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ABSTRACT

In this paper, we present the accelerator model of METAFORK
together with the software framework that allows automatic
generation of CUDA code from annotated METAFORK pro-
grams. One of the key features of this CUDA code gen-
erator is that it supports the generation of CUDA kernel
code where program parameters (like number of threads
per block) and machine parameters (like shared memory
size) are allowed. These parameters need not to be known
at code-generation-time: machine parameters and program
parameters can be respectively determined and optimized
when the generated code is installed on the target machine.

This generation of parametric CUDA kernels requires from
the METAFORK framework to deal with non-linear polyno-
mial expressions during the dependence analysis and tiling
phase of the METAFORK code. To achieve these algebraic
calculations, we take advantage of quantifier elimination and
its implementation in the RegularChains in MAPLE. Vari-
ous illustrative examples are provided together with perfor-
mance evaluation.

1. INTRODUCTION

In the past decade, the introduction of low-level heteroge-
neous programming models, in particular CUDA, has brought
supercomputing to the level of the desktop computer. How-
ever, these models bring notable challenges, even to expert
programmers. Indeed, fully exploiting the power of hard-
ware accelerators with CUDA-like code often requires sig-
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nificant code optimization effort. While this development
can indeed yield high performance, it is desirable for some
programmers to avoid the explicit management of device ini-
tialization and data transfer between memory levels. To this
end, high-level models for accelerator programming have be-
come an important research direction. With these models,
programmers only need to annotate their C/C++ code to
indicate which code portion is to be executed on the device
and how data maps between host and device.

As of today, OPENMP and OPENACC are among the most
developed accelerator programming models. Both OPENMP
and OPENACC are built on a host-centric execution model.
The execution of the program starts on the host and may
offload target regions to the device for execution. The device
may have a separated memory space or may share memory
with the host, so that memory coherence is not guaranteed
and must be handled by the programmer. In OPENMP and
OPENACC, the division of the work between thread blocks
within a grid and, between threads within a thread block
can be expressed in a loose manner, or even ignored. This
implies that code optimization techniques may be applied in
order to derive efficient CUDA-like code.

METAFORK is a high-level programming language extend-
ing C/C++, which combines several models of concurrency
including fork-join and pipelining parallelisms. METAFORK
is also a compilation framework which aims at facilitat-
ing the design and implementation of concurrent programs
through three key features:

(1) Perform automatic code translation between concur-
rency platforms targeting both multi-core and many-
core GPU architectures.

(2) Provide a high-level language for expressing concur-
rency as in the fork-join model, the SIMD (Single In-
struction Multiple Data) paradigm and the pipelining
parallelism.

(3) Generate parallel code from serial code with an empha-
sis on code depending on machine or program param-
eters (e.g. cache size, number of processors, number of
threads per thread block).



As of today, the publicly available and latest release of
METAFORK, see www.metafork.org, offers the second fea-
ture stated above, as well as the multi-core portion of the
first one. To be more specific, METAFORK is a meta-language
for concurrency platforms, based on the fork-join model and
pipelining parallelism, which targets multi-core architectures.
This meta-language forms a bridge between actual multi-
threaded programming languages and we use it to perform
automatic code translation between those languages, which,
currently consist of CILKPLUS and OPENMP, see [9].

In this paper, we present the accelerator model of META-
FORK together with the software framework that allows au-

tomatic generation of CUDA code from annotated METAFORK

programs. One of the key properties of this CUDA code
generator is that it supports the generation of CUDA ker-
nel code where program parameters (like number of threads
per block) and machine parameters (like shared memory
size) are allowed. These parameters need not to be known
at code-generation-time: machine parameters and program
parameters can be respectively determined and optimized
when the generated code is installed on the target machine.
Therefore, METAFORK now offers a preliminary implemen-
tation of the third feature stated above, as well as the many-
core GPU portion of the first one.

The need for CUDA programs (more precisely, kernels)
depending on program parameters and machine parameters
is argued in Section

In Section following the authors of [16], we observe that
generating parametric CUDA kernels require the manipu-
lation of systems of non-linear polynomial equations and
the use of techniques like quantifier elimination (QE). To
this end, we take advantage of the RegularChains library of
MAPLE [8] and its QuantifierElimination command which has
been designed to efficiently support the non-linear polyno-
mial systems coming from automatic parallelization.

Section[d]is an overview of the concurrency models offered
by METAFORK. In particular, the METAFORK language con-
structs for generating SIMD code (in languages targeting
many-core GPU architectures, like CUDA) are discussed.

Section [5| reports on a preliminary implementation of the
METAFORK generator of parametric CUDA kernels from
input METAFORK programs. In addition to the Regular-
Chains library, we take advantage of PPCG, the polyhe-
dral parallel code generation for CUDA [33] that we have
adapted so as to produce parametric CUDA kernels.

Finally, Section [f] gathers experimental data demonstrat-
ing the performance of our generated parametric CUDA
code. Not only these results show that the generation of
parametric CUDA kernels helps optimizing code indepen-
dently of the values of the machine parameters of the tar-
geted hardware, but also these results show that automatic
generation of parametric CUDA kernels may discover better
values for the program parameters than those computed by
a tool generating non-parametric CUDA kernels.

2. OPTIMIZING CUDA KERNELS DEPEND-

ING ON PROGRAM PARAMETERS

Estimating the amount of computing resource (time, space,
energy, etc.) that a parallel program, written in a high-level
language, required to run on a specific hardware is a well-
known challenge. A first difficulty is to define models of
computation retaining the computer hardware characteris-

tics that have a dominant impact on program performance.
That is, in addition to specify the appropriate complexity
measures, those models must consider the relevant param-
eters characterizing the abstract machine executing the al-
gorithms to be analyzed. A second difficulty is, for a given
model of computation, to combine its complexity measures
so as to determine the “best” algorithm among different al-
gorithms solving a given problem. Models of computation
which offer those estimates necessarily rely on simplification
assumptions. Nevertheless, such estimates can deliver useful
predictions for programs satisfying appropriate properties.
An instance of such model of computation is the fork-join
concurrency model [7] where two complexity measures, the
work 77 and the span T, and one machine parameter, the
number P of processors, are combined into a running time
estimate by means of the Graham-Brent theorem [7], [14].
A refinement of this theorem supports the implementation
on multi-core architectures of the parallel performance ana-
lyzer Cilkview [I9]. In this context, the running time Tp is

bounded in expectation by 71 /P + 257/1;7 where § is a con-

stant (called the span coefficient) and Two is the burdened
span, which captures parallelism overheads due to schedul-
ing and synchronization.

Turning our attention to many-core GPUs, the fork-join
concurrency model becomes inappropriate to simulate the
SIMD execution model of CUDA kernels. The PRAM (Par-
allel Random-Access Machine) model [31) [12] and its exten-
sions, like that reported in [I] (which integrates communi-
cation delay into the computation time) and that presented
in [I3] (which integrates memory contention) captures the
SIMD execution model. However, a PRAM abstract ma-
chine consists of an unbounded collection of RAM proces-
sors accessing a global memory, whereas a many-core GPU
holds a collection of streaming multiprocessors (SMs) com-
municating through a global memory. Thus, a many-core
GPU implements a combination of two levels of concurrency.

Recent works have further extended the RAM model in
order to better support the analysis of algorithms target-
ing implementation on many-core GPUs. Ma, Agrawal and
Chamberlain [24] introduce the TMM (Threaded Many-core
Memory) model which retains many important characteris-
tics of GPU-type architectures as machine parameters, such
as memory access width and hardware limit on number of
threads per core.

In [I8], we propose a many-core machine (MCM) model
for multithreaded computation combining the fork-join and
SIMD parallelisms; a driving motivation in this work is to es-
timate parallelism overheads (data communication and syn-
chronization costs) of GPU programs. In practice, the MCM
model determines a trade-off among work, span and paral-
lelism overhead by checking the estimated overall running
time so as to (1) either tune a program parameter or, (2)
compare different algorithms independently of the hardware
details. We illustrate the use of the MCM model with a very
classical example: the computation of Fast Fourier Trans-
forms (FFTs). Our goal is to compare the running times
of two of the most commonly used FFT algorithms: that of
Cooley & Tukey [II] and that of Stockham [30].

Let f be a vector over a field K of coefficients, say the
complex numbers. Assume that f has size n where n is a
power of 2. Let U be the time (expressed in clock cycles)
to transfer one machine word between the global memory
and the private memory of any SM, that is, U > 0. Let
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Z be the size (expressed in machine words) of the private
memory of any SM, which sets up an upper bound on several
program parameters. Let ¢ > 2 be a positive integer. For Z
large enough, both Cooley & Tukey algorithm and Stockham
algorithm can be implemented
e by calling log,(n) times a kernel using ©(%) SM5E| each
of those SMs executing a thread-block with £ threads,
e with arespective workﬁof Wee = n (34 logy(n) logy (£)+
47 log,(n)+333—1361log, (£)) and W, = 43 n log,(n)+
17 +124+1—30n,
e with a respective spmﬂ of Sct = 34 log,(n) log,(¢) +
47 log,(n) 4+ 2223 — 136 log, (¢) and S, = 43 log,(n) +
16 log,(¢) + 3,
e with a respective overheaﬂ of Ot =2nU (41%?(71) +

log, (¢) — 1022(0F15Y 4114 O, = BnUlosa(m) %
See [I8] for details on the above estimates. From those, one
observes that the overhead of Cooley & Tukey algorithm has
an extraneous term in O(nUlog,(¢)) which is due to higher
amount of non-coalesced accesses. In addition, when n es-
capes to infinity (while ¢ remains bounded over on a given
machine since we have £ € O(Z)) the work and span of the
algorithm of Cooley & Tukey are increased by a O(log,(¢))
factor w.r.t their counterparts in Stockham algorithm.

These theoretical observations suggest that, as £ increases,
Stockham algorithm performs better than the one of Coo-
ley & Tukey. This has been verified experimentallyEl by the
authors of [I8] as well as by others, see [25] and the papers
cited therein. On the other hand, it was also observed ex-
perimentally that for ¢ small, Cooley & Tukey algorithm is
competitive with that of Stockham. Owverall, this suggests
that generating kernel code, for both algorithms, where ¢ is
an input parameter, is a desirable goal. With such paramet-
ric codes, one can choose at run-time the most appropriate
FFT algorithm, once ¢ has been chosen.

The MCM model retains many of the characteristics of
modern GPU architectures and programming models, like
CUDA [26), 27] and OpenCL [32]. However, in order to
support algorithm analysis with an emphasis on parallelism
overheads, the MCM abstract machines admit a few simpli-
fications and limitations with respect to actual many-core
devices.

To go further in our discussion of CUDA kernel perfor-
mance, let us consider now the programming model of CUDA

In the MCM model, the number of SMs is unbounded as
well as the size of the global memory, whereas each SM has
a private memory of size Z.

2In the MCM model, the work of a thread-block is the total
number of local operations (arithmetic operation, read /write
memory accesses in the private memory of an SM) performed
by all its threads; the work of a kernel is the sum of the works
of all its thread-blocks.

3In the MCM model, the span of a thread-block is the max-
imum number of local operations performed by one of its
threads; the span of a kernel is the maximum span among
all its thread-blocks.

“In the MCM model, the parallelism overhead (or overhead,
for short) of a thread-block accounts for the time to transfer
data between the global memory of the machine and the
private memory of the SM running this thread-block, taking
coalesced accesses into account; the parallelism overhead of
a kernel is the sum of the overheads of all its thread-blocks.
50Our algorithms are implemented in CUDA and pub-
licly available with benchmarking scripts from http://www.
cumodp.org/.

itself and its differences w.r.t. the MCM model. In CUDA,
instructions are issued per warp; a warp consists of a fixed
number Syarp Of threads. Typically Swarp is 32 and, thus,
executing a thread-block on an SM means executing several
warps in turn. If an operand of an executing instruction is
not ready, then the corresponding warp stalls and context
switch happens between warps running on the same SM.
Registers and shared memory are allocated for a thread-
block as long as that thread-block is active. Once a thread-
block is active it will stay active until all threads in that
thread-block have completed. Context switching is very
fast because registers and shared memory do not need to
be saved and restored. The intention is to hide the latency
(of data transfer between the global memory and the private
memory of an SM) by having more memory transactions in
fly. There is, of course, a hardware limitation to this, char-
acterized by (at least) two numbers:
e the maximum number of active warps per SM, denoted
here by Myarp; A typical value for Myarp is 48 on
a Fermi NVIDIA GPU card, leading to a maximum
number of 32 x 48 = 1536 active threads per SM.
e the maximum number of active thread blocks per SM,
denoted here by Mpiock; A typical value for Mpiock is
8 on a Fermi NVIDIA GPU card.
One can now define a popular performance counter of CUDA
kernels, the occupancy of an SM: it is given by Awarp/Mwarp,
where Awarp is the number of active warps on that SM. Since
resources (registers, shared memory, thread slots) are allo-
cated for an entire thread-block (as long as that block is ac-
tive) there are three potential limitations to occupancy: reg-
ister usage, shared memory usage and thread-block size. As
in our discussion of the MCM model, we denote the thread-
block size by ¢. Two observations regarding the possible
values of ¢:
e The total number of active threads is bounded over by
Mhiock £, hence a small value for £ may limit occupancy.
e A larger value for ¢ will reduce the amount of registers
and shared memory words available per thread; this
will limit data reuse within a thread-block and, thus,
will potentially increase the amount of data transfer
between global memory and the private memory of an
SM.
Overall, this suggests again that generating kernel code,
where ¢, and other program parameters are input arguments,
is a desirable goal. With such parametric code at hand, one
can optimize at run-time the values of those program pa-
rameters (like £) once the machine parameters (like Swarp,
Marp, Mylock, Z (private memory size) and the size of the
register file) are known.

3. AUTOMATIC GENERATION OF PARA-
METRIC CUDA KERNELS

The general purpose of automatic parallelization is to con-
vert sequential computer programs into multithreaded or
vectorized code. Following the discussion of Section [2] we
are interested here in the following more specific question.

Given a theoretically good parallel algorithm (e.g. divide-
and-conquer matrix multiplication) and given a type of hard-
ware that depends on various parameters (e.g. a GPGPU
with Z words of private memory per SM and a maximum
number Myarp of warps supported by an SM, etc.) we aim
at automatically generating CUDA kernels that depends on
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the hardware parameters (Z, Mwarp, €tc.), as well as pro-
gram parameters (e.g. number ¢ of threads per block), such
that
e those parameters need not to be known at compile-
time, and
e are encoded as symbols in the generated kernel code.
For this reason, we call such CUDA kernels parametric.

In contrast, current technology requires that machine and
program parameters are specialized to numerical values at
the time of generating the GPGPU code, see [17, Bl 21} [33].

In order to clarify our objective, we briefly provide some
background material. The polyhedron model [4] is a power-
ful geometrical tool for analyzing the relation (w.r.t. data
locality or parallelization) between the iterations of nested
for-loops. Once the polyhedron representing the iteration
space of a loop nest is calculated, techniques of linear alge-
bra and linear programming can transform it into another
polyhedron encoding the loop steps into a coordinate system
based on time and space (processors). From there, a parallel
program can be generated. For example, for the following
code computing the product of two univariate polynomials
a and b, both of degree n, and writing the result to c,

for(i=0; i<=n; i++) {c[i] = 0; cl[i+n] = 0;}
for(i=0; i<=n; i++) {
for(j=0; j<=n; j++)
cli+j]l += alil * b[jl;
}

elementary dependence analysis suggests to set t(i,7) = n—j
and p(i,j) = ¢ + j, where ¢t and p represent time and pro-
cessor respectively [I6]. Using Fourier-Motzkin elimination,
projecting all constraints on the (¢, p)-plane yields the fol-
lowing asynchronous schedule of the above code:

parallel_for (p=0; p<=2*n; p++){
clpl=0;
for (t=max(0,n-p); t<= min(n,2*n-p);t++)
clp] = clp] + alt+p-n] * bln-t];
}

To be practically efficient, one should avoid a too fine-grained
parallelization; this is achieved by grouping loop steps into
so-called tiles, which are generally trapezoids [20]. It is also
desirable for the generated code to depend on parameters
such as tile and cache sizes, number of processors, etc. These
extensions lead, however, to the manipulation of systems of
non-linear polynomial equations and the use of techniques
like quantifier elimination (QE). This was noticed by the
authors of [16] who observed also that work remained to
be done for adapting QE tools to the needs of automatic
parallelization.

To illustrate these observations, we return to the above
example and use a tiling approach: we consider a one-dimen-
sional grid of thread-blocks where each block is in charge of
updating at most B coefficients of the polynomial c¢. There-
fore, we introduce three variables B, b and u where the lat-
ter two represent a thread-block index and an thread index
(within a thread-block). This brings the following additional
relations:

0<b
0<u<B (1)
p=>bB + u,

to the previous system

0<n
0<i<n
0<j5j<n (2)
t=n—j
p=1+7.

To determine the target program, one needs to eliminate
the variables i and j. In this case, Fourier-Motzkin elimina-
tion (FME) does not apply any more, due to the presence of
non-linear constraints. If all the non-linear constraints ap-
pearing in a system of relations are polynomial constraints,
the set of real solutions of such a system is a semi-algebraic
set. The celebrated Tarski theorem [5] tells us that there
always exists a quantifier elimination algorithm to project
a semi-algebraic set of R"™ to a semi-algebraic set of R™,
m < n. The most popular method for conducting quantifier
elimination (QE) of a semi-algebraic set is through cylindri-
cal algebraic decomposition (CAD) [I0]. Implementation of
QE and CAD can be found in software such as QEPCAD, Re-
duce, MATHEMATICA as well as the RegularChains library
of MAPLE [§]. Using the function QuantifierElimination (with
options 'precondition’="AP’, ’output’="rootof’, ’simplifica-
tion’="L4’) in the RegularChains library, we obtain the fol-
lowing:

B>0
n>0
0<b<2n/B
0<u<B

from where we derive the following program:

for (p=0; p<=2*n; p++) c[pl=0;
parallel_for (b=0; b<= 2 n / B; b++) {
for (u=0; u<=min(B-1, 2*n - B * b); u++) {
p=D>b*B+ u;
for (t=max(0,n-p); t<=min(n,2*n-p) ;t++)
clp]l = clp] + alt+p-n] * b[n-t];

}

An equivalent CUDA kernel to the parallel for part is as
below:

b blockIdx.x;
u = threadIdx.x;
if (u <= 2*n - B * b) {
p=Db* B+ u;
for (t=max(0,n-p); t<=min(n,2*n-p) ;t++)
clp]l = clp] + alt+p-n] * b[n-t];

}

We remark that the polynomial system defined by and
has some special structure. The authors in [I5] have ex-
ploited this structure to deduce a special algorithm to solve
it and similar problems by implementing some parametric
FME. Although the system can be directly processed
by QuantifierElimination, we found that it is much more ef-
ficient to use the following special QE procedure. We re-
place the product bB in system [l| by a new variable ¢, and



thus obtain a system of linear constraints. We then ap-
ply FME to eliminate the variables i, j, ¢, p, u in sequential.
Now we obtain a system of linear constraints in variables
¢,b,n, B. Next we replace ¢ by bB and have again a system
of non-linear constraints in variables b,n, B. We then call
QuantifierElimination to eliminate the variables b,n, B. The
correctness of the procedure is easy to verify.

4. THE METAFORK LANGUAGE

In an earlier work [9], the second and the fourth authors
of the present paper introduced METAFORK as an extension
of both the C and C++ languages into a multithreaded lan-
guage based on the fork-join concurrency model [7]. Thus,
concurrent execution is obtained by a parent thread creat-
ing and launching one or more child threads so that the
parent and its children execute a so-called parallel region.
An important example of parallel regions are for-loop bod-
ies. METAFORK has four parallel constructs dedicated to
the fork-join model: function call spawn, block spawn, par-
allel for-loop and synchronization barrier. The first two
use the keyword meta_fork while the other two use respec-
tively the keywords meta_for and meta_join. Similarly
to the CILKPLUS specifications, the parallel constructs of
METAFORK grant permission for concurrent execution but
do not command it. Hence, a METAFORK program can ex-
ecute on a single core machine. We emphasize the fact that
meta_fork allows the programmer to spawn a function call
(like in CiLkPLus [6 23] [22]) as well as a block (like in
OPENMP [28] 2]).

Stencil computations are a major pattern in scientific com-
puting. Stencil codes perform a sequence of sweeps (called
time-steps) through a given array and each sweep can be
seen as the execution of a pipeline. When expressed with
concurrency platforms based (and limited) to the fork-join
model, parallel stencil computations incur excessive paral-
lelism overheads. This problem is studied in [29] together
with a solution in the context of OPENMP by proposing
new synchronization constructs to enable do-across paral-
lelism. These observations have motivated a first exten-
sion of the METAFORK language with three constructs to
express pipelining parallelism: meta_pipe, meta_wait and
meta_continue. Recall that a pipeline is a linear sequence
of processing stages through which data items flow from the
first stage to the last stage. If each stage can process only
one data item at a time, then the pipeline is said serial and
can be depicted by a (directed) path in the sense of graph
theory. If a stage can process more than one data item at a
time, then the pipeline is said parallel and can be depicted
by a directed acyclic graph (DAG), where each parallel stage
is represented by an independent set, that is, a set of vertices
of which no pair is adjacent. Since pipelining is not essential
for the rest of the paper, we refer the interested reader to
the METAFORK web site at www.metafork.org,

More recently, the METAFORK language was enhanced
with constructs allowing the programmer to express the fact
that a function call can be executed on an external (or re-
mote) hardware component. This latter is referred as the de-
vice while the hardware component on which the METAFORK
program was initially launched is refereed as the host and
this program is then called the host code. Both the host and
the device maintain their own separate memory spaces. Such
function calls on an external device are expressed by means

void foo() void foo()

{ {
int arry_host[N]; int arry_host[N];
initialize(arry_host, N); initialize(arry_host, N);
meta_fork bar(arry_host, // declare an array on the device

N); meta_device int arry_devicel[N];

work () ; // copy 24 bytes of host array

} // from host to device

meta_copy(arry_host+8, arry_host+32,

arry_host, arry_device);
meta_device bar(arry_device, N);
work() ;

Figure 1: METAFORK example

of two new keywords: meta_device and meta _copy. We
call a statement of the form

meta_device (variable declaration)

a device declaration; it is used to express the fact that a vari-
able is declared in the memory address space of the device.
A statement of the form

meta_device (function call)

is called a device function call; it is used to express the fact
that a function call is executed on the device concurrently
(thus in a non-blocking way) to the execution of the parent
thread on the host. All arguments in the function call must
be either device-declared variables or values from primitive
types (char, float, int, double).

A statement of the form

meta_copy ({range), (variable), (variable))

copies the bytes whose memory addresses are in range (and
who are assumed to be data referenced by the first variable
to the memory space referenced by the second variableﬁ
Moreover, either one or both variables must be device-declared
variables.

The left part of Figure [I] shows a METAFORK code frag-
ment with a spawned function call operating on an array
located in the shared memory of the host. On the right part
of Figure [T} the same function is called on an array located
in the memory of the device. In order for this function call
to perform the same computation on the device as on the
host, the necessary coefficients of the host array are copied
to the device array. In this example, we assume that those
coefficients are arry_host[2], ..., arry_host[8].

Several devices can be used within the same METAFORK
program. In this case, each of the constructs above is fol-
lowed by a number referring to the device to be used. There-
fore, these function calls on an external device can be seen
as one-sided message passing protocol, similar to the one of
the Julia EI programming language.

We stress the following facts about function calls on an
external device. Any function declared in the host code can
be invoked in a device function call. Moreover, within the
body of a function invoked in a device function call, any
other function defined in host code can be:

e cither called (in the ordinary way, that is, as in the C
language) and then executed on the same device,

5The difference between the lower end of the range and the
memory address of the source array is used as offset to write
in the second variable.

"Julia web site: http://julialang.org/
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e or called on another device.
As a consequence, device function calls together with spawned
function calls and ordinary function calls form a directed
acyclic graphs of tasks to which the usual notions of the
fork-join concurrency model can be applied.

The mechanism of function call on an external device can
be used to model the distributed computing model of Julia
as well as heterogeneous computing in the sense of CUDA.
The latter is, however, more complex since, as in discussed
in Section 2} it borrows from both the fork-join concurrency
model and SIMD parallelism. In particular, a CUDA kernel
call induces how the work is scheduled among the available
SMs. Since our goal is to generate efficient CUDA code from
an input METAFORK program, it is necessary to annotate
METAFORK code in a more precise manner. To this end, we
have introduced a tenth keyword, namely meta_schedule.

Any valid block of METAFORK code (like a meta_for-
loop body) can be the body of meta_schedule statement.
The semantic of that statement is that of its body and
meta_schedule is an indication to the METAFORK-to-CUDA

translator that every meta_for-loop nest of the meta_schedule
statement must translate to a CUDA kernel call. If ameta_for-

loop nest has 2 (resp. 4) nested loops then the outer one
(resp. the two outermost ones) defines the grid of the kernel
while the inner one (resp. the two innermost ones) speci-
fies (resp. specify) the format of a thread-block. We skip
the other possible configurations since they have not been
implemented yet in the METAFORK compilation framework.

‘We conclude this section with an example, a one-dimensional

stencil computation, namely Jacobi. The original (and naive)
C version is shown below, where initialization statements
have been removed in the interest of space.

for (int t = 0; t < T; ++t) {
for (int i = 1; i < N-1; ++i)
bli] = (ali-1] + a[i] + a[i+1]) / 3;
for (int i = 1; i < N-1; ++i)
alil = blil;
}

From this C code fragment, we apply the tiling techniques
mentioned in Section Bl and obtain the METAFORK code
shown below. Observe that the meta_schedule statement
has two meta_for loop nests, yielding two CUDA kernels.

int ub_v = (N - 2) / B;

meta_schedule {
for (int t = 0; t < T; ++t) {
meta_for (int v = 0; v < ub_v; v++) {

meta_for (int u = 0; u < B; u++) {
int p=v *B +u+1;
int y =p - 1;
int z = + 1;
blp]l = (aly]l + alpl + alzl) / 3;
}
¥
meta_for (int v = 0; v < ub_v; v++) {
meta_for (int u = 0; u < B; u++) {
int w=v *B +u+ 1;
alwl = blwl;

}

}

From the above, our METAFORK-to-CUDA translator pro-
duces two kernel functions, a header file (for those two ker-
nels) and a host code file where those kernels are called. The

code of the first kernel is shown below. This code is gen-
erated automatically and correctly up to the if statement
which requires manual post-processing in order to get the
index arithmetic right. This limitation is already present on
PPCG, the non-parametric CUDA code generator on which
we rely. Fixing those “limit conditions” in stencil computa-
tion is work in progress.

#include "jacobi_kernel.hu"
__global__ void kernelO(int *a, int *b, int N,
int T, int ub_v, int B, int cO0)

{
int b0 = blockIdx.x;
int t0 = threadIdx.x;
int private_p;
int private_y;
int private_z;
extern __shared__ int shared_al[];
#define floord(n,d) (((n)<0) 7 -((-(M)+(d)-1)/(d)) : (m)/(d))
for (int c1 = b0; cl < ub_v; cl += 32768) {
if (180) {
shared_a[(B)] = al(cl + 1) * (B)];
shared_al[(B) + 1] = al(cl + 1) * (B) + 1];
}
if (N >= t0 + (B) * c1 + 1)
shared_a[t0] = a[t0 + (B) * cil;
__syncthreads();
for (int c2 = t0; c2 < B; c2 += 512) {
private_p = ((((c1) * (B)) + (c2)) + 1);
private_y = (private_p - 1);
private_z = (private_p + 1);
blprivate_p] = (((shared_alprivate_y - (B) * c1] +
shared_alprivate_p - (B) * c1]) +
shared_a[private_z - (B) * c1]) / 3);
}
__syncthreads();
}
}

5. THE METAFORK GENERATOR OF PA-
RAMETRIC CUDA KERNELS
In Section[3] we illustrated the process of parametric CUDA

kernel generation from a sequential C program using METAFORK

as an intermediate language. In this section, we assume
that, from a C program, one has generated a METAFORK
program which contains one or more meta_schedule blocks.
Each such block contains parameters like thread block di-
mension sizes and is meant to be translated into a CUDA
kernel.

For that latter task, we rely on PPCG [33], a C-to-CUDA
code generator, that we have modified in order to generate
parametric CUDA kernels. Figure [2]illustrates the software
architecture of our C-to-CUDA code generator, based on
PPCG. Since the original PPCG framework does not sup-
port parametric CUDA kernels the relevant data structures
like non-linear expressions in the for-loop lower and upper
bounds, are not supported either. Consequently, part of our
code generation is done in a post-processing phase.

A meta_schedule block generating a one-dimensional grid
with one-dimensional thread blocks has the following struc-
ture

meta_schedule {
meta_for (int v = 0; v < grid_size; v++)
meta_for (int u = 0; u < block_size; u++) {
// Statements
}
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Figure 2: Overview of the implementation of
METAFORK support for GPU code.

where the grid (resp. thread-block) dimension size is ex-
tracted from the outer (resp. inner) meta_for loop upper
bound. Similarly, a metaschedule block generating a two-
dimensional grid with one-dimensional thread block has the
following structure

meta_schedule {
meta_for (int vl = 0; vl < grid_size_y; vi++)
meta_for (int vO = 0; v0 < grid_size_x; vO++)
// Only for-loops are valid here
// For instance: for (int i = 0; i < n; i++)
meta_for(int ul = 0; ul < block_size_y; ul++)
meta_for(int u0 = 0; u0 < block_size_x; uO++)
{
// Statements
}
}

where the first two outer meta_for loops correspond to the
grid and the inner meta_for loops to the thread-blocks.

Among our adaptation of the PPCG framework, we have
added a new node in the PET (Polyhedral Extraction Tool)
phase of PPCG in order to represent the information of a
meta_for loop; this is, in fact, very similar to a C for-loop
except that we tag the outer meta_for loops as blocks and
the inner meta_for loops as threads directly.

Since the METAFORK code is obtained after computing
affine transformation and tiling (via quantifier elimination),
we had to bypass the process of computing affine transforma-
tion and tiling that PPCG is performing. By doing this, our
prototype C-to-CUDA code generator could not fully take
advantage of PPCG, which explains why post-processing
was necessary. Of course, improving this design is work in
progress so as to completely avoid post-processing.

Referring to the above types of meta_schedule blocks, we
use the “block_size” as the number of threads per thread
block and “grid_size” as the number of thread blocks, we
extract this information during the PET analysis and store it
in the intermediate data structure, called ‘schedule_tree’, of
PPCG. Hence, in the generated host code, the number of
threads per block is specified as the variable: “block_size”.

Originally, PPCG would first analyze whether an array

is reused or accessed in a coalesced way, and then decide
whether to use shared memory or not. In adaptation of the
PPCG framework, we could not let PPCG analyze these
properties of the input code and we simply force PPCG to
consider using shared memory, provided that a correspond-
ing compilation flag is enabled.

Since PPCG cannot deal with non-linear analysis, it can-
not correctly handle the necessary index arithmetic formulas
required by the shared memory accesses in our parametric
code. Hence, this task is left to our post-processing phase.
Our post-processing phase has another purpose: performing
common sub-expression elimination. Indeed, our aromati-
cally generated parametric CUDA kernel code requires that
optimization, even more than PPCG does, due to the pres-
ence of parameters.

6. EXPERIMENTATION

In this section, we present experimental results. Most of
them were obtained by running times of CUDA programs
generated with

e our preliminary implementation of our METAFORK-to-
CUDA code translator described in Sections [d] and [5
and

e the original version of the PPCG C-to-CUDA code
translator [33].

We use eight simple examples: array reversal (Table , 1D
Jacobi (Table , 2D Jacobi (Table , LU decomposition
(Table |4), matriz transposition (Table [5)), matriz addition
(Tablel6)), matriz vector multiplication (Table, and matriz
matriz multiplication (Table . In all cases, we use dense
representations for our matrices and vectors.

For both the PPCG C-to-CUDA and our METAFORK-
to-CUDA code translators, Tables M [E [ [ and
[8 give the speedup factors of the generated code, as the
timing ratio of the generated code to their original untiled
C code. Since PPCG determines a thread block format, the
timings in those tables corresponding to PPCG depend only
on the input data size. Meanwhile, since the CUDA kernels
generated by METAFORK are parametric, the METAFORK
timings are obtained for various formats of thread blocks and
various input data sizes. Indeed, recall that our generated
CUDA code admits parameters for the dimension sizes of
the thread blocks. This generated parametric code is then
specialized with the thread block formats listed in the first
column of those tables.

Array reversal. Both METAFORK and PPCG generate
CUDA code that uses shared array and one-dimensional
kernel grid. We specialized the METAFORK generated para-
metric code successively to the block size B = 16, 32,64, 128,
256,512, meanwhile PPCG automatically chooses B = 32
as the block size. As we can see in Table [T} based on the
generated parametric CUDA kernel, one can tune the block
size to be 256 to obtain the best performance.

1D Jacobi. Our second example is a one-dimensional
stencil computation, namely 1D-Jacobi. The kernel gen-
erated by METAFORK uses a 1D kernel grid and share array
while the kernel generated by PPCG uses a 1D kernel grid
and global memory. PPCG automatically chooses a thread
block format of 32 while METAFORK preferred format varies
based on input size.

2D Jacobi. Our next example is a two-dimensional stencil
computation, namely 2D-Jacobi. Both the CUDA kernels



generated by METAFORK and PPCG use a 2D kernel grid
and global memory. PPCG automatically chooses a thread
block format of 16 x 32 while METAFORK preferred format
is 4 x 32.

LU decomposition. METAFORK and PPCG both gener-
ate two CUDA kernels: one with a 1D grid and one with
a 2D grid, both using shared memory. The automatically
selected block formats for PPCG are 32 and 16 x 32. Mean-
while, tuning the number of threads per thread block in our
parametric code allows METAFORK to outperform PPCG.

Matrix transpose. Both the CUDA kernels generated by
METAFORK and PPCG use a 2D grid and shared memory.
PPCG automatically chooses a thread block format of 16 x
32 while METAFORK preferred format varies based on input
size. The METAFORK-generated code is about twice slower
than the PPCG-generated code. This is due to the fact that
PPCG manages to optimize the generated code so as ensure
coalesced accesses. Once METAFORK and PPCG are better
integrated together, the METAFORK-generated code should
also benefit from this optimization performed by PPCG.

Matrix addition. Both the CUDA kernels generated by
METAFORK and PPCG use a 2D grid and global memory.
Hence, they fail to generate shared memory code. The au-
tomatically chosen block format for PPCG is 16 x 32 while
METAFORK preferred format is 4 x 32. In this case, the
fact that METAFORK uses common sub-expression elimina-
tion in its post-processing phase explains why METAFORK
outperforms PPCG by one order of magnitude.

Speedup (kernel) Input size
Block size 223 | 224 | 225 | 226
PPCG
32 | 8.312 | 8.121 | 8.204 | 8.040
METAFORK

16 3.558 3.666 3.450 3.445
32 7.107 6.983 7.039 6.831
64 12.227 12.591 12.763 12.782
128 17.743 19.506 19.733 19.952
256 19.035 | 21.235 | 22.416 | 21.841
512 18.127 18.017 19.206 20.587

Table 1: Reversing a one-dimensional array

Speedup (kernel) Input size
Block size 213 1 21 1 215
PPCG
32 [ 1.416 | 2.424 | 5.035
METAFORK
16 1.217 1.890 2.954
32 1.718 2.653 5.059
64 1.679 3.222 7.767
128 1.819 3.325 | 10.127
256 1.767 | 3.562 | 10.077
512 2.081 | 3.161 9.654

Table 2: 1D-Jacobi

Matrix vector multiplication. For both METAFORK and
PPCG, the generated kernels use a 1D grid and shared mem-
ory. The block size chosen by PPCG is 32 while METAFORK
preferred block size is 128.

Matrix matrix multiplication. For both METAFORK and
PPCG, the generated kernels use a 2D grid and shared mem-
ory. On the contrary of matrix vector multiplication, both

Speedup (kernel) Input size
Block size 212 | 213 | 214
PPCG
16 * 32 | 8.614 | 8.672 | 10.6316
METAFORK

4 * 8 4.293 4.209 3.539
4 * 16 7.091 6.696 6.029
4 * 32 9.116 | 8.388 7.916
8 * 8 5.103 4.785 4.300
8 * 16 7.340 6.173 5.203
8 * 32 8.227 7.375 6.541

16 * 8 4.286 3.934 3.172

16 * 16 5.375 4.862 3.904

16 * 32 5.479 5.196 4.771

Table 3: 2D-Jacobi

Speedup (kernel) Input size
Block size
kernelO, kernell 212 213
PPCG
32, 16 * 32] 31.497 [ 39.068
METAFORK

32, 4 F 4 18.906 27.025
64, 4 * 4 18.763 27.316
128, 4 * 4 18.713 27.109
256, 4 * 4 18.553 27.259
512, 4 * 4 18.607 27.353
32, 8 * 8 34.936 | 52.850
64, 8 * 8 34.163 | 53.133
128, 8 * 8 34.050 52.731
256, 8 * 8 33.932 52.616
512, 8 * 8 34.850 53.112
32, 16 * 16 32.310 41.131
64, 16 * 16 | 32.093 | 40.829
128, 16 * 16 | 32.968 | 41.219
256, 16 * 16 32.229 41.246
512, 16 * 16 | 32.806 | 40.705

Table 4: LU decomposition

METAFORK and PPCG could generate a blocked multipli-
cation which explains the better performances. For META-
FORK, the size of the shared array is the same as block
format. However, for PPCG, the size of the shared array is
32 x 32 while the thread-block format is 16 x 32. In fact,
PPCG code computes two coefficients of the output matrix
with each thread, thus increasing index arithmetic amorti-
zation and occupancy. This is another optimization that
could benefit to METAFORK once METAFORK and PPCG
are better integrated together,.

We conclude this section with timings (in seconds) for the
quantifier elimination (QE) required to generate METAFORK
tiled code, see Table [J] Our tests are based on the latest
version of the RegularChains library of MAPLE, available at
www.regularchains.org. These results show that the use of
QE is not a bottleneck in our C-to-CUDA code generation
process, despite of the theoretically high algebraic complex-
ity of quantifier elimination.

7. CONCLUDING REMARKS

METAFORK can be applied for (1) comparing algorithms
written with different concurrency platforms and (2) port-
ing more programs to systems that may have a highly opti-
mized run-time for one paradigm (say divide-and-conquer al-
gorithms, or producer-consumer). These features have been
illustrated in [9].
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Speedup (kernel) Input size
Block size 212 | 213 | 214
PPCG
16 * 32 | 63.656 | 62.656 | 103.703
METAFORK

4 * 8 16.729 19.887 27.368
4 * 16 23.755 27.653 | 46.240
4 * 32 29.460 34.353 41.814
8 * 8 18.725 18.583 20.408
8 * 16 29.974 | 32.746 38.575
8 * 32 24.798 29.043 37.027

16 * 8 15.664 14.383 16.949

16 * 16 16.087 20.341 26.160

16 * 32 15.133 16.707 19.591

Table 5: Matrix transpose

Speedup (kernel) Input size
Block size 212 1 28
PPCG
16 * 32 | 11.352 | 9.679
METAFORK

4 * 8 32.502 32.711
4 * 16 53.730 56.774
4 * 32 65.975 | 57.395
8 * 8 47.729 45.603
8 * 16 48.844 55.834
8 * 32 51.512 44.619

16 * 8 41.956 36.952

16 * 16 46.361 27.761

16 * 32 40.376 24.024

Table 6: Matrix addition

In this new paper, we have presented enhancements of
the METAFORK language so as to provide several models
of concurrency, including pipelining and SIMD. For the lat-
ter, our objective is to facilitate automatic code translation
from high-level programming models supporting hardware
accelerator (like OPENMP and OPENACC) to low-level het-
erogeneous programming models (like CUDA),

We believe that an important feature of METAFORK is the
abstraction level that it provides. It can be useful for parallel
language design (for example in designing parallel extensions
to C/C++) as well as a good tool to teach parallel program-
ming. At the same time, as illustrated in Sections [f] through
[l METAFORK has language constructs to help generating
efficient CUDA code. Moreover, the METAFORK frame-
work relies on advanced techniques (quantifier elimination
in non-linear polynomial expressions) for code optimization,
in particular tiling.

The experimentation reported in Section [f] show the ben-
efits of generating parametric CUDA kernels. Not only this

Speedup (kernel) Input size

Block size ot [ 22 7 2fs
PPCG

32 [ 3954 | 3977 [ 5270
METAFORK

16 9.343 11.752 22.486

32 20.494 17.847 22.486

64 21.360 42.008 38.858

128 23.141 47.759 | 75.857

256 25.092 44.166 73.447

512 22.613 47.641 62.922

Table 7: Matrix vector multiplication

Speedup (kernel) Input size
Block size 210 | 21T
PPCG
16 * 32 | 129.853 | 393.851
METAFORK

4 * 8 22.620 80.610
4 * 16 39.639 142.244
4 * 32 37.372 135.583
8 * 8 48.463 | 172.871
8 * 16 43.720 162.263
8 * 32 33.071 122.960

16 * 8 30.128 101.367

16 * 16 34.619 133.497

16 * 32 22.600 84.319

Table 8: Matrix multiplication

Example Timing
Array reversal 0.072
1D Jacobi 0.948
2D Jacobi 7.735
LU decomposition 4.416
matrix transposition 1.314
matrix addition 1.314
matrix vector multiplication 0.072
matrix matrix multiplication 2.849

Table 9: Timings of quantifier elimination

feature provides more portability but it helps obtaining bet-
ter performance with automatically generated code.
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