
Solving semi-algebraic systems with the
RegularChains library in Maple

Changbo Chen, James H. Davenport, François Lemaire,
Marc Moreno Maza, Nalina Phisanbut, Bican Xia,
Rong Xiao and Yuzhen Xie

It is well known that multivariate nonlinear polynomial systems are genuinely
harder to solve than linear systems. This is intrinsic, as the solutions display fea-
tures that do not manifest themselves in the linear case. For instance, the solution
set of a nonlinear polynomial system may consist of components of different dimen-
sions. Moreover, even if all components have the same dimension, say dimension
zero, they may not be glued into a single component without loosing finer proper-
ties such as equi-projectability, which is important in the design of algorithms for
solving polynomial systems.

To illustrate this latter property without defining it formally, consider the
following system of three equations, two unknowns and with 750,000 complex
solutions:

{x1000 − 1, (x500 − 1)(y500 − 1), y1000 − 1} (1)

The algorithm presented in [9] and implemented by the Triangularize command
of the RegularChains library produces the following triangular decomposition

{(x, y) : x500 − 1 = 0, y1000 − 1 = 0} ∪ {(x, y) : x500 + 1 = 0, y500 − 1 = 0} (2)

which consists of two equi-projectable components, each of them represented by a
regular chain. The triangular set

{x1000 − 1, (x500 − 1)(y500 − 1) + (x500 + 1)(y1000 − 1)}
has the same solution set as our input system. However this is not a well-behaved
algebraic object since the leading coefficient in y of the second polynomial is a
zero-divisor modulo the first polynomial. And, for this reason, this triangular set
is not a regular chain. This algebraic observation has a geometrical interpretation
clearly visible in (2): for each x-value, the first component admits 1000 y-values
while for each x-value, the second component has only 500 y-values.

Since the pioneer work of Wen Tsün Wu [24], the notion of a regular chain
and algorithms for computing triangular decomposition of algebraic systems have

2 Chen, Davenport, Lemaire, Moreno Maza, Phisanbut, Xia, Xiao and Xie

been well studied, leading to various software packages [18, 23, 22]. This type of
decomposition reveals geometrical information of practical interest while provid-
ing compact (in the sense of space-efficiency) representation of solution sets and
supporting various meanings (more or less explicit and complete) for “solving”.
Similarly to methods based on Gröbner basis computations, triangular decompo-
sition algorithms solve the input system over the algebraic closure of its field of
coefficients.

What of R? Here it is natural to allow both (strict) inequalities, i.e. fj(x1, . . . ,
xn) > 0, and inequations fk(x1, . . . , xn) 6= 0, as well as equations. Combinations
of these give rise to semi-algebraic systems. In the paper [5], the authors adapt the
notion of a regular chain to this context, leading to that of a regular semi-algebraic
system. They also propose algorithms for computing triangular decompositions of
semi-algebraic systems. In a second article [6], the authors show how semi-algebraic
sets (that is the solution sets of semi-algebraic systems) represented by triangular
decompositions can be manipulated and, for instance, how set-theoretic operations
on those sets can be performed with this representation.

The first objective of the present work is to explain how the notions and
algorithms introduced in [5, 6] have been implemented in the RegularChains li-
brary. As a byproduct, the notion of a regular chain supports most end-user needs
for solving algebraic and semi-algebraic systems. By “solving”, we mean here de-
scribing the locus of the zeros of the input system. The question of preserving
the multiplicity structure of the zero set is work in progress and is not yet sup-
ported in our library. The library’s current design and implementation strategies
are discussed in Section 2.

Among the specifications for “solving” semi-algebraic systems, cylindrical al-
gebraic decomposition (CAD) and point sampling1 play a fundamental role in prac-
tice. Both specifications can be obtained by algorithms based on regular chains.
This strengthens our observation that the notion of a regular chain is at the core
of many practical tools for polynomial system solving. In Section 3, we report on
an experimental comparison of those algorithms against their counterparts based
on Collins’ CAD method.

Section 4 illustrates the RegularChains library semi-algebraic tools with two
applications. One deals with branch cut analysis of elementary functions, the other
shows how the output of a “real solver” can be verified.

1. Representations based on regular chains

The notion of a regular chain, introduced independently in [17] and [26], is closely
related to that of a triangular decomposition of a polynomial system. Broadly
speaking, a triangular decomposition2 of a polynomial system S, such as (1), is a

1By this term, we mean computing (at least) one point per connected component of the zero set

of the input semi-algebraic system.
2http://en.wikipedia.org/wiki/Triangular decomposition

Solving semi-algebraic systems with the RegularChains library in Maple 3

set of simpler (in a precise sense) polynomial systems S1, . . . , Se (as in (2)) such
that

p is a solution of S ⇔ ∃i : p is a solution of Si. (3)

When the purpose is to describe the solution set of S in the algebraic closure of
its coefficient field, those simpler systems are regular chains. If the coefficients of
S are real numbers, then the real solutions of S can be obtained by a triangular
decomposition into regular semi-algebraic systems, a notion introduced in [5]. In
both cases, each of these simpler systems has a triangular shape and remarkable
properties, which justifies the terminology.

A regular semi-algebraic system is a triple [T,Q, P] where T is a regular
chain, Q is a quantifier-free formula involving only the free variables of T and P
is a set of polynomial inequalities; moreover [T,Q, P] must satisfy the following
properties.

(i) Q defines a non-empty open set in the space of the free variables of T ,
(ii) [T, P] specializes well at any point3 defined by Q,

(iii) At any point α defined by Q, the specialized system [Tα, Pα] admits at least
one real solution β, in the sense that every polynomial in Tα is zero at β, and
every polynomial in Pα is positive at β.

A consequence of (3) is that, if all the Ti have the same free variables, i.e. param-
eters, then Q1 ∨ · · · ∨ Qe defines the set of parameter values for which the input
system possesses solutions. However, it is not necessary for all the Ti to have the
same free variables and the example below given by (4) illustrates this fact.

An important property of any regular semi-algebraic system [T,Q, P] is the
fact that it is a parametrization of its zero set. Therefore, a triangular decomposi-
tion of a semi-algebraic system S decomposes the zero set of S into components,
with each of them given by a parametric representation.

The need to split semi-algebraic (or indeed algebraic) systems into compo-
nents may be unfamiliar to those who are focusing on linear equations and have
never seen non-equi-projectable systems such as

(x− 1)(x− 2) = (x− 1)y + (x− 2)(y2 − t) = 0, (4)

which admits one solution point for t(x − 2) = 0 and two for x = 1, 0 < t, as
computed by the RealTriangularize command of the RegularChains library.

> RealTriangularize([(x-1)*(x-2),(x-1)*y + (x-2)*(y^2-t)], PolynomialRing([y,x,t]));
{ 2 { y = 0
{ y - t = 0 { { y = 0
{ , { x - 1 = 0 , {
{ x - 1 = 0 { { x - 2 = 0
{ { t = 0
{ 0 < t

Triangular decompositions into regular semi-algebraic systems are an inter-
esting representation of semi-algebraic sets for the following reasons. First, trian-
gular decompositions into regular chains are a space-efficient encoding of algebraic

3This means that at any point u defined by Q, the specialized set T (u) is a squarefree regular
chain with the same rank as T and each specialized polynomial Pi(u) is invertible modulo 〈T (u)〉.

4 Chen, Davenport, Lemaire, Moreno Maza, Phisanbut, Xia, Xiao and Xie

sets. This fact is formally established in [12] and experimentally verified with the
RegularChains library in [9]. Secondly, triangular decompositions into regular
chains (or regular semi-algebraic systems) reveal important geometrical properties
(dimensions of the irreducible components, fibration structure, etc.) of the input
algebraic sets (or semi-algebraic sets). These can be used to design efficient al-
gorithms for the operations manipulating those sets. For instance, performing set
theoretic operations (in particular set theoretic difference) can be done very effi-
ciently on both constructible sets and semi-algebraic sets as reported in [8] and [6],
respectively. Last but not least, triangular decompositions and related techniques,
such as dynamic evaluation, are well suited for supporting weaker solving specifi-
cations. Two examples of that are triangular decomposition of algebraic systems
in the sense of Kalkbrener [17] and lazy triangular decomposition of semi-algebraic
systems [5]. These types of decompositions provide a description of the “generic
solutions” plus a continuation mechanism for obtaining the other solutions, if nec-
essary.

2. The RegularChains library

The RegularChains library in Maple provides a collection of tools for dealing
with systems of polynomial equations, inequations and inequalities. These tools
include isolating and counting the real solutions of zero-dimensional systems, de-
scribing the real solutions of positive dimensional systems, classifying the number
of real roots of parametric systems, finding sample points (thus determining empti-
ness) of semi-algebraic sets, performing set theoretical operations on semi-algebraic
sets as well as computing cylindrical algebraic decompositions. The theory and
algorithms underlying these tools are described in [25, 27, 10, 1, 5, 6]. Most com-
mands implementing these tools are part of the SemiAlgebraicSetTools module
while the others can be found in the ParametricSystemTools module or at the
top level of the RegularChains library itself. All of these commands are already
present in Maple 15 (that is, in the current version of Maple) except those for
set theoretical operations which will appear in a future release.

One important design feature of the RegularChains library is the use of types
for a few key algebraic structures such as regular chains, constructible sets, semi-
algebraic sets, etc. This feature, unusual for a Maple package, forces the user to
provide command input in an unambiguous manner and eases the manipulation of
complicated output values. Let us illustrate this design feature with two examples.

Based on the algorithms of [5], the RealTriangularize command decom-
poses an input semi-algebraic system into finitely many regular semi-algebraic sys-
tems (See Figure 1 for an example.). An object of type regular semi algebraic -

system consists of a regular chain, a quantifier-free formula and positive inequali-
ties. The RegularChains library provides types for the former two while inequal-
ities are a Maple primitive type.

Solving semi-algebraic systems with the RegularChains library in Maple 5

The fact that RealTriangularize decomposes any semi-algebraic system
into finitely many regular semi-algebraic systems leads to a convenient represen-
tation of semi-algebraic sets. As mentioned in Section 1, regular semi-algebraic
systems enjoy remarkable properties, which enable efficient implementation of set
theoretical operations on semi-algebraic sets, like Difference and Intersection.

Figure 1. Output of RealTriangularize

Based on the algorithms of [10], the CylindricalAlgebraicDecompose com-
mand takes a list of semi-algebraic systems as input and returns the CAD cells
satisfying at least one of the input semi-algebraic systems. (See Figure 2 for an
example.). A cell is encoded by the type cad cell, which consists of informations
related to this cell, such as its index, a sample point and its semi-algebraic rep-
resentation. A semi-algebraic representation of a CAD cell of the n-dimensional
Euclidean space with coordinates x1 < · · · < xn is defined recursively as follows.

• For n = 1 it is either a point or an interval; in the first case x1 is set to an
algebraic expression while in the second case x1 is strictly bounded between
two algebraic expressions; in both cases each of these algebraic expressions is
a Maple RootOf expression, where the defining polynomial is univariate over
the rational numbers.

• For n > 1 it is a CAD cell of the (n − 1)-dimensional space together with
a constraint on xn of type section or sector. In the first case xn is set to an
algebraic expression and in the second xn is strictly bounded between two
algebraic expressions; in both cases, each algebraic expression is a RootOf

expression where the defining polynomial is univariate with coefficients that
are polynomials in the previous coordinates.

The sample point of a CAD cell is stored during the computation as a field
of the type cad cell. If one wants to retrieve the sample point of an object of
type cad cell, the command SamplePoints can be applied to such an object and

6 Chen, Davenport, Lemaire, Moreno Maza, Phisanbut, Xia, Xiao and Xie

output the sample point without any computational cost. Thus, the use of type
here provides a convenient way for manipulating the computed objects.

The CylindricalAlgebraicDecompose command admits various output for-
mats. Among them, the rootof format is meant to support end-users’ needs
for solving semi-algebraic systems. In fact, this format is very similar to that
of Maple’s solve command for solving polynomial systems.

Figure 2. Output of CylindricalAlgebraicDecompose

Another design feature is the use of Maple piecewise structure [7] for for-
matting the output of commands producing a set of “components” (for instance
regular semi-algebraic systems) (See Figure 3 for an example.). This has at least
two advantages. First, this highlights the relations between components. Secondly,
this supports lazy evaluation in the form of unevaluated recursive calls, see [5] for
details.

3. Experimentation

As mentioned in the introduction, among the specifications for “solving” semi-
algebraic systems cylindrical algebraic decomposition (CAD) and point sampling

Solving semi-algebraic systems with the RegularChains library in Maple 7

Figure 3. Output of LazyRealTriangularize

play a fundamental role in practice. Both specifications can be obtained by al-
gorithms based on regular chains. See the papers [10] and [5] for details. In this
section, we report on an experimental comparison of those algorithms against their
counterparts based on Collins’ CAD method as implemented in QEPCAD-B [16, 3]
and in Mathematica’s SemialgebraicComponentInstances command [21].

3.1. Cylindrical algebraic decomposition

Our CAD algorithm ([10]) is completely different from that of Collins and the
numerous improvements to it: we do not perform repeated projections. The fact
that we have a different algorithm does not, of course, break through the theoretical
complexity barriers [2, 13]. Our practical observations to date (in the context of
simplification, see [19]) seem to show the following.

• For problems in two variables, our implementation behaves fairly similarly to
QEPCAD [16, 3], which is one of the best descendants of [11].

• The two tend to agree, with only slight variations, on the best and worst
variable orderings for constructing a CAD.

• For problems in more variables, with the best variable ordering, the two
are again fairly similar, with QEPCAD probably having a slight edge (com-
parisons are difficult as QEPCAD only constructs a partial CAD, and ours
constructs a complete one).

• For bad variable orderings, QEPCAD can produce dramatically more cells,
e.g. by a factor of over 50 (see Table 1), than Maple.

• Although some heuristics are known [4, 15], the choice of variable ordering is
still an important unsolved issue. While QEPCAD and our implementation
roughly agree on what are good orderings, they don’t agree precisely, and
more research is needed.

8 Chen, Davenport, Lemaire, Moreno Maza, Phisanbut, Xia, Xiao and Xie

Table 1. Extract from [19, Table 8-11].

Rank according to QEPCAD cell count
Variable order QEPCAD cells Maple CAD’s cells ratio

v > y > u > x (G) 785 673 1.16
y > v > x > u (G) 785 673 1.16
y > v > u > x (G) 901 557 1.62
v > y > x > u (G) 901 557 1.62
v > u > y > x 2049 989 2.07
y > u > v > x 2049 1781 1.15
v > u > x > y 2049 989 2.07
v > x > u > y 2049 1869 1.10
y > x > v > u 2049 989 2.07
v > x > y > u 2049 1781 1.15
y > x > u > v 2049 989 2.07
y > u > x > v 2049 1869 1.10
u > x > v > y 5985 557 10.74
x > u > y > v 5985 557 10.74
x > u > v > y 6597 673 9.80
u > x > y > v 6597 673 9.80
u > v > y > x 9101 989 9.20
x > y > v > u 9101 989 9.20
u > y > v > x 28821 1781 16.18
x > v > y > u 28821 1781 16.18
u > v > x > y 37957 989 36.38
x > y > u > v 37957 989 36.38
x > v > u > y 92829 1781 52.12
u > y > x > v 92829 1781 52.12

(G) = recommended by [15]’s Greedy Algorithm

3.2. Point sampling

To evaluate our SamplePoints command in the RegularChains library, we run it
on some well-known semi-algebraic systems. We also use the SemialgebraicCompo-
nentInstances command in Mathematica 8.0.1.0 to compute sample points of the
same systems. Both commands produce at least one point per connected compo-
nent of the input semi-algebraic set.

In Table 2 we report the number of sample points computed by the two
commands and the time used for each of these computations. The benchmark
runs are carried out on an Intel Core i7 CPU 870 2.93GHz with 8 GB memory
and 8 MB cache. The time limit of each benchmark run is set to 10 minutes and
the memory limit is set to 6 GB. For each system, the “SysInfo” column lists the

Solving semi-algebraic systems with the RegularChains library in Maple 9

Table 2. Maple SamplePoints vs Mathematica SemialgebraicComponentInstances

system
SysInfo Maple SP Mathematica SP

[ht, dim, deg] time (s) # time (s) #
BM05-1 [2, 2, 6] 0.020 2 0.010 6
BM05-2 [1, 2, 6] 0.120 10 0.040 27

DescartesFolium [2, 1, 4] 0.039 2 0.000 2
EdgeSquare [1, 3, 3] 9.840 80 0.150 153

Ellipse [1, 5, 3] 1.810 60 0.060 96
EnneperSurface [2, 2, 9] 0.010 1 0.010 1

IBVP [1, 4, 2] 4.770 30 - -
Jirstrand22 [1, 1, 5] 0.160 9 0.020 9
Jirstrand23 [9, 2, 72] - - - -
Jirstrand24 [1, 1, 9] 0.090 4 0.020 4
Jirstrand41 [3, 1, 3] 0.080 3 0.010 3
Jirstrand42 [1, 3, 8] 0.629 9 0.040 15
Lafferriere35 [3, 2, 7] 0.069 4 0.010 4
Lafferriere37 [2, 0, 15] 0.099 3 0.210 3

MPV89 [2, 3, 8] 0.360 3 0.060 7
p3p-isosceles [1, 4, 18] 3.540 44 1.820 1876

p3p [1, 5, 18] 5.019 128 6.590 8452
putnam [7, 2, 4] 0.340 16 0.010 16
SEIT [1, 8, 1] 6.050 1 0.000 2

Solotareff-4a [2, 1, 21] 0.970 1 - -
Solotareff-4b [2, 1, 21] 0.970 1 - -

Xia [2, 3, 16] 0.419 1 11.430 97
8-3-config-Li [1, 7, 1] 311.39 81 - -

Cheaters-homotopy-easy [1, 4, 13] 0.020 1 0.000 1
Cinquin Demongeot-3-3 [1, 1, 55] 0.520 24 88.330 223
Cinquin Demongeot-3-4 [1, 1, 133] 0.350 11 20.300 39

collins-jsc02 [2, 1, 21] 0.590 19 - -
dgp29 [1, 2, 720] 0.010 1 0.010 1
dgp6 [1, 3, 33] 4.410 3 - -

DonatiTraverso-rev [1, 2, 3] 0.159 6 - -
Hairer-2-BGK [5, 2, 32] 2.689 36 - -

hereman-8 [9, 5, 6] 1.140 21 - -
Leykin-1 [4, 4, 15] 1.520 20 - -
Lichtblau [13, 1, 11] 0.010 1 0.010 1

L [1, 9, 1] 27.850 198 - -

maximum bit-size 4 of a coefficient among the input polynomials, followed by the

4more precisely, max{blog2(| c |)c + 1 | | c is a non-zero coefficient in the system} taking into

account the fact that coefficients are all integer numbers.

10 Chen, Davenport, Lemaire, Moreno Maza, Phisanbut, Xia, Xiao and Xie

dimension and the degree of the variety defined by the input equations. The “-”s
in Table 2 describes the cases where the function can not produce a result within
the time and memory limits for the system under test.

One should stress the fact that sample points are not encoded in the same
way by the SamplePoints and SemialgebraicComponentInstances commands:
• in the former case, a sample point (s1, . . . , sn) is given by a zero-dimensional

regular chain T1(x1), . . . , Tn(x1, . . . , xn) and closed intervals with rational
end-points I1, . . . , In such that Tj(s1, . . . , sj) = 0 and sj ∈ Ij both hold for
all j = 1 · · ·n.

• in the latter case, a sample point (s1, . . . , sn) is given by univariate polyno-
mials p1, . . . , pn ∈ Q[x] and root indices i1, . . . , in such that sj is the ij-th
real root of the polynomial pj , for all j = 1 · · ·n.
The results show that our SamplePoints command can generate results within

the time and memory limit for all the 35 systems in our benchmark test except for
one, namely Jirstrand23. There are 12 problems for which Mathematica’s Semi-
algebraicComponentInstances command can not conclude, including Jirstrand23.
Among the 23 problems that the SemialgebraicComponentInstances command can
solve within the time and memory limits, there are 12 for which the numbers of
sample points are more than those computed by our SamplePoints command, by a
ratio of 2 to 66 times higher. In terms of timing, for many of the cases that the Semi-
algebraicComponentInstances function can solve, Mathematica’s timings are better
than the Maple’s ones. However, there are a few systems for which the timings by
the SemialgebraicComponentInstances function are dramatically higher. We have
noticed that the variable ordering plays an important role in this computation. In
the SamplePoints command code, we apply some heuristics for determining a vari-
able ordering. The variable ordering used in the SemialgebraicComponentInstances
function in Mathematica is not known to us.

4. Applications

In this section, we present two applications of the tools of the RegularChains

library for manipulating semi-algebraic systems. Both are of high practical im-
portance for computer algebra systems. Indeed, the first one aims at testing the
validity of identity involving elementary functions over the complex plane such as√

1− z
√

1 + z =
√

1− z2. The second one targets the verification of polynomial
system solvers computing symbolic description of the real solutions.

4.1. Branch cut analysis

In analysis, a major challenge is the manipulation of “multivalued functions”. Re-
garding them as single-valued functions requires the imposition of branch cuts,
which are normally semi-algebraic sets in Cn = R2n across which the functions
are not continuous. For example, the branch cut of log z = log(x + iy) is nor-
mally taken to be y = 0 ∧ x < 0: a linked pair of an equation and an inequality.
In [14], the author shows how the connectivity of the complement of the branch

Solving semi-algebraic systems with the RegularChains library in Maple 11

cuts becomes the question of interest. Since cell adjacency in a cylindrical alge-
braic decomposition (CAD) is explicit, one way (the only practical one known to
us) to explore these connectivity questions is to compute a CAD of R2n induced
by the branch cuts, and construct connected components from this. The CAD
algorithm of [10] starts with a triangular decomposition of the set of polynomi-
als occurring in the branch cuts, irrespective of how they are linked, whereas the
QEPCAD approach [3] takes advantage of knowing how the equalities and in-
equalities are connected. Nevertheless, [20] shows that the approach of [10] often
produces no more cells than QEPCAD, and indeed it is possible to “precondition”
the inequality by the equality in some cases, to improve the performance of both.
Figure 4 illustrates how to conduct branch cut analysis by our CAD, namely the
CylindricalAlgebraicDecompose command in RegularChains library.

Note that x = −2, y = 0 (i.e. z = −2) is explicitly found as a counterexample to√
z2 − 1 =

√
z + 1

√
z − 1.

Figure 4. Branch cut analysis by CylindricalAlgebraicDecompose

4.2. Verification of real solvers

On a given input polynomial system, two solving tools may produce correct results
that look fairly different. Proving that these two results are equivalent can be a
very complex task. Here’s an example. Given a triangle with edge lengths a, b, c (de-
noting the respective edges a, b, c too) the following two conditions C1, C2 are both
characterizing the fact that the external bisector of the angle of a, c intersects with b
on the other side of a than the triangle: C1 = a > 0 ∧ b > 0 ∧ c > 0 ∧ a < b+c ∧ b <
a+c ∧ c < a+b ∧

(
b2 + a2 − c2 ≤ 0 ∨ c(b2 + a2 − c2)2 < ab2(2ac− (c2 + a2 − b2))

)
,

12 Chen, Davenport, Lemaire, Moreno Maza, Phisanbut, Xia, Xiao and Xie

C2 = a > 0 ∧ b > 0 ∧ c > 0 ∧ a < b+ c ∧ b < a+ c ∧ c < a+ b ∧ c−a > 0. We
verify the equivalence of C1 and C2 by computing the set-theoretical differences
C1 \ C2 and C2 \ C1. The command Difference of the SemiAlgebraicSetTools

module of the RegularChains library can be used for this purpose. Figure 5 shows
how the computations are conducted.

Figure 5. Testing the equivalence of two formulas by Difference

5. Conclusion

In this paper, we discussed how the notion of a regular chain is adapted and used
to represent the solution sets of semi-algebraic systems. We then presented the new
functionalities of the RegularChains library for computing with the real solutions
of polynomial systems based on this representation. We compared our software
tools with two related software packages by experimentation. The results of which
illustrate the effectiveness of our tools. We have also successfully applied these
new functionalities of the RegularChains library to branch cut analysis and the
verification of “real solvers”.

References

[1] F. Boulier, C. Chen, F. Lemaire, and M. Moreno Maza. Real root isolation of regular
chains. In Proc. of ASCM’09, 2009.

[2] C. W. Brown and J. H. Davenport. The complexity of quantifier elimination and
cylindrical algebraic decomposition. In Proc. ISSAC’07, pages 54–60, 2007.

Solving semi-algebraic systems with the RegularChains library in Maple 13

[3] C.W. Brown. qepcad b: a program for computing with semi-algebraic sets using
CADs. SIGSAM Bull., 37(4):97–108, 2003.

[4] C.W. Brown. Tutorial handout: ISSAC 2004. http://www.cs.usna.edu/~wcbrown/
research/ISSAC04/handout.pdf, 2004.

[5] C. Chen, J. H. Davenport, J. May, M. Moreno Maza, B. Xia, and R. Xiao. Triangular
decomposition of semi-algebraic systems. J. Symb. Comp, 2011. To appear.

[6] C. Chen, J.H. Davenport, M. Moreno Maza, B. Xia, and R. Xiao. Computing with
semi-algebraic sets represented by triangular decomposition. In Proceedings ISSAC
2011, 2011.

[7] J. Carette. A canonical form for piecewise defined functions. In C.W. Brown, editor,
Proceedings ISSAC 2007, pages 77–84, 2007.

[8] C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, and W. Pan. Comprehensive
triangular decomposition. In Proc. of CASC’07, volume 4770 of Lecture Notes in
Computer Science, pages 73–101, 2007.

[9] C. Chen and M. Moreno Maza. Algorithms for computing triangular decompositions
of polynomial systems. In Proceedings of the 36th international symposium on sym-
bolic and algebraic computation, ISSAC ’11, pages 83–90, New York, NY, USA, 2011.
ACM.

[10] C. Chen, M. Moreno Maza, B. Xia, and L. Yang. Computing cylindrical algebraic
decomposition via triangular decomposition. In ISSAC’09, pages 95–102, 2009.

[11] G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In Proceedings 2nd. GI Conference Automata Theory & Formal Lan-
guages, pages 134–183, 1975.

[12] X. Dahan, A. Kadri, and É. Schost. Bit-size estimates for triangular sets in positive
dimension. J. of Complexity, 2011. To appear.

[13] J. H. Davenport and J. Heintz. Real quantifier elimination is doubly exponential. J.
Symbolic Comp., 5:29–35, 1988.

[14] J.H. Davenport. The geometry of Cn is important for the algebra of elementary
functions. In M. Jowsig and N. Takayama, editors, Algebra geometry and software
systems, pages 207–224. Springer Verlag, 2003.

[15] A. Dolzmann, A. Seidl, and T. Sturm. Efficient projection orders for CAD. In
J. Gutierrez, editor, Proceedings ISSAC 2004, pages 111–118, 2004.

[16] H. Hong et al. QEPCAD B, www.usna.edu/Users/cs/qepcad/.

[17] M. Kalkbrener. Three contributions to elimination theory. PhD thesis, Johannes Ke-
pler University, Linz, 1991.

[18] F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains library. In Ilias S.
Kotsireas, editor, Maple Conference 2005, pages 355–368, 2005.

[19] N. Phisanbut. Practical simplification of elementary functions using cylindrical al-
gebraic decomposition. PhD thesis, University of Bath, 2011.

[20] N. Phisanbut, R. J. Bradford, and J. H. Davenport. Geometry of branch cuts. Com-
munications in Computer Algebra, 44:132–135, 2010.

[21] A. Strzeboński. Solving systems of strict polynomial inequalities. J. Symb. Comput.,
29(3):471–480, 2000.

[22] D. K. Wang. The Wsolve package. http://www.mmrc.iss.ac.cn/∼dwang/wsolve.txt.

14 Chen, Davenport, Lemaire, Moreno Maza, Phisanbut, Xia, Xiao and Xie

[23] D. M. Wang. Epsilon 0.618. http://www-calfor.lip6.fr/∼wang/epsilon.

[24] W. T. Wu. A zero structure theorem for polynomial equations solving. MM Research
Preprints, 1:2–12, 1987.

[25] L. Yang and B. Xia. Real solution classifications of a class of parametric semi-
algebraic systems. In Proc. of the A3L’05, pages 281–289, 2005.

[26] L. Yang and J. Zhang. Searching dependency between algebraic equations: an algo-
rithm applied to automated reasoning. Technical Report IC/89/263, International
Atomic Energy Agency, Miramare, Trieste, Italy, 1991.

[27] T. Zhang and B. Xia. A new method for real root isolation of univariate polynomials.
Mathematics in Computer Science, 1:305–320, 2007.

Changbo Chen
University of Western Ontario
Canada
e-mail: cchen252@csd.uwo.ca

James H. Davenport
University of Bath
United Kingdom
e-mail: jhd@cs.bath.ac.uk

François Lemaire
Université de Lille 1
France
e-mail: Francois.Lemaire@lifl.fr

Marc Moreno Maza
University of Western Ontario
Canada
e-mail: moreno@csd.uwo.ca

Nalina Phisanbut
University of Bath
United Kingdom
e-mail: cspnp@bath.ac.uk

Bican Xia
Peking University
China
e-mail: xbc@math.pku.edu.cn

Rong Xiao
University of Western Ontario
Canada
e-mail: rong@csd.uwo.ca

Yuzhen Xie
University of Western Ontario
Canada
e-mail: yxie@csd.uwo.ca

