that is,
the pseudo-remainders prenp( g) and prem(t; g) are null.
In the context of regular chains, the ringA is the residue class ring of a polynomial

Even if the leading coe cients ofp; t are regular and sat{) is radical, the polynomials
p; t may not necessarily admit a regular GCD (unless sdfk( is prime). However, by

as shown in [75].

In this chapter, we propose an new algorithm for this task, togeer with a the-
oretical study and implementation report, providing signi cant improvements w.r.t.
previous work [55, 75]. First, we aim at understanding when dee pair of polynomi-
als p; t admit a regular GCD w.r.t. a regular chainT. In Section 7.3 of this Chapter
we exhibit su cient conditions for a subresultant of p;t (regarded as univariate poly-
nomials inx) to be a regular GCD ofp;t w.r.t. T. Some of these results are probably
not new, but we could not nd a reference for them, in particur when sat(l') is not
radical.

Secondly, we aim at making use of fast polynomial arithmetic anin particu-
lar FFT-based multivariate arithmetic. (Indeed, Euclideanlike algorithms tend to
densify computations.) In addition, we observe that, when comyting triangular de-
composition, whenever a regular GCD op and t w.r.t. T is needed, the resultant
of pandt w.r.t. x is likely to be computed too. This suggests to organize calcula
tions in a way that a PRS ofp and t is computed only once. Moreover, we wish to

three requirements targeting e ciency are satis ed by the reglar GCD algorithm
proposed in Section 7.4. The use of fast arithmetic for computinregular GCDs
was proposed in [28] in the case of regular chains with zero-@insional radical satu-
rated ideals. However this method does not meet our two otherqeirements. Some
complexity results for the algorithms of this chapter are gien in Sections 7.5.1 and
7.5.2.

E cient implementation is also a main objective of our work. We discuss our
implementation techniques in Sections 7.5.1 and 7.5.3. lagicular, we explain how
we create opportunities for using modular methods and fast éinmetic in operations
modulo regular chains, such as regular GCD computation and negrity test. The
experimental results reported in Section 7.6 illustrate theigh e ciency of our pro-
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posed algorithms. We obtain speed-up factors of several ordefsnmagnitude w.r.t.
the algorithms of [75] for regular GCD computations and redarize. In addition, our
code compares and often outperforms packages with similar speations in Maple
and Magma .

7.2 Specication

In this chapter, we follow the notations used in Section 2.3:

coe cients in K, with ordered variablesx; Xn.

The main variable of p 2 K[x] is denoted by mvarp).

The leading coe cient of pin X;;i = 1:::nis denoted by Icp; x;) in lc(p; Xn).
The partial degreeof p in x; is denoted by degg; x;).

The partial degree ofp in its main variable is denoted by mdeqg).

The initial of pis Ic(p; xn) denoted by init(p).

Given a triangular setT in K[x], We denote by sat{') the saturated idealof T.

Given p 2 K[x] the pseudo-remainder(resp. iterated resultan) of p w.r.t. T,
denoted by prem; T).

We list below the speci cations of the fundamental operationsn regular chains
used in this chapter. The names of these operations are the same ia the
RegularChains library in Maple .

NormalForm. Let T be a zero-dimensional normalized regular chain, that is, a
regular chain whose saturated ideal is zero-dimensional and ege initials are all in
the base eldK. Observe thatT is a lexicographic Gmbner basis. Then, fop 2 K[x],
the operation NormalForm(; T) returns the normal form of p w.r.t. T in the sense
of Gmbner bases.

Normalize. Let T be a regular chain such that all variables occurring i are
algebraic w.r.t. T. Let p 2 K[x] a non-constant polynomial whose initialh is reg-
ular w.r.t. sat(T) and such that all variables occurring inh are algebraic w.r.t.
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T. Then h is invertible modulo sat(T) and the operation Normalizep; T) returns
NormalForm(h p;T) whereh 1! is the inverse ofh modulo sat(T).

RegularGed. Let T be a regular chain and lefp;t 2 K[x] be non-constant poly-
nomials with mvar(p) = mvar(t) and such that both init(p) and init(t) are regular
w.r.t. sat(T). Then, the operation RegularGedp;t; T) returns a sequence of pairs

(01; T1); 00 (Qe; Te), called aregular GCD sequencewhereg;:::; g are polynomials
and Tq;:::; Te are regular chains oK[x], such that T! (Ty;:::;Te) holds andg; is
a regular GCD ofp;tw.r.t. Tyforalll i e

Regularize. For a regular chain T K[x] and p in K][x], the operation
Regularizép; T) returns regular chainsTy;:::; Te of K[x] such that, foreach 1 i e,
p is either zero or regular modulo saffj) and we haveT! (Ty;:::;Te)

7.3 Regular GCDs

Throughout this section, we assumen 2 and we considem;t 2 K[Xg;:::;Xn]
non-constant polynomials with the same main variable, and such that mdegf)
mdeg() holds. We denote byr the resultant of p and t w.rt. x,. Let T

Let be the canonical homomorphism fromA to B. ForO | mdegt), we denote
by S; the j -th subresultant of p;tin A[X,].

Let d be an index in the range 1 mdeg() such that Ic(Sq; X,) is regular modulo
sat(T)and S§; 2 sat(T) forall0 j<d. Lemma 3, Lemma 4 and Corollary 1 exhibit

conditions under whichSy is a regular GCD ofpandt w.r.t. T.
Lemma 1. Under the above assumptions, the polynomig} is a non-defective sub-

resultant of p and t over A. Consequently, sincdc(Sy; X,) is regular modulosat(T),

( Sq) is a non-defective subresultant of p) and ( t) in B[X,].
proof. When d = mdeg(t) holds, we are done. Hence, we assurde< mdegt).

Suppose thatSy is defective, that is, deg8q; X,) = e < d. According to item (re)
in the divisibility relations of subresultants, there exists a no-defective subresultant
Sq¢+1 such that

lc(Sq; Xn)® Sy = s, £Se;

where sy, is the leading coe cient of Sy.; in X,. By our assumptions,S. belongs
to sat(T), thus Ic(Sd;xn)OI °Sq 2 sat(T) holds. It follows from the fact Ic(Sq; Xn) is
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regular modulo sat{l) that Sy is also in sat{T). However the fact that Ic(Sy; xn) =
init( Sy) is regular modulo sat) also implies that Sy is regular modulo satl). A
contradiction.

The following lemma justi es the assumption that IcSq; ) is regular modulo
sat(T).

Lemma 2. With the same setting as Lemma 1, ilc(Sqy; X,) is contained in sat(T),
then all the coe cients of Sy regarded as a univariate polynomial irx,, are nilpotent

modulo sat(T).
proof. If the leading coe cient Ic( Sy; x,,) is in sat(T), then Ic(Sq; X) 2 p holds for

all the associated primeg of sat(T). By the Block Structure Theorem of subresultants

p. Hence we haveSy 2 = sat(T), since | equals the intersection of all associated
primes ofl for any ideall. That is to say, Sy is nilpotent modulo sat(T). It follows
from Exercise 2 of [8] that all the coe cients of Sy in x,, are also nilpotent modulo
sat(T).

The above lemma says, when I&}; x,) is in sat(T), Sy will vanish on all the
components after splitting sat{) su ciently. This is the key reason that Lemma 1
can be applied for computing regular GCD modulo saf(). To be more precise, there
are following cases:

() if lc(Sq; xn) is regular modulo sat{’), then Lemma 1 directly applies;
(2) if lc(Sy; xn) is in sat(T), then Sy must not be a regular GCD;

(3) if Ic(Sq; xn) is a zero-divisor modulo saf(), then it reduces to case (1) or (2)
after regularizing the leading coe cient of Sy w.r.t sat(T).

The subresultantSy in Lemma 1 shall be referred as theandidate regular GCDof p

and t modulo sat(T).
Example 1. If Ic(Sq;X,) is not regular modulosat(T) then Sy may be defective.

Consider for instance the following polynomialp and t in Q[X1; X2; X3].

p=x3x5 xj and t= x3x3 xi:
We have
premp; t)=(x% x5 and r=(x$ x5

Let T = frg. Then the last subresultant op;t modulo sat(T) is prem(p; t), which
has degree 0 w.r.txs, although its index isl. Note that prem(p; t) is nilpotent
modulo sat(T).
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In what follows, we give su cient conditions for the subresultan Sy to be a regular
GCD of pandt w.r.t. T. When sat(T) is a radical ideal, Lemma 4 states that the
assumptions of Lemma 1 are su cient. This lemma validates the seeh for a regular
GCD ofpandt w.r.t. T in abottom-up style, from Sy up to Sy for somed. Corollary 1
covers the case where sat( is not radical and states thatS; is a regular GCD ofp
andt modulo T, provided that Sy satis es the conditions of Lemma 1 and provided
that, for all d <k mdegt), the coe cient sy of xK in Sy is either null or regular
modulo sat(T).

Lemma 3. Under the assumptions of Lemma 1, assume further that, for all< |
mdegg), the j-th subresultantS; of p;t is either null modulosat(T) or Ic(S;; x,) is
regular modulosat(T). Then, Sy is a regular GCD ofp;t w.r.t. T.

proof. The assumptions and Lemma 1 imply thafl [f Syqg is a regular chain.
Note also that, Sy is in the ideal generated byp;t, sinceSy is a subresultant of these
two polynomials. Hence, to prove thatSy is a regular GCD ofp;tw.r.t. T, itsu cesto
check that both pandt belong to satT [ Sy). When d = mdeg(t) holds, we conclude
by applying Property (rq 1) from the divisibility relations of subresultants over an
integral domain. Hence, we assun< mdegt). Let S; be the non-zero subresultant
of smallest indexi such that mdeg¢) j > d. The divisibility relations (either
(r<q 1) Or (re 1)) imply that prem(S;; Sy) 2 sat(T) holds, that is, S; 2 sat(T [ Sg).
If j < mdegt), let S; be the non-zero subresultant of smallegtsuch thati>| . The
divisibility relations imply now that prem(S;; ;) 2 sat(T [ Sy) holds. By assumption
init( ;) = Ic( Sj;Xn) is regular modulo sat{). Hence, we deduces; 2 sat(T [ Sg).
Continuing in this manner, we obtained the desired result.

Corollary 1. We reuse the notations and assumptions of Lemma 1. Th&j is a
regular GCD of p and t modulosat(T), if for all d <k mdeg), the coe cient sy
of xK in Sy is either null or regular modulosat(T).

proof. Let us assume that for alld < k  mdegt), the coe cient sy is either
null or regular modulo sat(T'). It follows from Lemma 3 that we only need to prove
that every defective subresultant (S;) of ( p) and ( t) in B[x,] has a leading
coe cient which is regular w.r.t. sat(T). So letd <j < mdegt) such that ( S;) 6 0
and deg((S;);xn) <j hold. Let k = deg(( Sj);Xn). The divisibility relations of
subresultants over an arbitrary commutative ring, together wth the assumption that
init(t) is regular w.r.t. sat(T), imply that the non-zero subresultants (Sj.;) and
( Sk) are non-defective and we have:

lc(( S) “( )= ( sa) “( S
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This implies that Ic( ( S§)) is regular modulo sat(T).
Lemma 4. Under the assumptions of Lemma 1, assume further theat(T) is radical.
Then, Sy is a regular GCD ofp;t w.r.t. T.

proof. As in the proof of Lemma 3, it su ces to check that bothp andt belong
to sat(T [f Sqg). Let p be any prime ideal associated with sal{). Dene D =

the last subresultant ofp;t in D[x,] and thus in L[x,]. HenceSy is a GCD ofp;t in
L[Xn]. Thus Sy divides p;tin L[x,] and pseudo-dividep;t in D[x,]. Therefore both
prem(p; &) and prem(t; Sy) belong to p. Finally prem(p; &) and prem(t; Sq) belong
to sat(T). Indeed, sat(T) being radical, it is the intersection of its associated primes.

7.4 A Regular GCD Algorithm

Following the notations and assumptions of Section 7.3 we proge an algorithm for
computing a regular GCD sequence @f, t w.r.t. T, as specied in Section 2.3.5. This
algorithm is calledRGSZRfor regular gcd sequence with zero resultarin Section 7.4.2
we show how to relax the assumption 2 sat(T).

There are three main ideas behind thRGSZRalgorithm. Firstly, the subresultants
of p;t in A[x,] are assumed to be known. We shall explain in Section 7.5 how we
compute them in our implementation. Secondly, we rely on thRegularize operation
speci ed in Section 2.3.5. Lastly, we inspect the subresultant aim of p;t in A[X;]
in a bottom-up manner. Therefore, we views,; S,; ::: has successive candidates and
apply Lemma 4, if sat(T') is known to be radical, otherwise we apply Corollary 1.

7.4.1 Case where r 2 sat(T): the algorithm RGSZR

Calling sequence. RGSZRp;t;xn;T)

Input: p;t;X,; T as in Section 7.3.

Output: Same output speci cation as RegularGceq{;t; T), see Section 2.3.5

S1: Compute the subresultants of p and t in x,. See Section 7.5.1 for details.
S2: Initializing the search for a regular GCD. Leti = 1. The index i represents
the smallest possible index of a subresultar® of p;t (regarded inA[x,]) such that
S 62sat(T). Recall that S = regp;t;x,) 2 sat(T). The algorithm manages three
setsT asks, Candidates and Results. De ne

Tasks= f[i; T]g; Candidates= ;; Results= ;:



99

Each item in Tasks or Candidates is a pair [;C] where " is a subresultant index
in the range 1 mdegt) and whereC is a regular chain such thatjTj = jCj and
sat(T) sat(C) hold. Each item in Tasks or Candidates is the input data of some
computation, whereasResults is the value returned by the algorithm. Each task
['; C] 2 Taskssatis es the following: for each 0 j < we haveS; 2 sat(C).

S3: If Tasks= ; then go to S6, otherwise continue toS4.

S4: Searching for a candidate. Take an item [;C] out of Tasks. If = = mdeg(t)
then setj = ~ and go to S5. Otherwise, let | " be the smallest index of a
subresultantS; of p and t such that §; 62sat(C). Observe thatj exists since initt)
regular w.r.t. sat(T) implies t 62sat(C).

S5: Checking the candidate. Denote by ¢, the leading coe cient of §; in x,. If
¢, 2 sat(C) holds, then for eachD 2 Regulariz€S;; C) do the following:

Tasks:= Tasks [ f [ +1; D]o:

If ¢, 62at(C) holds, then for eachD 2 Regularizéc,; C) do the following:
(a) if ¢, 6%at(D) then

Candidates:= Candidates [f [j; D ]g;

(b if ¢, 2 sat(D) then
Tasks:= Tasks [ f [j; D ]g:
Go back to S3.

We make two comments. Whert, 2 sat(C) holds, by Lemma 2,S; is nilpotent
modulo sat(C). Hence after regularizingS;, S; belongs to satD) for eachD and we
can proceed to the next leve] + 1. When ¢, 62sat(C), we split C by regularizing
C,. In case @), the polynomial ¢, is regular modulo satD) and, by Lemma 1,S; is
non-defective. We regards; as a candidate regular GCD op;t w.r.t. D. In case (),
the polynomial ¢, is in sat(D), we simply add it back to the task pool.

S6: Applying Lemma 4.  If sat(T) is not known to be radical then go toS7. Other-
wise, for all [; D ]2 Candidates set

Results := Results [ f [S;; Dlg

and return Results. Observe that for all |; D] 2 Candidates the ideal satD) is
radical too. Thus, Lemma 4 shows thag; is a regular GCD ofp;tw.r.t D.
S7: Applying Corollary 1 . For each [; D ] in Candidates,
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(a) SetTasks= f[j; D ]g and Split = ;.
(b while Tasks6 ; do

(b1) Take an element J; E] out of Tasks.

(b2) Let "<k mdegt) be the smallest index of a subresultang, such that
sk (the coe cient of Sy in xK) is non-zero modulo satf).

(b3) If k = mdeg(t) then Split := Split [ f Eg: Otherwise, for eachF 2
Regularizésc; E) do Tasks:= Tasks [ f [ +1;F]g:

(c) For each regular chainE 2 Split
Results := Results [ f [S;; E]o:
Finally, we return Results.

7.4.2 Case where r 6Xat(T)

We explain how to relax the assumptionr 2 sat(T) and thus obtain a general
algorithm for the operation RegularGed The principle is straightforward. Let

r = regp;t;x,). Then, we call Regularizé; T) obtaining regular chainsTy;:::; Te
suchthatT ! (Ty;:::;Te). Foreachl i ewe compute aregular GCD sequence
of pandt w.r.t. T; as follows: Ifr 2 sat(T;) holds then we callRGSZRp;t; X,; Ti);
otherwiser 62sat(T;), the resultant r is actually a regular GCD ofp andt w.r.t. T,
by the de nition. Observe that in the case wherer 2 sat(T;) holds the subresultant
chain ofp andt in x, is used to compute their regular GCD w.r.t.T;. This is one of
the motivations for the implementation techniques descrilzkin Section 7.5.

7.5 Implementation and Complexity

In this section we address implementation techniques and cofapity issues. We
follow the notations introduced in Section 7.3. However we doot assume that
r = regp;t; x,) belongs to the saturated ideal of the regular chaiil .

In Section 7.5.1 we describe our encoding of the subresultantagh of p; t in

results. For simplicity our analysis is restricted to the case wherK is a nite eld
whose \characteristic is large enough”. The case wheke is the eld Q of rational
numbers could be handled in a similar fashion, with the necessaagjustments.
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One motivation for the design of the techniques presented in ichapter is the
solving of systems of two equations, sag = t = 0. Indeed, this can be seen as
a fundamental operation in incremental methods for solving syems of polynomial
equations, such as the one of [75]. We make two simple key obseomé. Formula 2.25
p. 25 shows that solving this system reduces \essentially” to comjmg r and a
regular GCD sequence gb; t modulofrg, whenr is not constant. This is particularly
true when n = 2 since in this case the varietyV (h;p;t) is likely to be empty for
\generic" polynomials p;t. The second observation is that, under the same genericity
assumptions, a regular GCDg of p;t w.r.t. frgis likely to exist and to have degree
one w.r.t. X,. Therefore, once the subresultant chain gb;t w.r.t. X, is calculated,
one can obtaing \essentially" at no cost. Section 7.5.2 extends these observai®
with two complexity results.

In Section 7.5.3 an algorithm for the operatiorRegularizeand its implementation
are discussed. We show how to create opportunities for making usgdast polynomial
arithmetic and modular techniques, bringing a signi cant impovement w.r.t. other
algorithms for the same operation, as illustrated in Section.@.

7.5.1 Subresultant chain encoding

subresultants ofp and t (regarded as univariate polynomials irx,) can be computed
by interpolation. To be more precise, we need some notations. Wenote byd; the

i=1;:::;n. Let B be the product (o, +1) (b, 1 +1).

We proceed by evaluation/interpolation; our sample points @ chosen on an
(n  1)-dimensional rectangular grid. We call \Scale" the evaluson of the sub-
resultant chain of p;t on this grid, which is how the subresultants op;t are encoded
in our implementation. Of course, the validity of this approah requires that our
evaluation points cancel no leading term i or t. Even though nding such points
deterministically is a di cult problem, this created no issue n our implementation.
Whenever possible (typically, over suitable nite elds), we cloose roots of unity
as sample points, so that we can use FFT (or van der Hoeven's Truneat Fourier
Transform [51]); otherwise, the standard fast evaluation/intgpolation algorithms are
used. We haveO(d,) evaluations and O(d?) interpolations to perform. Since our
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evaluation points lie on a grid, the total cost becomes

! !
X M(b)log(h) .
h )

X1 '
O Bd? logla) or O Bd?

i=1 i=1
depending on the choice of the sample points (see e.g. [78] fanikir estimates).
Here, as usualM(b) stands for the cost of multiplying polynomials of degree less
than b, see [43, Chap. 8]. Using the estimatel(b) 2 O(blog(b) log log(b) from [21],
this respectively gives the bounds

O(d?B log(B)) and O(d2B log*(B)loglog(B)):

These estimates are far from optimal. A rst improvement (presdnn our code) con-
sists in interpolating only the leading coe cients of the subresultants in a rst time,
and recover all other coe cients when needed. This is su ciehfor the algorithms of
Section 7.3. For instance, in the FFT case, the cost is reduced to

O(d2B + d,B log(B)):

Another desirable improvement would of course consist in using featithmetic based
on Half-GCD techniques [43], with the goal of reducing the total cost t®©~(d,B),
which is the best known bound for computing the resultant, or aigen subresultant.
However, as of now, we do not have such a result, due to the possiblétspgs.

7.5.2 Solving two equations

Our goal now is to estimate the cost of computing the polynomiglr and g in the
context of Formula 2.25 p. 25. We propose an approach where tbemputation of g
essentially comes free, onaehas been computed. This is a substantial improvement
compared to traditional methods, such as [56, 75], which comigug without recycling
the calculation ofr. With the assumptions and notations of Section 7.5.1, we saw
that the resultant r can be computed in at mos©O(d,Blog(B) + d2B) operations in
K. In many cases (typically with random systems)g has degree one in = x,. Then,
the GCD g can be computed within the same bound as the resultant. Besides,this
case, one can use the Half-GCD approach instead of computing albeesultants ofp
and t. This leads to the following result in the bivariate case; we oitits proof here.

Corollary 2. With n = 2, assuming that V(h;p;t) is empty, and assuming
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deg@;Vv) = 1, solving the input systemp = t = 0 can be done inO (d3d;) oper-
ations in K.

7.5.3 Implementation of Regularize

Regularizing a polynomial w.r.t regular chain is a fundameal operation in methods
computing triangular decompositions. It has been used in thegdrithms presented
in Section 7.4 and its speci cation can be found in Section 28 Algorithms for this
operation appear in [56, 75].

The purpose of this section is to show how to realize e ciently tis operation.
For simplicity, we restrict ourselves to regular chains with ze-dimensional saturated
ideals, in which case theseparateoperation of [56] and theregularizeoperation [75] are
similar. For such a regular chainTl in K[x] and a polynomialp 2 K[x] we denote by
RegularizeDim(; T) the function call Regularizg; T). In broad terms, it \separates”
the points of V(T) that cancel p from those which do not. The output is a set of

the T''s modulo whichp; is null.

Algorithm 1 di ers from those with similar speci cation in [56, 75] by the fact
it creates opportunities for using modular methods and fast pynomial arithmetic.
Our rst trick is based on the following result (Theorem 1 in [22): the polynomial p
is invertible modulo T if and only if the iterated resultant of p with respectto T is
non-zero. The correctness of Algorithm 1 follows from this rekuthe speci cation of
the algorithm of RGSZRand an inductive process. Similar proofs appear in [56, 75].

The main novelty of Algorithm 1 is to employ the fast evaluatiorinterpolation
strategy described in Section 7.5.1. In our implementation dflgorithm 1, at Step
(6), we compute the \Scube" representing the subresultant chaiof g and C,. This
allows us to compute the resultant and then to compute the regular GCDs ¢; E)
at Step (12) from the same \Scube". In this way, intermediate @mputations are
recycled. Moreover, fast polynomial arithmetic is involvedhrough the manipulation
of the \Scube".

Algorithm 1.

Input: T a normalized zero-dimensional regular chain ang a polynomial, both in
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Output: See speci cation in Section 2.3.5.

RegularizeDim; T) ==

(1) Results = ;;

(2) for (g;C) 2 RegularizeitDim®; T) do

3) if g2 K then

4) Results := fCg[ Results

(5) else v := mvar(q)

(6) r = regdq; G;v)

(7 for D 2 RegularizeDim@; C., ) do

(8) s := NormalForm(r; D)

(9) if s60 then

(10) U:=fD[f Cg[ Cs0

(11) Results := fUg[ Results

(12) else for (g; E) 2 RegularGed(; C,; D) do

(13) g := NormalForm(g; E)

(14) U:=fE[f gg[ D->v0

(15) Results := fUg[ Results

(16) ¢ := NormalForm(quo(C,; 9); E)

a7 if deg(c;v) > 0 then

(18) Results :=
RegularizeDim@;E[ c[ CsvV)
[ Results

(19) return Results

In Algorithm 1, a routine RegularizelnitialDim@s called, whose speci cation and
pseudo-code are given below. Brie y speaking, this routine $sl a regular chainT
according to the initial of a polynomial p such that p either is a constant or has a
regular initial over each component of saf).

Algorithm 2.

Input: T a normalized zero-dimensional regular chain ang a polynomial, both in
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Output: A set of pairsf(p;;Ti)ji =1 eg, in which p; is a polynomial andT; is
a regular chain, such that eithemp; is a constant or its initial is regular modulo
sat(T;), andp p mod sat(T;) holds.

RegularizelnitDim; T) ==
(1) p:= NormalForm(p;T)
(2) Tasks:= f(p;T)g

(3) Results = ;

(4) while Tasks6 ; do

(5) Take a pair (g; C) out of Tasks

(6) if g2 K then

(7) Results := f(q;C)g[ Results

(8) else for D 2 RegularizeDim@nit( g); C) do
(9) t := NormalForm(tail( g); D)

(20) h := NormalForm(init( q); D)

(112) if h6 0 then

(12) Results := f(hrank(g) + t;D)g[ Results
(13) else Tasks:= f(t;D)g[ Tasks

(14) return Results

7.6 Experimentation

We have implemented in C language all the algorithms repordein the previous
sections. The new implementations rely on the set of asymptotibafast polynomial
arithmetic operations from ourmodpnlibrary [68] as their base level sub-routines. We
also provide a Maple interfacd-astArithmeticToolscalling these new implementations
and our previous ones reported in [68]. In this section, we cpare the performance
of our algorithms and their implementation with Maple's andor Magma's existing
counterparts. For Maple, we use its latest distribution version 3; For Magma we
ordered its latest version V2.15-4 however the performance ftre algorithms we
have benchmarked on such agiangularDecompositionand Saturation is slower than
the ones in the previous version, thus we still use Magma's Versi®/2.14-8. We
focus onResultant and GCDin Section 7.3 andRegularizein Section 7.5.3. All the
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benchmarks are conducted on Intel Pentium VI, Quad CPU 2.40 GHihachines with
4 MB cache and 3 GB main memory.

7.6.1 Resultant and GCD

In Figure 7.1 we benchmark ouResultant and GCDalgorithm. The \degree" shown
in the gure is the partial degree of each input polynomial ints main variable. The
input polynomials are random dense polynomial in two variakbk and each of them
has a totally degree of the square of \degree" (see the rst linef @e nition of \de-
gree"). This is one of the so-called \internal* benchmarks. Naely we compare two
avor of implementations of our Resultant and GCD algorithm. One is based on
the subproduct-tree interpolation method, the other is basedn the DFT interpola-
tion. Obviously the DFT based approach is faster in this benchnma. However the
subproduct-tree is more generally applicable since it doestnequire the character-
istic p to be a Fourier prime. Figures 7.2 and 7.3 have the same settingcept they
are the 3-variable and 4-variable cases respectively.

12

SubProduct-Tree - - - -
DFT —— ,
10 H

Time
(o]

0 5 10 15 20 25 30 35 40
Degree

Figure 7.1: Resultant and GCD random dense 2-variable.

Figure 7.4 is one of so-called \external" benchmarks. We are raparing our
Resultant and GCDalgorithm with Magma's counterpart. In Figure 7.4 we use the
same \degree" as de ned in previoufesultant and GCDbenchmark. As shown our
performance is way beyond Magma's.



d;. | d> | Regularize| Fast Regularize| Magma
2 | 2 0.000 0.004 0.000
4 | 6 0.044 0.000 0.010
6 | 10 1.256 0.012 0.020
8 | 14 6.932 0.020 0.070
10 | 18| 35.242 0.048 0.160
12 | 22 | > 100.000 0.052 0.370
14 | 26 | > 100.000 0.100 0.900
16 | 30 | > 100.000 0.132 1.760
18 | 34 | > 100.000 0.240 3.260
20 | 38| > 100.000 0.472 6.400
22 | 42| > 100.000 0.428 11.150
24 | 46 | > 100.000 0.668 18.890
26 | 50 | > 100.000 1.304 29.120
28 | 54 | > 100.000 1.052 44.770
30| 58| > 100.000 1.260 74.450
32| 62| > 100.000 2.408 97.380
34| 66| > 100.000 3.768 183.930
Table 7.1: Random dense 2-variable case.
d; | d; | d3 | Regularize| Fast Regularize| Magma
2123 0.032 0.004 0.010
3/4|6 0.160 0.016 0.020
4169 0.404 0.024 0.060
5|8 |12 >100 0.129 0.330
6 | 10| 15 >100 0.272 1.300
7 | 12| 18 >100 0.704 5.100
8 (14| 21 >100 1.276 14.530
9 16|24 >100 5.836 40.770
10| 18| 27 >100 9.332 107.280
11|20 30 >100 15.904 229.950
12| 22| 33 >100 33.146 493.490

Table 7.2: Random dense 3-variable case.
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Figure 7.2: Resultant and GCD random dense 3-variable.
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Figure 7.3: Resultant and GCD random dense 4 variable.

7.6.2 Regularize

In the following benchmarks (Tables 7.1, 7.2, and 7.4), wempare our fast regularize
algorithm with \Regularize" from Maple RegularChains library and Magma's coun-
terpart. Namely, in Magma we rst saturate the ideal generated ¥ the triangular set
with an input polynomial by using the Saturation command. Then we usdriangu-
larDecompositioncommand to decompose the output from the rst step. The total
degree of the input polynomiali is d;. In Table 7.1, we generate two random dense
polynomials with 2 variables for each, thus we are generallg the equiprojectable
case and the \split" step in terms of triangular decomposition reely happen. Simi-
larly in Table 7.2, we generate three random dense polynonsalith 3 variables for
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Figure 7.4: Resultant and GCD random dense 3-variable.

each. In this \non-splitting" (equiprojectable) case, our fat regularize algorithm is
signi cantly faster than the other two implementations. For the three variables case,
we are more than 150 times faster than both Magma's and Regunains \Regular-
ize" for the larger input examples. However, in the \splitting" (non-equiprojectable)
case where we design the input systems with large number of \spliti terms of trian-
gular decomposition, our fast regularize is slightly slower tmMagma's counterpart,
but still much faster than \Regularize" from RegularChains. Téble 7.3 shows the run
time of the \split" case with two input bivariate polynomials. Table 7.4 shows the
run time of the \split" case with three input trivariate polyno mials.

7.7 Summary

The concept of a regular GCD extends the usual notion of polynoal GCD from
polynomial rings over elds to polynomial rings modulo satuated ideals of regular
chains. Regular GCDs play a central role in triangular decongsition methods. Tra-
ditionally, regular GCDs are computed in a top-down mannery adapting standard
PRS techniques (Euclidean algorithm, subresultant algoritins, etc.).

In this chapter, we have examined the properties of regular @s of two poly-
nomials w.r.t a regular chain. With the Algorithm RGSZRpresented in Section 7.3,
our main theoretical result, one can proceed in a bottom-up maer. This has three
bene ts described in Section 7.5. Firstly, this algorithm is wll-suited to employ
modular methods and fast polynomial arithmetic. Secondly, @vavoid the repetition
of (potentially expensive) intermediate computations. Lasy, we avoid, as much as



d;. | d, | Regularize| Fast Regularize| Magma
2 | 2 0.024 0.004 0.000
4 | 6 0.232 0.012 0.000
6 |10 1.144 0.016 0.010
8 | 14 7.244 0.040 0.030
10| 18| 25.281 0.080 0.050
12 | 22| > 100.000 0.176 0.090
14 | 26 | > 100.000 0.340 0.250
16 | 30 | > 100.000 0.516 0.280
18 | 34| > 100.000 1.196 0.630
20 | 38 | > 100.000 1.540 0.920
22 | 42 | > 100.000 2.696 1.450
24 | 46 | > 100.000 3.592 2.540
26 | 50 | > 100.000 4.328 4.700
28 | 54 | > 100.000 6.536 4.790
30 | 58 | > 100.000 10.644 6.570
32| 62| > 100.000 10.028 9.360
34 | 66 | > 100.000 15.648 11.540

Table 7.3: Non-equiprojectable 2-variable case.

d; | d, | d3 | Regularize| Fast Regularize| Magma
2123 0.292 0.012 0.000
314]|6 1.732 0.028 0.010
4169 68.972 0.072 0.030
5] 8|12 328.296 0.204 0.150
6 | 10| 15| >1000 0.652 0.370
7 12| 18| >1000 2.284 1.790
8 1421 >1000 5.108 2.890
9 16|24 >1000 18.501 10.950
10|18 | 27, >1000 31.349 19.180
11{20| 30| >1000 55.931 56.850
12| 22| 33| >1000 101.642 76.340

Table 7.4: Non-equiprojectable 3-variable case.
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possible, computing modulo regular chains and use polynomiabraputations over
the base eld instead, while controlling expression swell. The pgrimental results
reported in Section 7.6 illustrate the high e ciency of our agorithms.
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Chapter 8

The Modpn Library: Bringing Fast
Polynomial Arithmetic into Maple

8.1 Overview

In Chapter 7 at Page 91, we have reported our new algorithmsrfthe Regular GCD
and Regularizeoperations. The latter can be regarded as an application ofeéfformer.
We also mentioned brie y another application oRegular GCD, i.e two-equation solver
In this chapter, besides explaining in greater details for thtwo-equation solverwe
report two other based on the operatiorRegular GCD based algorithms: Bivariate
Solverand Invertibility Test. We are restricted to the two variable case foBivariate
Solver, thus more specialized tricks can be applied as described incten 8.3 at
Page 118.Invertibility Test is also a specialized algorithm with respect tRegularize
since it assumes that the input regular chain is zero-dimensidnand generates a
radical ideal.

Besides the theoretical result, we are more interested in the plementation strat-
egy for computations modulo regular chains. Therefore, whilreporting the new
algorithms, we will combine the practical programming consgtation. Moreover, we
have also conducted new experimentation in terms of progranimg environment. Re-
call that in Chapter 3 at Page 26, Chapter 4 at Page 45, Chaptés at Page 57, and
Chapter 6 at Page 65, we usAXIOM as the experimentation environment. In this
chapter, we investigate the integration of fast arithmetic oprations implemented in
C into Maple . Most of Maple library functions are high-level interpreted code such
as the Regularchainslibrary. Our objective is to let these high-level triangularcom-
position library bene t from our C-level fast routines. Howeverto reach this goal, we
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have to handle the following facts in a careful manner. To olknowledge, the standard
method to connect C code intoMaple is simple but quite rudimentary. The only
structured data which can be recognized by the both sides aredlsimple ones such as
strings, arrays, tables. This leads to potential conversion oveeads. Indeed, generally,
Maple polynomials are represented by sparse data structures wherehsde used by
fast arithmetic operations are dense. Thus, we have to convdvtaple sparse object
into our dense object. This situation implies a second downsidactor: Since conver-
sions fromMaple to C objects must be performed on théaple side as interpreted
code, the overhead of conversion is signi cant. Clearly, oneowid like to implement
them on the C side, as compiled and optimized code. However, this requiredca
expertise ofOpenMaple(see Maple help page) which is huge amount of e orts. The
third disadvantage is that the Maple language does not enforce \modular program-
ming" or \generic programming" compared toAXIOM integration. Only providing
a Maple connection-packageapable of calling ourC routines will not be su cient
to speed up allMaple triangular decomposition libraries. Clearly, high-leveMaple
code also needs to be carefully rewritten to call this connéah-package in a delicate
manner. The \top-level" algorithms such as bivariate solverfwo-equation solver,
invertibility test, are written in Maple and relies on ourC routines of di erent tasks
such as the computation of subresultant chain, normal form of agbynomial w.r.t. a
zero-dimensional regular chain, etc. These three applicati® are actually part of the
new module of theRegularChains library, called FastArithmeticTools , which pro-
vides operations on regular chains (in prime characterist&end mainly in dimensions
zero or one) based on modular methods and fast polynomial anittetic. Therefore,
these three applications are well representatives and simpleogigh such that their
performance can be sharply evaluated.

After the success of this experimentation, we have collected egtively all our past
C level implementation as a complete library calleednodpn(Multivariate Polynomial
Arithmetic Modulo a prime number with N variables). As mentioned in Section 1.2,
this library is in features of asymptotically fast polynomialarithmetic and their highly
e cient implementation. This library targets on supporting symbolic polynomial
solving via triangular decomposition techniqgues.modpnhas already been accepted
and integrated into the latest Maple distribution, version 13 (at the time writing
this thesis).

The outline of this chapter is as following: In Section 8.2 aPage 114, we inves-
tigate the integration of asymptotically fast arithmetic opeations implemented inC
into Maple . In Sections 8.3 at Page 118 and 8.4 at Page 124, we present cewvral-
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gorithms Two-equation Solver and Invertibility Test ~ and their implementation.
In Section 8.5 at Page 127, we show the performance result of swaw algorithms.
We demonstrate that with suitable implementation strategies, or new algorithms
are highly e ective methods.

NOTE: This chapter is written based on the published Paper [6 8].

8.2 A Compiled-Interpreted Programming Envi-
ronment

Our library, modpncontains two levels of implementationMaple code (interpreted)
and C code (compiled); our purpose is to reach high performance Whspending a
reasonable amount of development time. Relying on asymptadidy fast algorithms
and code optimization, theC level routines are very solid result. The \core" oper-
ations consist of modular multiplication/inversion 6, lifting techniques [84]), GCD's,
resultants and fast interpolation, etc. At the Maple level, we write more abstract
algorithms; typically, they are higher level polynomial solers. The major trade-o
between two levels is language abstraction and high perfornee.

We use multiple polynomial data encoding at each level, showeda Figure 8.1.
The Maple-Dagand Maple-Recursive-Densgolynomials areMaple built-in types;
the C-Dag, C-Cubeand C-2-Vector polynomials are written inC by us. Each encoding
will be used in certain computation; for instanceC-Cubewill be used in the fast dense
computation at C level and Maple-Dagwill be used in regular chain computation at
Maple level. Our polynomial solving algorithms are each composed bych di erent
computations. Therefore, at run time in the same algorithm a ggnomial may need
to be represented di erently. Consequently, how to e ciently map one encoding to
another, especially fromMaple level ones toC level ones (or vice versa) is highly
important.

For the four questions regardingC/ Maple integration mentioned in Section 1.2,
we try to answer the rst two in Sections 8.2.1, 8.2.2 and 8.2.3:

To what extent triangular decomposition algorithms can takeadvantage of fast
polynomial arithmetic implemented inC?

What is a good design for a hybridC-Maple application?
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Maple Level

Maple-Dag Recursive-

C level

Figure 8.1: The polynomial data representations imodpn

8.2.1 The C level

Primarily, our C code targets on the best performance. All operations are based
on asymptotically fast algorithms rooted at fast Fourier transbrm (FFT) and its
variant truncated Fourier transform (TFT) [51]. These operatons are optimized with
respect to crucial features of hardware architecture: mempiierarchy, instruction
pipe-lining, and vector instructions. As reported in Chapterss, 6, and 7 (or see
Papers [69, 65]), ourC library often outperforms the best known implementations
such asMagma and NTL [5, 6].

Large portion of the C code is dedicated to regular chain operations modulo a
machine size prime number, mainly in dimension zero. Such coutgtion typically
generates dense polynomials in the middle stages; thus, we use tiduthensional
arrays as the canonical encoding for polynomials, and we c#liem C-Cubes This
encoding is the most appropriate one for FFT-based modular ntiglication, inver-
sion, interpolation, etc. For this encoding, we can pre-altate the working bu er
since all the partial degrees of a polynomial are bounded byelgiven regular chain.
Then, in-place operations can be easy conducted on these bisevhenever they are
applicable. Moreover, tracing coe cients and degrees alsoebomes trivial constant
operations.

Besides C-Cube, we have another polynomial encoding called>@g. It's designed
for triangular lifting algorithms [84, 27]. in which we use a Dected Acyclic Graph
(DAG) to encode a polynomial. Actually, DAG polynomials is tre default data
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presentation in Maple . Our C-Dag polynomials are used aC level only. This
data representation has its unique properties, such as by settinags in the nodes of
these Dags, we can track their visibility and aliveness in constatime.

In addition to C-Cube and C-Dag, we have implemented a third aa structure
at C level called C-2-Vector. At the beginning of this chapter, @ mentioned that
the overhead of data conversion betweddaple and C can be signi cant. Thus, we
designed C-2-Vector to ease this problem (see 8.2.3 for expiom).

8.2.2 The Maple level

Many complex algorithms for triangular decompositions areighly abstract, so it is
sensible to implement them in a well equipped high-level langge environment like
Maple . First, the implementation e ort is much less intensive than that in C or
C++; Second, Maple has a comprehensive mathematical library, so it is possible to
directly use other existing algorithms to verify our results. Irour case, we us&laple
RegularChains library [63] to verify the result of our new algorithms and th& imple-
mentation. At the Maple level, we use two types of polynomialdvaple Dags and
RecDer(recursive dense) polynomials. As mentioned previously, Dagsahe default
data representation for polynomials irMaple . For example,Maple RegularChains
library uses it uniformly. Thus, for the hybrid Maple /C implementation, we need
to convert the C level polynomials to Maple Dag's (vice versa)

RecDeris an e cient Maple library for doing dense polynomial computation. It
has its own data representation for polynomials; we call iRecDenpolynomials. In
our hybrid implementation we use somdrecDenoperations, thus we need the data
representation conversion.

8.2.3 Maple and C cooperation

When designing polynomial solving algorithms such as the oneported in Section 8.3
at Page 118 and 8.4 at Page 124, we try to rely on the fast arithiein our C library.
Recall our rst question: is this an e ective approach? Our anser is a conditional
yes: if the code integration process is careful, o@r code provides a large speed-up to
the Maple code. This has been demonstrated in Section 8.5 at Page 127. doer,
if the overall overhead of data conversion betwee@ and Maple is signi cant this
might not be a good approach. This observation naturally leadwe to investigate
this overhead and the methods to reduce it.

For general usersMaple ExternalCalling package is the only standard way
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to link in externally C functions. The procedure of linking is not complicated: the
user just needs to carefully mapMaple level data onto C level ones. For example,
a Maple rtable type can be directly mapped to aC level array. However, if the
Maple data encoding is very di erent from theC one, the data conversion might be
an issue. Actually, there are only a small group of simpl®laple data structures,
such as integers, oats or tables, can be automatically conved into C responding
ones. For other compound data structures, such as converting ffnoa Maple Dag
polynomial to a C Dag polynomial, we have to manually pack the data into #aple
rtable , and unpack it at C level. In other words, we need to \encode" the data at
Maple level and \decode" it at the C level. This encoding/decoding process maybe
expensive especially at théMlaple end. There are two major ways to reduce this
overhead:

1. to minimize the amount of conversions at the algorithm desiglevel,
2. to minimize the amount of time for each conversion at the impmentation level.

The amount of conversions is application dependent; it turnsut that it happens
quite often in the implementation of our new algorithms. Manyconversions are \vol-
untary": namely, we are willing to conduct them, expecting hat better algorithms or
better implementations can be used after converting to suitdd data representation.
For example, in the triangular lifting algorithm we use C-Dagas the default represen-
tation since it is more e cient for the sub operations such as dierentiation, variable
substitution and variable lifting. However, we need to converthe C-Dag polynomials
into C-Cube polynomials in the middle stage to use our FFT basedst arithmetic.
We are willing to pay this overhead since the speed-up from FFTutweighs the extra
cost from the data conversion. However, some conversions are bhuntary”. Indeed,
we would like all the computational intensive operations ar@nplemented at the C
level. However, this is unrealistic due to the complexity of iplementation. Thus,
there are often cases that we have to convert polynomials fro@ to Maple to use
Maple level operations. As mentioned previously, the data conversiah polynomials
might be very expensive. Therefore, we need to carefully studyth the \voluntary"”
and \involuntary" conversions and decide 2 things: (1) what kad polynomial arith-
metic or which sub-algorithm should be used. (2) which portionfahe code should
rely on Maple code or instead on theC code.

The amount of time for each conversion can be reduced by canbfudesigned
data converters. For example, as mentioned previously we desg a so-called C-2-
Vector polynomial representation: one vector we calledegree vector recursively
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encodes the degrees of gdblynomial coefficients , and the other vector we called
number coefficients vector encodes all the base number coe cients. Two vectors
use the same traversal order to encode information. To be spegithe recursive
dense polynomial representation [64] uses a tree structure tocexde a multivariate
polynomial. The root itself represents the given polynomiallts children nodes are
its coe cients which may have their own children nodes, i.e. leir coe cients. The
leaves in the tree are numbers from the base ring. We call the des between the
root and the leaves argolynomial coefficients . Therefore, by choosing a xed
tree traversal order we encode the degrees of thgselynomial coefficients into
the degree vector . Then accordingly, we use the same traversal order to encode the
number coe cients into the number coefficients vector

This data representation in our library does not participateto any real compu-
tation: it is specically designed for facilitating the data wnversion from C-Cube
to RecDerencoding. The C-2-Vector encoding has the same recursive sture as
RecDenso the data conversion become easier. Moreover, the C-2-Veatocoding
use attened polynomial tree structures (a tree encodes in andimensional array),
which are convenient to pass fronC to Maple .

8.3 Bivariate Solver

The rst application we used to evaluate our framework is the swing of bivariate
polynomial systems by means of triangular decompositions. Wensider two bivariate
polynomials F; and F,, with ordered variablesX; < X , and with coe cients in a
eld K. We assume thatk is perfect; in our experimentationK is a prime eld whose
characteristic is a machine word size prime.

We rely on an algorithm introduced in [80] and based on the folving well-known
fact [11]. The common roots oF; and F, over an algebraic closur& of K are \likely"
to be described by the common roots of a system with a triangular ape:

T1(X1)
To(X 15 X3)

0
0

such that the leading coe cient of T, w.r.t. X, is invertible modulo T;; moreover the
degree ofT, w.r.t. X, is \likely" to be 1. For instance, the system

X2+ X,+1
X1+ X2+1

0
0
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is solvedby the triangular system

XF+2X2+ X1 +2
Xo+ X2+1

0
0:

In general, though, more complex situations can arise, whereone than one triangular

system is needed. The goal of this section is to show that this atgbm can easily

be implemented in our framework while providing high-perfonance. Section 8.3.2 at
Page 121 and Section 8.3.3 at Page 122 contain the algorithmdathe corresponding
code, respectively.

8.3.1 Subresultant sequence and GCD sequence

In Sections 2.3.4 and 2.3.5 at Page 22, We have studmdbresultanttheory and regular
GCD. Here we de nesubresultant sequencand GCD sequence in the bivariate case.

Subresult sequence. In Euclidean domains such a¥[X], polynomial GCD's
can be computed by the Euclidean algorithm and by the subresalit algorithm (we
refer here to the algorithm presented in [32]). Consider next one general rings,
such asK[X; X,]. AssumeF;;F, are non-constant polynomials with dedf;; X;)
deg(F»; X»), and degf-; X,) = g The polynomials computed by the subresultant
algorithm form a sequence, called theubresultant chainof F; and F, and denoted
by src(F1; F2). This sequence consists @f+ 1 polynomials, starting at Ic(F; X2) F,
with = deg(Fi;X2) degfFz; X,), and ending atR; := reqF;;F,), the resultant
of F1 by F, w.rt. X,. We write this sequenceS,;:::; Sy where the polynomial
S} := §j(F1;F») is called the subresultant(of Fq; F;) of indexj. Let ] be an index
suchthat0 | g If § is not zero, it turns out that its degree is at most and S
is saidregular when deg@;; X;) = j holds.

The subresultant chain ofF; and F, satis es a fundamental property, called the
block structure which implies the following fact: if the subresultantS; of index j,
with j < deg(,; X,) 1, is not zero and not regular, then there exists a non-zero
subresultant S; with index i <j such that S is regular, has the same degree &
and for alli< " <j the subresultantS: is null.

The subresultant chain ofF; and F, satis es another fundamental property, called
the specialization property which plays a central in our algorithm. Let be a ho-
momorphism fromK[X 1; X,] to K[X;], with ( X3) 2 K. Assume (a) 6 0 where
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a=Ic(f1;X5). Then we have:
( S(FLF2)) = (@ “Sj(( Fu); ( F2) (8.1)

whereq = deg(F;; X2) and k = deg( ( Fy); X>).

GCD sequence Let T; 2 K[X{]JnK and T, 2 K[X; X,]nK[X ] be two polynomials.
Note that T; has a positive degree itX;, for i = 1;2. The pair f Ty; T,g is a regular
chain if the leading coe cient Ic(T; X,) of T, in X, is invertible modulo T;. By
de nition, the set fT,g is also a regular chain. For simplicity, we will requirel; to
be squarefree, which has the following bene t: the residue s&ringL = K[X]=hTi
is a direct product of elds. For instance, withT; = X;(X; + 1), we have:

K[Xl]:thl ' K[xl]:hX1| K[X1]=hX1+1i
" K Kt

Let F1; F,; G 2 K[X1X] be non-zero. We sa¥s is aregular GCD of F;; F, modulo
T, if the following conditions hold:

1. Ic(G; X ) is invertible modulo Ty,
2. there existA; A, 2 K[X1; X,] such that G A;f; + Axf, mod Ty,
3. if deg(G; X;,) > 0 then G dividesF; and F;, in L[X5].

The polynomialsF1; F, may not have a regular GCD in the previous sense. How-
ever the following holds.

the productA; A equalsTy,

forall 1 i e the polynomialsB; is a regular GCD ofF;; F, modulo A;.

Ts.

Consider for instanceT; = X (X +1),
Fi1= XX+ (X +1)(X2+1) and Fp= X (Xo+1)+( X+ 1)(X2+1):

Then (X1; X, +1);(X1+1;1) is a GCD sequence df; and F, modulo T;.
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8.3.2 Algorithm

Recall that we aim at computing the setV (Fq;F;,) of the common roots ofF; and
F, over K. For simplicity, we assume that bothF; and F, have a positive degree in
X,; we de ne hy = lc(fq;X53), h, =lc(f,; X,) and h = gcd(hy; h2). Recall also that
R, denotes the resultant ofF; and F; in X,. Sinceh divides Ry, we de ne R? to be
the quotient of the squarefree part oR; by the squarefree part oh. Our algorithm
relies on the following observation.

Theorem 1. Assume thatV (Fy; F,) is nite and not empty. Then RY is not constant.

have

=e
V(Fi;F2) = V(A;;Bi) [ V(hFiF): (8.2)
i=1
andforalll i ethe polynomialB; has a positive degree iiX, and thusV (A;; B;)
is not empty.

This theorem implies that the points of V(F;F,) which do not cancelh can
be computed by means of one GCD sequence computation. This I tpurpose of
Algorithm 9. The entire setV(F; F,) is computed by Algorithm 10.

Algorithm 9  Modular Generic Solve

Input: Fi;F, as in Theorem 1.

Output:  (A1;B1);:::;(Ae;Be) as in Theorem 1.

ModularGenericSolve2f1; F,; h) ==
(1) Compute src(Fq;F»)
(2) Let R,°be as in Theorem 1

3 i:=1
(4) while R;°6X repeat
(5) Let S; 2 src(Fs; Fy) regular with j i minimum
(6) if Ic(S;;X2) 0 modR;°
then i := i+ 1; goto (5)
(M) G:=ged(RiIe(S;:X2)
(8) if G2 K

then output  (R;%S;); exit
(9) output (R,°quoG;S))
(10) R%=G;i=i+1

The following comments justify Algorithm 9 and are essential iniew of our imple-
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mentation. In Step (1) we compute the subresultant chain df; F, in the following
lazy fashion:

1. B :=2d,d, is a bound for the degree oR,, whered; = max(deg(F;; X)) and
d, = max(deg(Fi; X,)). We evaluate F; and F, at B + 1 di erent values of

and F(X 1 = Xj; X»).

3. We interpolate the resultantR; and do not interpolate any other subresultants
in src(Fy; Fy).

In Step (5) we considelS; the regular subresultant off4; F, with minimum index
j greater or equal toi. We viewS; as a \candidate GCD" of F1; F, moduloR? and we
interpolate its leading coe cient w.r.t. X, only. In Step (6) we test whether Ic6; X»)
is null modulo RY; if this is the case, then it follows from the block structure poperty
that S is null modulo R$ and we go to the next candidate. In Step (8), i 2 K then
we have proved thatS; is a GCD of F;; F, modulo RY; in this case we interpolate
S; completely and return the pair R?;S;). In Steps (9)-(10) Ic(S;; X2) has been
proved to be a zero-divisor. Sinc® is squarefree, we apply théd5 Principle and
the computation splits into two branches:

1. Ic(Sj; X ) is invertible modulo R? quo G, so we output the pair R quo G; S;)
2. 1c(S; X3) = 0 mod G; we go to the next candidate.

The following comments justify Algorithm 10. Recall thatV (F;; F,) is assumed
to be non-empty and nite. Steps (1)-(2) handle the case whemne input polynomial
is univariate in X 1; the only motivation of the trick used here is to keep pseudo-de
simple. Step (4) computes the points o¥ (F1; F2) which do not cancelh. From Step
(6) one computes the points oV (F1; F,) which do cancelh, so we replacd-; F, by
their reductums w.r.t. X,. In Steps (8)-(10) we Iter out the solutions computed at
Step (7), discarding those which do not cancdi.

8.3.3 Implementation

We explain now how Algorithms 9 and 10 are implemented iMaple interpreted
code, using the functions of themodpnlibrary. We start with Algorithm 9. The
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Algorithm 10 Modular Solve

Input: F;F, as in Theorem 1.
S._
Output: regular chains @1;B1);:::;(Ae Be) such that V(Fi;Fo) = 27 V(Ai; B)).

ModularSolve2€;; F,) ==
(1) if Fy 2 K[X4] then return ModularSolve2¢, + F;; F»)
(2) if F, 2 K[X4] then return ModularSolve2f,;F, + F,)
(3) h:=gcd(lc(Fy1; X2);lc(Fz; X2))
(4) G := ModularGenericSolve2f; F,; h)
(®5) if h=1return G
(6) (F1;F2) := (reductum( Fq; X5); reductum(F;; X5))
(7) D :=ModularSolve2(F,; F;)
(8) for (A(X1);B(X1;X2)) 2 D repeat
(9) g:=gcd(A;h)
(10) if deg(@; X1) > Othen G:= G[f (g;B)g
(12) return G

dominant cost is at Step (1) and it is desirable to perform this &p entirely at the
C level in one \function call'. On the other hand the data compted at Step (1)
must be accessible on thMaple side, in particular at Step (5). Recall that the only
structured data that the C and Maple levels can share are arrays. Fortunately, there
is a natural e cient method for implementing Step (1) under these constraints:

We representF; (resp. F;) by a (B +1) d, array (or \cube") C; (resp. C,)
where Cy[i;j ] (resp. C;[i;j ]) is the coe cient of F; (resp. F) of X} evaluated
at x;; if F, (resp. F») is given over the monomial basis oK[X1; X;], then the
\cube" C; (resp. C,) is obtained by fast evaluation techniques.

Xi; X7) is computed and stored in anB +1) d, d, array, that we call
\Scube"; this array is allocated on theMaple side and is available at theC
level without any data conversions.

The resultant R, of (F; and F, w.r.t. X)) is obtained from the \Scube" by fast
interpolation techniques.

In Step (5) the \Scube" is passed to & function which computes the index and in-
terpolates the leading coe cient Ic(S;; X ;) of §;, the candidate GCD. Testing whether
Ic(S;; X ) is zero or invertible moduloR? is done at theMaple level using theRecDen
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module. Finally, in Step (8), when Ic§;; X,) has been proved to be invertible modulo
R?, the \Scube" is passed to &C function in order to interpolate S;.

The implementation of Algorithm 10 is much more straightforwed, since
the operation ModularSolve2 consists mainly of recursive cslland calls to
ModularGenericSolve2. The only place where computationake place \locally" is at
Step (9) where theRecDermrmodule is called for performing GCD computations.

8.4 Two-equation Solver and Invertibility Test

In this section, we present the two other applications used to aluate the framework
reported in Section 8.2. In Subsection 8.4.1, we specify the maubroutines on which
these algorithms rely; we also include there the speci catior the invertibility test
for convenience. The top-level algorithms are presented irulsections 8.4.2 and
8.4.3.

As we shall see in Section 8.5 at Page 127, under certain circunmgtes, the data
conversions implied by the calling of subroutines can becoméattleneck. It is thus
useful to have a clear picture of these subroutines.

In this chapter, however, we do not assume a preliminary knowdge on triangular
decomposition algorithms. To this end, the presentation of oubivariate solver in
Section 8.3 at Page 118 was relatively self-contained, whaenitting proofs; this was
made easy by the bivariate nature of this application. In thisection, we deal with
polynomials with an arbitrary number of variables. In Sectia 2.3 at Page 2.3 we have
introduced the notion of aregular chainand that of a regular GCD (modulo a regular
chain) for bivariate polynomials. In the sequel, we rely on \natural‘generalizations of
these notions: we recall them brie y and refer to [9, 22] for imbductory presentations.

8.4.1 Subroutines

Note that we restrict ourselves here to zero-dimensional regulehains. In this set-
ting, observe that a normalized regular chain is a lexicograal Gmbner basis. In
the specication of our subroutines below, we denote by a normalized regular

NormalForm(p; T), Normalize(p; T) and RegularGcd; q; T) as de ned in Section 7.2
at Page 94 and add two more notations as following:
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invertible modulo T" andp p; mod T'. The algorithm and implementation
of this operation are described in Section 8.4.3 at Page 126.

T« ; Tv; Tsy : these denote respectively the polynomials i with main variable less
than v, the polynomial in T with main variable v and the polynomials inT

MainVariable(F;) = X,,. We assume thatR; = reqF;; F;; X,,) is non-constant. Algo-
rithm 11 below is simply the adaptation of Algorithm 9 to the casevhereF;;F, are
n-variate polynomials instead of bivariate polynomials. Thealevance of Algorithm 11
to our study is based on the following observation.

As we shall see in Section 8.5, the implementation of Algorithm @ age 121 in
our framework is quite successful. It is, therefore, natural toheck how these results
are a ected when some of its parameters are modi ed. A naturgbarameter is the
number of variables. Increasing it makes some routine calls neogxpensive and could
raise some overheads. In broad terms, Algorithm 11 computes the\geric solutions™

V(FiF2)= W(TH [ [ W(T®)[ V(F1;F2 hihy) (8.3)

whereh;h, is the product Initial( F,)Initial( F,) and whereW (T') denotes the Zariski
closure of the quasi-component 6F'. It is out of the scope of this chapter to expand
on the theoretical background of Algorithm 11; this can be faud in [75]. Instead, as
mentioned above, our goal is to measure how Algorithm 9 scalesewmhthe number of
variable increases.

The implementation plan of Algorithm 11 is exactly the same ashiat of Algo-
rithm 9. In particular, the computations of squarefree parts,primitive parts and
the GCDs at Steps (1) and (7) are performed on th#&laple side, whereas the sub-
resultant chain srcfq; F,) is computed on theC side. In the complexity analysis
of Algorithm 11 the dominant cost is given by srdf;; F,) and a natural question is
whether this is veri ed experimentally. If this is the case, his will be a positive point
for our framework.
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Algorithm 11  Modular Generic Solve N-variable

Input: Fq;F, 2 K[Xg;:::;X,] with deg(Fi; X,) > 0;degfF,; X,) > 0 and

ModularGenericSolveNE; F,) ==

(1) Compute src(Fi; F2); Ry = reqFy; Fo; Xp)
h := gcd(Initial( Fq); Initial( F»))

(2) RY :=squarefreePartR;) quo squarefreePartf)
v := MainVariable( R,);
RY := primitivePart( Ry;V)

3 i:=1
(4) while degR?;v) > 0 repeat
(5) Let S 2 src(Fy; Fy) regular with j 1 minimum
(6) if Ic(S;;Xn) 0 modR?
then i:=i+1; goto (5)
(7) G := gcd(R; (S5 X2))
(8) if degG;v)=0

then output  (R%; S;); exit
9) output (R} quoG;S))
(10) RY=G;ji=i+1

8.4.3 Invertibility test

Invertibility test modulo a regular chain is a fundamental ogration in algorithms
computing triangular decompositions. The precise speci catioof this operation has
been given in Section 8.4.1 at Page 124. In broad terms, for aguéar chain T =

regular chains: the points ofV (T) which cancelp are given by theT''s such that p;
is null.

Algorithm 12 is in the spirit of those in [76, 75] implementing tis invertibility test.
However, it 0 ers more opportunities for using modular methosd and fast polynomial
arithmetic. The trick is based on the following result (Theoren 1 in [22]): the poly-
nomial p is invertible modulo T if and only if the iterated resultant of p with respect
to T is non-zero. lterated resultants can be computed e ciently i evaluation and
interpolation, following the same implementation techniqas as those of Algorithm 9.
Our implementation of Algorithm 12 employs this strategy. In @rticular the resul-
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tant r (computed at Step (4)) and the regular GCDs @; D) (computed at Step (7))
are obtained from the same \Scube".

The calls to NormalForm(p; T) (Step (1)), NormalForm(quo(T,; g); D) (Step (10))
and Normalize@; D) (Step (8)) are performed on theC side: they require the con-
versions of regular chains encoded byaple polynomials to regular chains encoded
by C-Cube polynomials. If the call to RegularGedg; T, ; C) (Step (7)) outputs many
cases, that is, if computations split in many branches, these coms®ns could become
a bottleneck as we shall see in Section 8.5. Finally, for simptic we restrict Algo-
rithm 12 to the case of (zero-dimensional) regular chains geaéng radical ideals.

Algorithm 12 Invertibility Test

Input: T a normalized regular chain generating a radical ideal angla polynomial,

Output: See speci cation in Section 8.4.1 at Page 124.

Isinvertible(p; T) ==

(1) p:= NormalForm(p;T)

(2) if p2 K thenreturn [p;T]

(3) v :=mvar(p)

(4) r = reqp;T,;V)

(5) for (qg;C) 2 Isinvertible(r; T, ) repeat

(6) if g6 0 then output [p;C[ Ty[ Tsv]

(7 else for (g; D) 2 RegularGedf; Ty; C) repeat
(8) g := Normalize(g; D)

9) output [0;D[ g[ Tsv]

(20) g := NormalForm(quo(Ty;g); D)

(11) if deg(;Vv) 6 0 then output [p; D[ g Tsy]

8.5 Experiments

We discuss here the last two questions mentioned in the Section 3:

Can our implementation based on theMaple /C hybrid model outperforms
other highly e cient systems?

Does the performance of the implementation of the new algtirms comply with
the theoretical complexity?
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Our answer for the rst one is \yes, if the application is well suitible for our frame-
work". As shown below, we have improved the performance of tngular decompo-
sition based computation inMaple . On the example of the invertibility test, our
code is competitive withMagma and often outperforms it. The answer to the last
guestion is \yes, the performance does comply with the compigxanalysis”, though
there are some interferences due to the overhead of the dataneersion as discussed
in Section 8.2.3 at Page 116.

We report two sets of statistic data. For the rst set, we compare tkb performance
of our new implementations with their existing counterpartsin Maple or Magma
(see Subsections 8.5.1, 8.5.2 and 8.5.3). For the second set, welg the imple-
mentation of our new polynomial solving algorithms to determme for which kind of
algorithms our framework is the most suitable one. The pro lig information for
invertibility test is reported in the Section 8.5.3; for the stvers is reported in Sec-
tion 8.5.3. In all examples, the base eld iZ=pZ, wherep is a machine-word size
FFT prime. In the pro ling samples, we only calculate theMaple side conversion
time and ignore theC side since the latter one is mostly negligible.

8.5.1 Bivariate solver

In Figures 8.2, 8.3, 8.4 and 8.5, we consider two bivariate yabmialsF; and F,, with
ordered variablesX ; < X ;, and with coe cients in a eld K. In our experimentation
K is a prime eld whose characteristic is a prime number, and its z is less than 32
bit.

The benchmark shown in Figure 8.2 is comparing the performamof libraries all
from Maple: \Triangularize" is the solver from Maple RegularChainslibrary; \Basis"
is the solver from the MapleGroebnerlibrary; \Fast Triangularize" is the solver from
our Maple FastArithmeticTooldibrary. Actually we have also tested the solver \Solve"
from the Groebner library which is signi cantly slower than the other ones. Thus,
we list its data and all the previous ones in Table 8.1. The \dege" in Figure 8.2
(also \deg." in Table 8.1) is the total degree of each input rashlom dense polynomial.
We compare the computational time. To make the gure more redable, we extract
the comparison between \Basis" and our fast solver into Figure 8.3In Table 8.1,
\Basis", \Solve", \Triang" and \FTriang" are short for \Basis fr om Groebner", \Solve
from Groebner", \Triangularize from RegularChains" and \Fast Triangularize from
FastArithmeticTools As shown, our solver fromFastArithmeticTooldlibrary is the
fastest one. It approximately 20 times faster than lex \Basis" on ar biggest input
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Figure 8.2: Bivariate solver dense case.

example. While the input size increasing, the ratio of speed-up more signi cant.
Recall that the major sub-algorithms of the bivariate solver g subresultant chainand
regular gcd thus the high performance is also relying the implementatioof these two
sub-algorithms.

1.2

Lex Basis - - - -
Fast Triangularize ———

Time
o
(o))

Degree

Figure 8.3: Bivariate solver dense case.

The benchmark shown in Figure 8.4 uses the same parameter as denin Fig-
ure 8.2. Namely the \degree" is the total degree of each inputgbynomial. However



130

deg | Basis| Solve | Triang | FTriang
4 |0.020, 0.040 | 0.152 | 0.020
7 |0.020/ 0.580 | 0.424 | 0.016
10 | 0.064| 3.892 | 0.680 | 0.020
13 | 0.136| 16.557 | 1.424 | 0.024
16 | 0.232| 55.939 | 2.324 | 0.032
22 | 0.552| 416.466 | 13.972| 0.044
25 | 0.804| 1116.045| 22.346| 0.048
28 | 1.124| 2162.271] 58.695| 0.056

Table 8.1: Bivariate solver dense case.

instead of using dense random polynomials, we generate speci c lispexamples in
terms of non-equiprojectability in triangular decompositbn. As shown in the gures,
our fast solver is signi cant faster than the other two. We also prade the data in
Table 8.2 for this benchmark. At the total degree 23 our fast setr is approximately
100 times faster than the \Lex Basis" which is the second fastest ane

700

Triangularize -
Lex Basis
Fast Triangularize

600 r

500 r

400 r

Time

300 r

200 r

100

0

4 6 8 10 12 14 16 18 20 22 24
Degree

Figure 8.4: Bivariate solver non-equiprojectable case.

Figure 8.5 is generated based on the data from Table 8.3. Here e@mpare our
Fast Regularize(FTriang in the table) with Magma's implementation: one isGmbner
Basis (Abbr. GB in the table); the other one is Triangular Decomposition (Abbr.
Triang in the table). The input polynomials which generate azero-dimensional ideal
are designed with many split steps during the solving. Again, our ke@r is the fastest
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deg| Basis Solve Triang | FTriang
5 | 0.014 0.080 0.616 0.016
8 | 0.152 3.004 3.200 0.048
11 | 0.908 44.407 | 10.049| 0.124
14 | 6.837 | 246.839 | 25.902 | 0.428
17 | 36.581 | 1266.958| 55.014 | 0.938
20 | 156.245| 6296.301| 92.662 | 1.740
23 | 627.551| 21758.120 222.897, 2.625

Table 8.2: Bivariate solver non-equiprojectable, us vs. Magl

one in terms of running time. For the non-equiprojectable emples, our solver out-
performs Magma's even more signi cantly.

18 T T T T T
GroebnerBasis() Magma -
16 TriangularDecomposition() Magma -
Fast Triangularize .
14
12 +
o 10 r
£
[ 8t
6 n
4 n
2 n
0

4 6 8 10 12 14 16 18 20 22 24
Degree

Figure 8.5: Bivariate solver non-equiprojectable case.

8.5.2 Two-equation solver

We consider now the solver of Algorithm 11. For a machine-word siZFT prime
p, we consider a pair of trivariate polynomialsFi;F, 2 Z=pZ[X; X,; X3] of total
degreedd;; d,. We compare our code foModularGenericSolveN (Algorithm 11) to
the Triangularize function of RegularChains library. In Magma there are several
ways to obtain similar outputs: either by a triangular decompsition in K (X 1)[X 2; X 3]
(triangular decompositions inMagma require the ideal to have dimension zero) or
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deg | GB (Magma) | Triang (Magma) | FTriang (Maple)
5 0.010 010 0.016

8 0.040 070 0.048

11 0.190 0.360 0.124

14 0.730 1.210 0.428

17 2.170 3.300 0.938

20 5.510 7.810 1.740

23 12.430 17.220 2.625

Table 8.3: Bivariate solver non-equiprojectable case.

by computing the GCD of the input polynomials modulo their resultant (assuming
that this resultant is irreducible).

d; | do Maple Magma
Triangularize \ ModularGenericSolveN | Tr. dec. \ Resultant + GCD

2 | 4 0.3 0.06 0.03 0.01

4 | 4 1.4 0.15 0.03 0.3

6| 4 25 0.27 0.7 12

8 | 4 257 0.52 6.9 155

10| 4 1933 1.02 46.7 1012

Table 8.4: Solving two equations in three variables

Table 8.4 summarizes the timings (in seconds) obtained on ranmdadense polyno-
mials by the approaches above (in the same order). Our new coplerforms signi -
cantly better than all other ones. For completeness, we add thain these examples,
computing a lexicographic Gmbner basis ifiK[X 1; X 2; X 3] in Magma takes time sim-
ilar to that of the triangular decomposition.

8.5.3 Invertibility test

We continue with the operation Isinvertible. Designing good dst suites for this
algorithm is not easy: one of the main reasons for the high tedeality of these
algorithms is that various kinds of degeneracies need to bardled. Using random
systems, one typically does not meet such degeneracies: a randootymomial is
invertible modulo a random regular chain. Hence, if we want ouest suite to address
more than the generic case of our algorithms, the examples must¢ lsonstructed
ad-hoc.
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Figure 8.6: Bivariate case: timingsp = 0:98.

Here, we report on such examples for bivariate and trivariate siems. We con-
struct our regular chain T by Chinese Remaindering, starting from smaller regu-
lar chains T®) of degree 1 or 2. Then, we interpolate a functioh from its values
fO = f modT®, these values being chosen at random. The probability that
f () 8 0 is a parameter of our construction. We generated familiesf @xamples with
p = 0:5, for which we expect that the invertibility test of f will generate a large
number of splittings. Other families havep = 0:98, for which few splittings should
occur.

The bivariate case. Figure 8.6 gives results for bivariate systems with = 0:98 and
d= d; = d; in abscissa. We compare our implementation withlagma 's counterpart,
that relies on the functionsTriangularDecomposition and Saturation (in general,
when usingMagma , we always choose the fastest available solution). We also tested
the casep = 0:5 in Figure 8.7. Figure 8.8 pro les the percentage of the coexsion
time with respect to the total computation time, for the same sebf samples. With

p = 0:98, IsInvertible spends less time on conversions (around 60%)danas fewer
calls to the Maple operations than with p = 0:5 (the conversion ratio withp = 0:5
reaches 83%).

The trivariate case. Table 8.5 uses trivariate polynomials as the input for IsIn-
vertible, with p=0:98; Table 8.6 hag = 0:5. Figure 8.9 pro les the conversion time
spent on these samples. The conversion time increases dramatjcalbong the input
size. For the largest example, the conversion time reaches 85f4he total computa-
tion time. More than 5% of the time is spent on otheMaple computations, so that



134

Madma ‘.. ,,,,, ;
B our code —w—

time
N
o

Figure 8.7: Bivariate case: timingsp = 0:5.

100

'p=0.98 ——
p=0.5 ——
80 r
g 60 L
g
=] 40 r
20 |
O 1 1 1 1 1

10 15 20 25 30 35 40

degree

Figure 8.8: Bivariate case: time spent in conversions.

the real C computation costs less than 5%. We also provide the timing of thepera-
tion Regularize from the Maple RegularChains library. The pure Maple code,
with no fast arithmetic, is several hundred times slower than aumplementation.

The 5 variable case. We performed further tests between thévlaple Regular-

ize operation and our IsInvertible function, using random dense fpynomials in 5
variables. IsInvertible is signi cantly faster than Regularize ; the speedup reaches
a factor of 300. Similar experiments with sparse polynomialsvg a speed-up of 100.



did, | d3 || Magma Maple
Regularize \ Isinvertible
4 3 0.000 1.199 0.091
12 | 6 0.020 6.569 0.281
24 | 9 0.050 24.312 0.509
40 | 12| 0.170 73.905 1.293
60 | 15| 0.550 172.931 1.637
84 | 18| 1.990 450.377 5.581
112 | 21| 5.130 871.280 9.490
144 | 24| 12.830 1956.728 12.624
180 | 27| 30.510 3621.394 23.564
220 | 30| 62.180 6457.538 32.675
264 | 33 || 129.900 7980.241 89.184

Table 8.5: Trivariate case: timings,p = 0:98.
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Figure 8.9: Trivariate case: time spent in conversions.
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did; | d3 || Magma Maple
Regularize \ Isinvertible
4 | 3 0.010 0.773 0.199

12 | 6 0.020 4.568 0.531
24 | 9 0.040 17.663 1.082
40 | 12| 0.150 47.767 2.410
60 | 15| 0.480 126.629 5.023
84 | 18| 1.690 284.697 10.405
112 | 21| 4.460 632.539 19.783
144 | 24| 10.960 1255.980 42.487
180 | 27| 26.070 2328.012 69.736
220 | 30| 58.700 4170.468 109.667
264 | 33 || 106.140 7605.915 191.514

Table 8.6: Trivariate case: timings,p = 0:5.

8.5.4 Pro ling information for the solvers

We conclude this section with pro ling information for the bivariate solver and the
two-equation solver. The di erences between these algorithsrhave noticeable conse-
guences regarding pro ling time.

Bivariate solver.  For this algorithm, there is no risk of data duplication. The
amount of data conversion is bounded by the size of the input guthe size of the
output; hence we expect that data conversions cannot be a bleheck. Third, the
calls to Maple interpreted code simply perform univariate operations, thusve do
not expect them to become a bottleneck either.

Table 8.7 con rms this expectation, by giving the pro ling information for this
algorithm. The input system is dense and contains 400 solutions.h& computation
using the RecDenpackage costs 49% of the total computation time. Th& level
subresultant chain computation spends around 34%, and the camrgion time is less
than 11%. With larger input systems, the conversion time reduce$or systems with
2,500 and 10,000 solutions, th€ computation takes about 40% of the timeRecDen
computations takes roughly 50%; otheMaple functions take 5% and the conversion
time is less than 5%.

The pro ling information in Figure 8.10 also concerns the biariate solver; there,
the sample input intends to generate many splittings (we tak@ = 0:5, as in the
examples in the previous subsection). The conversion time slgwhcreases but does
not become the bottleneck (28% to 38%).
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Operation | calls | time | time (%)
Subresultant chain 1 |0.238| 33.85
Recden 41 | 0.344| 48.93

Conversions 17 | 0.076| 10.81

Table 8.7: Bivariate solver: pro ling, p=0:98.
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Figure 8.10: Bivariate solver: pro ling,p = 0:5.

Two-equation solver.  This algorithm has properties similar to the bivariate solver
except that the calls to interpreted code can be expensive sait involves multivariate

arithmetic. Hence,
in Table 8.5.4, N i

we expect that the overhead of conversiom guite limited. Indeed,
s the number of variables andd;, d, are the degrees ofl;, T,

respectively 8.3. TheC level computation is the major factor of the total computaton
time; it reaches 91% in cas&l =4; d; =5; d, =5.

dy | do | C (%) | Maple (%) | Conversion (%)

N |
3
4
8

5| 5| 56.47 12.96 30.57
5| 5| 91.54 2.64 5.82
2| 2| 83.67 8.02 8.31

Table 8.8: Two-equation solver: pro ling.
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8.6 Summary

The answers to our main questions are mostly positive: we have abted large per-
formance improvements over existinylaple implementations, and often outperform
Magma 's. Still, some triangular decomposition algorithms are not péectly suited
to our framework. For instance, we implemented the e ciencyeritical operations of
Isinvertible in C, but the main algorithm itself in Maple . This algorithm may
generate large amounts of \external" calls to th&C functions, so the data conversion
betweenMaple and C becomes a dominant cost. For this kind of algorithms, we
suggest either to implement them purely inC or tune the algorithmic structure to
avoid intensive data conversion;
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Chapter 9

Multithreaded Parallel
Implementation of Arithmetic
Operations Modulo a Triangular
Set

9.1 Overview

In Chapter 6 at Page 65 we have studied arithmetic operationsiftriangular families
of polynomials, concentrating on multiplication in dimensia zero what we called
modular multiplication. As reported previously, this algorithm consists of two major
operations: (1) polynomial multiplication, (2) modular rediction what we called
normal form for convenience. In this chapter, we discuss the parallelizan of these
two operations.

When computing modulo a triangular set, multivariate polynanials are regarded
recursively as univariate ones. This recursive data structuredds to several chal-
lenges for obtaining a high performance parallel implemeaation. The serial modular
multiplication algorithm is reported in Chapter 6. Based theserial one, we have de-
veloped a parallel version of multi-dimensional fast Fourieransform to perform the
polynomial multiplication step. We have also developed sevéreersions of parallel
normal form. Each parallel algorithm and its implementation will be reprted in
details in following sections.

The outline of this chapter is as following. In Section 9.2 aPage 140, we review
the top-level algorithm modular multiplication . In Section 9.3 at Page 141, we
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rst specify all the subroutines of the serial version oimodular multiplication
Then, we develop their variants which is still in the serial moe whereas can better
expose the parallelism. Finally, we illustrate the parallelation techniques of each
sub-routine. In Section 9.4 at Page 148, we provide the benchrk result between
the serial and parallel implementation of modular multipli@ation algorithm. The
parallelized code has satisfactory speed-up, though still pot&l to be further tuned.

NOTE: This chapter is written based on the published paper [6 6].

9.2 Algorithms

In this section, we give more simpli ed de nition of modular multiplication algorithm
(see Chapter 6 the more detailed version).

Let Lo = K be a commutative ring with a unit. Let B be a univariate polynomial
in K[x], non-constant, monic and with degreel > 1. We aim at computing modulo
B the product A 2 K][x] of two polynomials reduced w.r.t. B, that is, with degree
less thand. So, for simplicity, let us assume thatA has degree @ 2.

The quotient Q and the remainderR in the division of A by B can be computed
as follows, using the trick of Cook-Sieveking-Kung [24, 87, F9We summarize this
trick and refer to [43] for details. LetB ! be the inverse of the reversal d modulo
x4 1. Let Q be the productAB ! computed modulox® %, whereA is the reversal of
A. Then Q is the reversal ofQ and we haveR = A BQ.

Consider nowT = (Tq;:::; Ts) a set of non-constant polynomials irK[xq; :::; Xs]
Let d; be the degree of; w.r.t. x;, for all i. We say thatT is atriangular setif for all
i, the polynomial T; lies in K[Xy;:::;X;], iIs monic inx; and is reduced with respect
to T1;:::; T 4, thatis, forall j =1;:::;i 1 the degree ofl; w.r.t. X; is less than
of d;.

Letl i sandletP 2 K[Xy;:::;Xs]. The normal form of P w.r.t. Ty;:::; T,
denoted by NFK(P), is the the unique polynomialR 2 KJ[xy;:::;Xs] which is reduced
w.rt. Ti;:::; T, and congruent toP modulo the ideal hTy;:::;Tii. Moreover, we
de ne NFy(P) = P.

Fori=1;:::;swe denel; = K[xy;:::;Xj]=hTy;:::;Tii, the residue class ring of
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be such that the degree oP w.r.t. x;isatmost2;, 2foralll i s. Then we
compute NFK(P) as follows:

Step 1 Let P%:=NFg 1(P).

Step 2 Let PO be the reversal ofP%in Ls 1[xs]. Let P%:= P9 modx% ! and let
Q:=POT ! modx% 1.

Step 3 Let Q :=NF; 1(Q).

Step 4 Let Q be the reversal ofQ in Ls 1[Xs]. Let R:= P  QTs.

Step 5 Return NFs 1(R).

NFs 1(F) as a \map" on its coe cients w.r.t. Xs.

We parallelize the computation of NE(P) at two levels. First, for degrees large
enough, we perform the products irstep 2 and Step 4 by means of a parallel multi-
dimensional FFT algorithm (see Section 2.1 at Page 8). From nown, let us regard
these products as atomic operations. Secondly, we focus on ttadls to the NF;
function performed at Step 1, Step 3 and Step 5. Let G be the task graphor
instruction stream DAG [15] associated with NE(P). One can use either adepth-
rst traversal or abottom-up level-by-levdraversal for G, leading to the two parallel
schemes detailed in Section 9.3.3 at Page 146. Note that our tagtaph G is not a
fork-join graph and the special techniques developed for thkind of task graphs, see
for instance [89], do not apply here.

In fact, the structure of the algorithm implies several \glob& synchronisations”.
More precisely, before starting each obtep 2, Step 3, Step 4 and Step 5, all
threaded computations of the previous step must be completedihese constraints
make the parallelization of ournormal form computations more challenging than for
more standard \divide & conquer" algorithms. See also [77] on i topic.

9.3 Implementation

9.3.1 Multidimensional FFT

We have already studied the serial multidimensional FFT algatim in Section 2.1
at Page 8. Multidimensional FFT is a very nice application to prallelize on a SMP
architecture, since the \small" DFTs/IDFTs performed on a given dimension have



142

no data dependency to each other. Therefore, instead of contipg these \small”
DFTs/IDFTs one by one in a sequential setting, we create multig threads and each
of the threads will be in charge of an amount of \small" DFTs/IDFTs' computations.
Since all the \small* DFTs/IDFTS have similar amount of workloads in a dense
polynomial application, each thread will be in charge of a silar number of \small"
DFTS/IDFTS.

In fact, when implementing multivariate polynomial multiplication in our sequen-
tial mode, we used two approaches. One is the above mentionedItidimensional
FFT, the other is based on Kronecker's substitution. In this later method, two in-
put multivariate polynomials are mapped to univariate ones.Then, univariate FFT
can be used to compute the polynomial multiplication. This irplies that paral-
lelizing Kronecker's substitution based FFT multiplication s actually, parallelizing a
univariate FFT. We didn't try this direction based on three reasons. First, the mul-
tidimensional FFT is much easier to parallelize as we describdxafore. Second, we
implemented Truncated Fourier transform (TFT) [51], and repaced multidimensional
FFT by multidimensional TFT in our package. This brings us a sigi cant improve-
ment of performance comparing to Kronecker's substitution ntleod as reported in
Section 9.4 at Page 148. Moreover, the multidimensional TFTds the same code
structure as the multidimensional FFT, thus is easy to implemen Third, multidi-
mensional FFT/TFT is more cache friendly comparing to Kroneker's substitution
method for certain range of input [69].

Therefore, on a multi-processor architecture we prefer mulimensional FFT to
Kronecker's substitution method. In addition, matrix transpasition in multidimen-
sional FFT also can be parallelized. We leave it as a future warkince the compu-
tation time of matrix transposition is generally a small portion of the whole compu-
tation.

9.3.2 Two traversal methods for normal form

By using the names de ned in our pseudo-code in this section, westribe thenor-
mal form operation as follows. Thenormal form operation consists of two major
operationsUniFastMod and NormalForm . NormalForm is the \main" function
which recursively reduces the coe cients of the input polynmial f 2K[Xxq1;X2;  ;Xg].
TS is the given triangular set, ands is the number of variables. In addition, we have
following de nition of operations for all pseudo-code in ths section.

rev,(f) returns xg"f (%), where Xs is the main variable off and n dedf).
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dedf ) returns the degree off .
degredf; i) returns the partial degree off in x;.

coef (f; i) fetches thei-th coe cient of f.

In this chapter, normal form operation only applies to a dense multivariate poly-
nomial f who is encoded in an one dimensional array. we de ne this op&om
as following. For the input polynomialf , we use a data representation based on
Kronecker substitution [65, 69]. Namely, a dense multivariate gdynomial will
be encoded in an one dimensional array. The Kronecker m&j{f ) is an array
of element ofK.

U: (X1; X275 Xs) 7V (X1; X212, X19)
where 1=1;

i = Q,Li (degredf; j) + 1)

(9.1)

Thus, coef (f; i; s) returns the i-th slot of U(f ) regarded as an array where
each slot has size ofs.

Algorithm 13 Normal Form
NormalForm (f; TS; s)

Input:  f 2 K[X1;X2; iXsl; TS = T1;To; ; Tsg, with T; is monic.

Output:  The normal form of f w.rt. TS.

1if (s==0) return f

2 d= dedqf)

3RC (f; 0, d; TS; s 1)

4 f =UniFastMod (f; TS; s)

Each reduction step is performed by callindgJniFastMod , namely a fast uni-
variate division in Ls 1[Xs]. The function RC means to reduce each coe cient of a
polynomial by calling NormalForm and it is an in-place operation.

As we mentioned above, a multivariate polynomial can be enced by a tree
structure. When reducing its coe cients, we need to have a treraversal. The nested
recursion in NormalForm performs a depth- rst tree traversal. The other way is
what we called \bottom-up level-by-level” (BULL) traversal. The pseudo functions
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Algorithm 14  Fast Univariate Division
UniFastMod (f; TS; s)

1n degf

2 m degTs

3 if n<m then

4 q 0

5 r f

6 else

7 q revo(f)Tgt mod x" m*
8 ¢ reva m(Q)

9 RC(g;0;n m;TS;s 1)
10 w= Tsq

11 RC(w; O;n m; TS; s 1)
12 r f w
13return r

Algorithm 15 Fast Coe cients Reduction
RC (f; start; end; TS; s)

1 for i from start to enddo
2 coef (f; i)=NormalForm (coef (f; 1); TS; 9

Algorithm 16 Normal Form 2
NormalForm2 (f; TS; s)

1if (s== % return f

2 size = [ (degredf; j) + 1)
3i=2
4 while (i s)d

5 ss= size/ }:1 (degredf; j) + 1)
6 RS (f; 0,ss 1, TS; i)
7 iz=i+1l

Algorithm 17 Iterative Reduction
RS (f; start; end; TS; s)

1 for i from start to enddo
2 coef(f;i;s )= UniFastMod2 (coef(f;i;s);TS;9




145

RS, NormalForm2 , UniFastMod2 , and RC2 describe the computational steps
for this method.

In brief, we suppose the input multivariate polynomialf is encoded in an
one dimensional array by the Kronecker mapU. The size of the array is
js:1 (degredf; j ) + 1). We start the reduction steps at level 1. That is we view
the given array as an array withsize / ( degredf; 1) + 1) slots. Each slot has size
of degredf; 1) + 1. Each slot actually is encoding an univariate polynomiain L.
Then we reduce all slots by callindJniFastMod2 . Then we continue the reduction
stepsonlevel 2,3, ,i, ,s. Onleveli, the given array is viewed as an array with
size/ ~;_, (degredf; j) + 1) slots. Each slot has size™|_, (degredf; j) + 1).
We iteratively conduct the reduction steps from level 1 to lesl s by calling function
RS. In this way, we compute anormal form in a BULL traversal.

Algorithm 18 Fast Univariate Division 2
UniFastMod2 (f; TS; s)

1n degf

2 m degTs

3 if n<m then

4 q 0

5 r f

6 else

7 q revo(f) T2 mod x" M+
8 ¢ revn m(Q)

9 RC2(q;0;n m;TS;s 1)
10 w=Tgq

11 RC2(w; O;n m; TS; s 1)
12 r fow
13return r

Algorithm 19 Iterative Reduction 2
RC2 (f; start; end; TS; s)

1 for i from start to enddo
2 coef(f;i )= NormalForm2 (coef(f;i);TS;9
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9.3.3 Parallelizing normal form

Both approaches based on either depth- rst or bottom-up leveby-level tree traversal
are nice applications to parallelize. In our setting, we supge input polynomial
are dense, thus the workload of each coe cient reduction is @ée. We describe our
parallelization strategies as following.

Parallelism in Depth- rst Method

Algorithm 20 Parallel Normal Form
NormalForm _Para (f; TS; s)

1 if (s==0) return

2 d= deqf)

3 for i from Oto ddo

4  Task=NormalForm _Para (coef(f;i),TS,s-1)
5 CreateThread (Task)

6 DumpThreadPool()

7 f =UniFastMod (f; TS; s 1)

In the depth- rst method we cursively create a thread for each ae cient re-
duction which we called a task". All threads will live in a thread _pool. When
the thread _pool is full. We will force all threads to nish up before inserting a
new one. To force all threads to nish, we use the functio®umpThreadPool
Function NormalForm _Para in above pseudo-code is the parallelized version of the
depth- rst multivariate reduction.

Algorithm 21  Creating Tasks
CreateThread (Task)

1 Creat a thread forTask in thread _pool
2 if thread _pool is full.
3 DumpThreadPool (thread _pool)

Algorithm 22 Dump Thread-pool
DumpThreadPool (thread _pool)

1 Force all threads inthread _pool to nish.
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In the BULL traversal, we have two slightly di erent sub-methods. One is that
at each level we createC threads to handle all reductions on this level in parallel,
where C is a constant. Then, we wait them to nish and destroy theseC threads
before go to next level. Therefore, the total number of threls being created is
parametrized by the number of variables of the input. This sulmmethod is presented
by function NormalForm2 _Para _1 in above pseudo-code. In the other sub-method,
we will create a xed number of threads and put them into sleeptathe beginning.
Then we start the BULL traversal. When there is a reduction on dewnding, we will
push it onto a task queue and send a signal to wake up some thread. Taken
thread will go to fetch a task from the task queue and handle it imediately. If
there are multiple tasks have been pushed on the task queue, niple threads will
be waken up and run in parallel. After nishing a task, the threadwill go back to
sleep or continue to handle another task. This sub-method is mented by function
NormalForm2 _Para _2.

Algorithm 23 Parallelism in Bottom-up Level-by-level Method
NormalForm2 _Para 1 (f; TS; s)

1 if (s== return f

2 size = T (degredf; j) + 1)
3i=2

4 while (i s) da

5 ss=size/ *;_, (degredf; j) + 1)

Il suppose NoOfCPU divides ss.
6 g= ss/ NoOfCPU
7 for j from Oto NoOfCPU -1 repeat
8 Task = RS (f; jo; (j +1)q; TS; )
9 CreateThread ( Task )
10 i=i+1
11 DumpThreadPool()

The rst sub-method is very easy to implement. But the overhead focreating
and destroying many threads maybe burdensome in large inputses. The second
sub-method takes a little more coding e ort for tasks managenmé and threads syn-
chronization. But it is advantageous by avoiding the potenal overhead happened in
the rst sub-method.

We usedpthread library to implement the parallelization. We tested the per-
formance on a AMD 4 processor machine. We observed a factor of 3.®egbup
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Algorithm 24  Parallelism in Bottom-up Level-by-level Method Variant.
NormalForm2 _Para 2 (f; TS; s)

1 CreateC threads and put them into sleep.

2 if ( ::% return f

3 size = [ (degredf; j) + 1)

4 i=2

5 while (i s)

6 ss=size/ ", (degredf; j) + 1)
/Il suppose NoOfCPU divides ss.

7 q= ss/ NoOfCPU

8 for j from 0Oto NoOfCPU -1 repeat

9 Task = RS (f; jo; (j +1)a; TS; )

10 Wake up a thread to handleTask .

11 i=i+1

12 Finish and terminate all threads.

when the input size is su ciently large. The experimentation esults are reported in
Section 9.4.

9.4 Benchmarks

In Section 9.3, several parallelization strategies have beeescribed. We provide
benchmark results for these methods. The tested operation is mddr multiplication
itself and the tested strategies are summarized in below list.

Sequential algorithm.
Depth- rst traversal with a thread pool.
BULL traversal with a thread pool.
BULL traversal with sleep/wake-up threads.

W N~ O

Table 9.1: List of parallel strategies.

We conducted our benchmark on a AMD Opteron 850 4-Processor mawh with
CPU MHZ 2391.537 and cache size 1024 KB for each processor. Theuingense
polynomials are randomly generated. The benchmark data cawell re ect the per-
formance in real world computation.

We benchmarked 2, 3 and 4 variable cases. We observe a factor of 2 speed-up
in those examples. Here, we only report the data we collectedindhe 4 variable ex-
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ample. In this example, we xed the partial degrees iz and x4 at 4, i.e. the number
of processors. Then by increasing partial degreesxn and x,, we obtain a timing
surface for each methods listed in above table. Namely, Figurel9s the benchmark
between the sequential method and the Depth- rst traversal pallelization method
with a global thread pool. Figure 9.2 is the benchmark betweesequential method
and the BULL traversal parallelization method with a global thread pool. Figure 9.3
is the benchmark between sequential method and the BULL traveal parallelization
method with threads sleep/wake-up strategy. And Table 9.4, 9,9.4 and 9.4 are the
selected data point from Figure 9.1, 9.2, 9.3 and 9.4 respediy.

Se(ial.
Parallel Recursive.

Figure 9.1: Method 0 vs. method 1

ds | d3 | d | d; | method O (sec)| method 1 (sec)
4| 41| 4| 100 0.926028 0.736449
4| 4| 6| 300 8.104279 6.015184
4| 4| 8| 500 9.642438 7.084307
4| 4 |10| 800 35.232581 25.746897
4 | 4|12 1000 39.521405 29.216119

Table 9.2: Selected data points from Figure 9.1

According to the benchmark result, the depth- rst method does at improve the
performance by big factors w.r.t to the number of processors. €main reason is that
when the coarser grain parallelization is well balanced andqressors have been well
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) Serial.
Time BULL, thread-on-demand.. ——

Figure 9.2: Method 0 vs. method 2

ds | d3 | d | di | method O (sec)| method 2 (sec)
4| 41| 4| 100 0.926028 0.659218
4| 4|6 | 300 8.104279 3.844373
4| 4| 8| 500 9.642438 4.391355
4 | 4 |10| 800 35.232581 13.915399
4 | 4 |12 1000 39.521405 15.650396

Table 9.3: Selected data points from Figure 9.2

utilized, it's insensible to keep generating ner grain sub-theads recursively for the
sub-tasks, especially when the sub-tasks are small in terms of waikdl. On the other

hand, the bottom-up level-by-level approach has a factor & 3 speed up based on
the input size accordingly. The examples with larger degredmve better speed-up
than the smaller ones. The main reason for this is that the overhd generated by
threads and tasks management is still not negligible for smallenput.

For the comparison between methods 2 and 3, we observe that meth2 outper-
forms method 3 for smaller input. The main reason is that in metbds 3 the overhead
of managing task queues and synchronizing signals is more exgea than the one in
method 2. When the input is small, the overhead has bigger imptaon the overall
computational time. Whereas, method 3 will only generate xé number of threads.
Thus, the scheduling becomes much simpler. The overhead of c¢ireg /destroying
threads in the middle steps has been avoided as well. Thus, farder input method
3 outperforms method 2 according to our results, though the gap not big.
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) Serial.
Time BULL, central-thread-pool.

Figure 9.3: Method 0 vs. method 3

ds | d3 | dy | d; | method O (sec)| method 3 (sec)
4 | 100 0.926028 0.778774
6 | 300 8.104279 4.031646
8 | 500 9.642438 4531477

10| 800 35.232581 13.335127
12| 1000 39.521405 14.952662

BB D
BB D

Table 9.4: Selected data points from Figure 9.3

Figure 9.4 shows an improved version of method 3. The speed-upyislded by re-
placing all Fast Fourier Transform by Truncated Fourier Transbrm (TFT). Although
this improvement seems unrelated to parallelism, the better uttiple cache behavior
deserves to be counted in. Namely, TFT requires less memory to tdhe intermedi-
ate results than FFT. There is a larger chance that these resultsill be kept in cache
and used in later computation steps on the same processor.

Above benchmarks only show a factor of 2 3 speed up on a 4 processor machine.
This is not a satisfying result with considering that polynomias in our applications are
dense ones. Dense polynomial computations usually provide a dagpportunity for
work-load balance. However, we have identi ed the major ba-neck that impedes
the perform in our benchmark examples. Recall that in previmubenchmarks we set
the partial degrees ofx, and x3 as a constant number 4. This leads a situation that
in some of the sub-algorithms such aSoe cient Reduction, there is no enough work-
load to be scheduled evenly to all 4 processors by our current sg¢hkng method.
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Serial.
BULL, central-thread-pool, TFT.

N
o
— T T T T T T

o
~

d2

Figure 9.4: Method 0 vs. method 3 with TFT implementation.

ds | d3 | d; | d; | method O (sec)| TFT (sec)
4| 41| 4| 100 0.926028 0.755583
4| 4| 6 | 300 8.104279 2.732532
4| 4| 8| 500 9.642438 4.831472
4 | 4 |10| 800 35.232581 | 10.011660
4 | 4 |12]| 1000 39.521405 | 13.816763

Table 9.5: Selected data points from Figure 9.4

Therefore, we increase the degrees xf and x4 to be 8. Then, we observe a factor
3:2 3:3 speed-up between method 1 and method 3. In Table 9.4 we list avféming

points from the new benchmark result.

dys | d3 | dr | d; | method O (sec)| method 3 (sec)
8| 8| 8| 100 13.770629 4321261
8| 8| 8| 300 96.117776 18.458235
8| 8| 8| 1000| 132.304345 39.757645
8| 8| 8|1600| 277.367573 82.651414

Table 9.6: Larger benchmark 1.

When we increase the partial degrees &t and x, to be 16, 24, 32, . we observe

a factor of 34  3:6 speed-up between method 1 and method 3 (see Table 9.4).

To summarize, for the larger examples, especially when we inase the partial
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ds | d3 | d; | di | method O (sec)| method 3 (sec)
16| 16| 16 | 16 15.303748 4567856
16| 16| 24| 24 56.612566 16.479111
16| 16| 32| 32 63.762428 18.359758
16| 16| 40| 40| 236.199680 67.175220
16| 16| 48 | 48 252.753472 71.237213
16| 16|56 | 56| 265.966837 74.979127

Table 9.7: Larger benchmark 2.

degrees ofxz and x4 in 4-variable case, the performance is reasonably better. By
pro ling information, we know the top level division in BULL method is often a
dominant factor. Thus, increasing the degrees of top level vables to some extend
with respect to the number of processors allows a more balanceaoriload assignment
thus a better performance. Although, our experiments are cdacted on a 4 processor
machine. We believes that our approach will scale on larger radlel SMP system.
Actually, the number of threads in application has been paragtrized such that it
can be easily adjusted according to the number of processors onet cut-o s.

9.5 Summary

In conclusion, we studied multithreaded versions of multivasite polynomial arith-
metic modulo a triangular set. In this report, we focused on theormal form opera-
tion. We obtain parallelism from two procedures: a multidimesional FFT algorithm
and our normal form algorithm. Due to the intrinsic data-dependency inside these
operations, we observe a factor of 23 speed up on a 4 processor machine. One major
issue remains: detecting cut-o s between the di erent possible rsttegies. This is a
highly complicated task. A cut-o in our application is parametrized by the type of
architectures, the number of processors, the number of variablef the input, and the
shape of the given triangular set, etc.
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Chapter 10
Conclusion

This thesis has been devoted to the design and implementatiohpolynomial system
solvers based on symbolic computation. Driven by this motivatns, we have de-
veloped new algorithms and implementations to support the ghnique of triangular
decompositions for polynomial solving.

As reported in Chapters 3, 4 and 5, we have investigated and denstrated that
with suitable implementation techniques, FFT-based asymptotially fast polynomial
arithmetic in practice can outperform the corresponding cksical algorithms in a
signi cant manner. By integrating our C-level implementaton of fast polynomial
arithmetic into AXIOM , the AXIOM higher level existing related libraries has been
sped up in large scale. By using the same implementation technguve have demon-
strated in Chapter 8 that Maple higher level libraries such asRegularChainshave
also been dramatically improved in terms of performance. Wetie reported in Chap-
ters 6, 7 and 8 our new asymptotically fast algorithms, i.efast integer reduction
trick, modular multiplication, regular GCD, bivariate solver two-equation solverand
regularity test In Chapter 9, we have investigated the potential parallelisninside
fast algorithms modulo regular chains. All our reported new impmentations and al-
gorithms from this thesis have been nalized as a commercialfssare library Modpn
(see Section 8.2)

In this research, we have focused on algorithms modulo regulahains in
dimension-zero. Higher dimensional asymptotically fast triangar decompositions
algorithms can be developed and implemented based on these hassurherefore, we
expect that the generic triangular decompositions based polgmial solvers can yield
high-performance.
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