

Master degree in Mathematical Engineering (Advanced Scientific Computing) of Lille 1

UNIVERSITIES OF LILLE 1 AND WESTERN ONTARIO

INTERNSHIP REPORT :

Real root isolation for univariate polynomials on GPUs and multicores

Author : Supervisor : Alexandre TEMPERVILLE Dr. Marc MORENO MAZA APRIL 16TH - AUGUST 16TH 2012 PRESENTATION JUNE 16TH 2012

Acknowledgements

First of all, I thank Marc Moreno Maza to supervise me all these months and also for his welcome, his help, his explanations and all the comments he gave me to improve my work and this paper. I want to thank also all the team of the lab, Changbo Chen, Rong Xiao, Anis Sardar Haque and Paul Vrdim for their advice concerning anything, whether it was for the work or for the city, their help and their welcome.

I also thank all the professors of the Master Degree of Computer Sciences at Lille 1 for their patience with my questions, their interesting courses, and in particular Chistophe Besse and Nouredine Melab who are the professors in charge of this Master at Lille 1 for letting me discover all this year High Performance Computing and for their involving in this Master allowing me to be put forth my best efforts. I thank also François Lemaire and Adrien Poteaux who coordinates relations between Lille 1 and UWO and for lending one's support to me.

I thank also my roommates, Matthew and Raj, who give me a nice stay and also for their kindness, their humor and their friendship. Life in Canada without them would not be the same.

To finish I want to thank my family and my friends sending me emails, giving me shouts and news, in particular my little brother Jérôme to help me in English. It was really encouraging from the part of everyone, so thank you everybody.

Contents

1	Intern	$\operatorname{ship} \operatorname{context}$	3
	1.1	University of Western Ontario of London (UWO)	3
	1.2	Departments of Computer Science and Applied Mathematics	3
	1.3	My supervisor, professor Marc Moreno Maza	3
	1.4	Maple	3
	1.5	Purpose of my internship	3
2	Key p	oints for the research of real roots of a univariate polynomial	5
	2.1	Descartes' rule of signs	5
	2.2	Horner's method	5
	2.3	Example	5
	2.4	Vincent Collins Akritas Algorithm	6
	2.5	Modular arithmetic	6
	2.6	Chinese Remainder Theorem	9
3	Taylor	$^{ m v}{ m shift}$	0
	3.1	Divide & Conquer method (D & C)	0
	3.2	Compute the $(x+1)^{2^i}$ s	1
4	First s	steps : Polynomials of size 2 to 512	$\overline{5}$
_	4.1	The beginning	5
	4.2	The following steps	5
	4.3	The plain multiplication & the right shift	5
	4.4	Partial additions	7
	4.5	The arrays	7
5	Fast F	Ourier Transform (FFT)	9
0	5.1	Discrete Fourier Transform	9
	5.2	Convolution of polynomials	9
	5.3	The Fast Fourier Transform	0
6	Polyne	pmials of high degrees (>512)	2
Ŭ	6.1	The array for FFT operations	2
	6.2	Multiplication using FFT	$\overline{2}$
7	Future	e works	3
	7.1	Reflection remarks and improvements	3
	7.2	Prime numbers to consider	3
	7.3	Combining several computations of the Taylor shift procedure	3
8	Bench	marks	$\overline{5}$
9	Concli	1sion	1
10	Apper	ndix	$\overline{2}$
τv	10.1	Divide and Conquer Cuda code	2
	10.2	Horner's method $C++$ code	0
	10.3	Divide and Conquer $C++$ code	6
	10.4	Maple code	3
		r · · · · · · · · · · · · · · · · · · ·	~

Internship context 1

University of Western Ontario of London (UWO) 1.1

The University of Western Ontario, located in the city of London and generally called UWO, is among the top 10 Canadian universities. Renowned for the quality of its students' life, this university is also worldly ranked between 150 and 300, from various sources.

1.2**Departments of Computer Science and Applied Mathematics**

These departments are located in the building called Middlesex College we can see in the presentation page.

1.3My supervisor, professor Marc Moreno Maza

Marc Moreno Maza is an associate professor in the department of Computer Sciences and in the department of Applied Mathematics at the University of Western Ontario. He is also a Principal Scientist in the Ontario Research Centre for Computer Algebra (ORCCA).

- Marc Moreno Maza's research activities have four directions :
- Study theoretical aspects of systems of polynomial equations and try to answer the question "what is the best form for the set of solutions?"
- Study algorithmic answers to the question "how can we compute this form of the set of solutions at the lowest cost?"
- Study implementation techniques for algorithms to make the best use of today's computers.
- Apply it to unsolved problems when the prototype solver is ready.

1.4 Maple

Conforming to the research activities of my supervisor and of the departments of Computer Science and Applied Mathematics, we work in close cooperation with the software company Maplesoft, which is developing and distributing the computer algebra system MAPLE. Our main purpose is to provide MAPLE's end-users with symbolic computation tools that makes best use of computer resources and takes advantage of hardware acceleration technologies, in particular graphics processing units (GPUs) and multicores. Marc Moreno Maza's team is currently working on a library called *cumodp* which will be integrated into MAPLE so as to do fast arithmetic operations over prime fields (that is, modulo a prime number).

Purpose of my internship 1.5

I participate to the elaboration of the library *cumodp*. My objective is to develop code for the exact calculation of the real roots of univariate polynomials. Stating this problem is very easy. However, as one dives into the details, one realizes that there are lots of challenges in order to reach highly efficient algorithmic and software solutions.

The first challenge is that of representation. Traditionally, scientific software provide numerical approximations to the roots (real or complex) of a univariate polynomial which coefficients might themselves be known inaccurately. Nevertheless, in many applications, polynomial systems result from a mathematical model and their coefficients are known exactly. In this case, it is desirable to obtain closed form formulas for the roots of such polynomials, like $x = \frac{1 \pm \sqrt{5}}{2}$. It is well know, however, from Galois Theory, that the roots of univariate polynomials of degree higher than 4 cannot be expressed by radicals.

In this context, computing the real roots of such a polynomial $f(x) \in \mathbb{R}[x]$ means determining pairwise disjoint intervals with rational end points and an effective one-to-one map between those intervals and the real roots of f(x).

Algorithms realizing this task are highly demanding in computer resources. In addition, such most efficient algorithms combine different mathematical tools such as Descartes' rule of signs, Fast Fourier Transforms (FFTs), continued fractions, computing by homomorphic images, etc. Therefore, one of my first tasks when I arrived in London, was to learn these techniques which are at the core of the problem which is proposed to me.

2 Key points for the research of real roots of a univariate polynomial

2.1 Descartes' rule of signs

In his 1637 treaty called "La Géométrie", René Descartes expressed a rule allowing to estimate the number c of positive real roots of a univariate polynomial, which we commonly call the Descartes's rule of signs. Later, in 1828, Carl Friedrich Gauss proved that if we count the roots with their multiplicities, then the number of positive roots has the same parity as c. Usually, Descartes' rule of signs refers also to the enhancement of Gauss.

Descartes' rule of signs (DRS). Let us consider a univariate polynomial $P \in \mathbb{R}[X]$ and the sequence (a_n) of its non-zero coefficients. Let c be the number of sign changes of the sequence (a_n) . Then the number of positive roots of P is at most c.

Gauss' property. If we consider the previous rule of signs and count the roots with their multiplicities, then the number of positive real roots of P has the same parity than c.

Consequence : We can also find the number of negative real roots applying Descartes' rule of signs to Q(X) = P(-X).

This easy rule is the pillar of the reasoning in our work. Indeed, deciding where the real roots of a polynomial are located reduces to the problem of counting the number of real roots of a polynomial in an interval. The example of Section 2.3 illustrates this process. The following basic theorem plays an essential role in the proof of Descartes' rule of signs.

Theorem of the intermediate values (TIV). If f is a real-valued continuous function on the interval [a,b] and u is a number between f(a) and f(b), then there exists $c \in [a,b]$ such that we have f(c) = u.

In particular if u = 0, then there exists $c \in [a, b]$ such that f(c) = 0 holds.

2.2 Horner's method

This well-known high school tricks is used for evaluating a polynomial efficiently. Instead of considering $P(X) = \sum_{i=0}^{n} a_i X^i = a_0 + a_1 X + a_2 X^2 + ... + a_n X^n$, we write P as

$$P(X) = a_0 + X (a_1 + X (a_2 + X (\dots (a_{n-1} + (a_n X) \dots)))).$$

This allows one to reduce the number of coefficient operation necessary to evaluate P(X) at a point from $\Theta(n^2)$ to $\Theta(n)$.

Example : Let us consider $P(X) = 3X^3 - 5X^2 - 3X + 2$. We want to calculate P(4) by hand. <u>Naive method :</u> $P(4) = 3 \times 4^3 - 5 \times 4^2 - 3 \times 4 + 2$ So $P(4) = 3 \times 4^3 - 5 \times 16 - 12 + 2 = 3 \times 16 \times 4 - 80 - 10 = 3 \times 64 - 90 = 192 - 90 = 102$ <u>Horner's method :</u> P(X) = 2 + X (-3 + X (-5 + 3X))

So: $P(4) = 2 + 4 (-3 + 4 (-5 + 34)) = 2 + 4 (-3 + 4 \times 7) = 2 + 4 \times 25 = 102$

2.3 Example

Let us consider $P(X) = X^3 + 3X^2 - X - 2$.

According to the Descartes' rule of signs, c = 1 so P has 1 positive root.

Let us consider $Q(X) = P(-X) = -X^3 + 3X^2 + X - 2$, here c = 2 so P has either 2 either 0 negative roots. We have P(-1) = 1 and $\lim_{X \to -\infty} P(X) = -\infty$ so there exists $r_1 \in]-\infty; -1[|P(r_1)| = 0$, then we deduce that there are exactly 2 negative roots.

Using the TIV for u = 0, we can refine these intervals, calculating P at some real numbers :

As P(-1) = 1 and P(-2) = -2, then $r_1 \in]-2, -1[$.

As P(0) = -2 and P(-1) = 1, then the second negative root $r_2 \in [-1; 0[$.

As P(0) = -2 and P(1) = 1, then the positive root is $r_3 \in]0, 1[$.

2.4 Vincent Collins Akritas Algorithm

To isolate the real roots of a polynomial P, our objective is to use the Vincent-Collins-Akritas (VCA) Algorithm which computes a list of disjoint intervals with rational endpoints such that each real root of P belongs to a single interval and each interval contains only one real root of P. As mentioned above, the problem of isolating the real roots of P and that of counting its real roots are essentially the same. Therefore, if an algorithm solves one of these two problems, then is solves the other. The following Algorithm 1 (taken from [1]) uses Algorithm 2 and shows how we can reduce the search for the roots in \mathbb{R} to the search of the roots in]0, 1[.

Algorithm 1: RealRoots(p)	Algorithm 2: RootsInZeroOne(p)				
Input: a univariate squarefree	Input: a univariate squarefree				
polynomial p of degree d	polynomial p of degree d				
Output: the number of real roots of	Output: the number of real roots of				
p	p in (0,1)				
1 begin	1 begin				
2 Let k ≥ 0 be an integer such that	2 $p_1 := x^d p(1/x);$				
the absolute value of all the real	3 $p_2 := p_1(x+1); //Taylor shift$				
roots of p is less than or equal to	4 Let v be the number of sign				
2 ^k ;	variations of the coefficients of p_2 ;				
3 if $x \mid p$ then $m := 1$ else $m := 0$;	5 if $v \le 1$ then return v ;				
4 $p_1 := p(2^k x);$	6 $p_1 := 2^d p(x/2);$				
5 $p_2 := p_1(-x);$	7 $p_2 := p_1(x+1); //Taylor shift$				
6 m' := RootsInZeroOne(p ₁);	s if $x \mid p_2$ then $m := 1$ else $m := 0$;				
7 $m := m + \text{RootsInZeroOne}(p_2);$	9 $m' := \text{RootsInZeroOne}(p_1);$				
s return $m + m'$;	10 $m := m + \text{RootsInZeroOne}(p_2);$				
9 end	11 return $m + m'$;				
	12 end				

Algorithm 1 calls several times the procedure *RootsInZeroOne* which, itself, performs several times a Taylor shift by 1 (usually called Taylor shift). The Taylor shift by $a \in \mathbb{R}$ of a polynomial P consists of computing the coefficients of the polynomial P(x + a) in the monomial basis. We will see later what there are different ways to do this Taylor shift by 1. Even if evaluating P(x + 1) seems an operation mathematically trivial, non-trivial algorithms have been developed to perform this operation efficiently on polynomials of large degrees.

Since the dominant computational costs of the VCA Algorithm comes from the Taylor shift by 1, it is natural to optimize this operation, in particular, in terms of parallelism and data locality. Of course Algorithms 1 and 2, with their divide and conquer scheme, seem to provide additional opportunities for concurrent execution. However, the work load in the recursive calls of Algorithms 1 and 2 is generally largely unbalanced, thus, leading to very little parallelism in practice.

2.5 Modular arithmetic

Computing with polynomials or matrices over \mathbb{Z} (and thus \mathbb{Q} , \mathbb{R} , \mathbb{C}) one generally observes that expressions swell in the coefficients. This phenomenon can be a severe performance bottleneck for computer algebra software. There are essentially two ways to deal with that. One solution is to use highly optimized multi-precision libraries, such as GMP, for computing in \mathbb{Z} and \mathbb{Q} . Another approach consists in computing by homomorphic images. One popular way to do this is via (one of the variants of) the *Chinese Remainder Algorithm*, the other one is to Hensel's Lemma. In our work, we rely on the former, see Section 2.6. Therefore, we replace computations (for instance the Taylor shift by 1) over \mathbb{Z} by computations over prime fields of the form $\mathbb{Z}/p\mathbb{Z}$ where p has machine word size. Then it becomes essential to perform efficiently arithmetic operations in $\mathbb{Z}/p\mathbb{Z}$.

In the C code below, used in my implementation, *sfixn* represents an integer according to the architecture and operating system of the target computer. For Linux on Intel 64-bit, *sfixn* is an *int*) and $BASE \quad 1 = 31.$

add mod

It corresponds to the addition modulo a number, using binary operations.

```
__device__ __host__ __inline__
sfixn add_mod(sfixn a, sfixn b, sfixn p)
{
    sfixn r = a + b;
    r -= p;
    r += (r >> BASE_1) & p;
    return r;
}
```

mul mod

It corresponds to the multiplication modulo a number, using binary operations also, but contrary to what we can expect, we use floating point numbers and the Euclidean division.

```
__device__ __host__ __inline__
sfixn mul_mod(sfixn a, sfixn b, sfixn n, double ninv)
{
    sfixn q = (sfixn) ((((double) a) * ((double) b)) * ninv2);
    sfixn res = a * b - q * n;
    res += (res >> BASE_1) & n;
    res -= n;
    res += (res >> BASE_1) & n;
    return res;
}
```

The reason of the use of this mul_mod procedure is detailed in [8] pages 78-79, it takes advantage of hardware floating point arithmetic. Double precision floating point numbers are encoded on 64 bits and make this technique work correctly for primes p up to 30 bits. This technique comes from the Euclidean division. Let us explain this, to obtain $res = a \times b \mod p$ with p a prime number and res < p, then we have to divide $a \times b$ by p to obtain the quotient q and then the remainder. This is equivalent to multiply $a \times b$ with pinv and do an integer cast after so $q = (int) a \times b \times pinv$.

Let us consider $prod = a \times b$. Let us recall also that the Euclidean division of a integer *prod* by another p is of the form : prod = quotient * p + remainder with q = quotient and res = remainder < p.

Then : $res = a \times b - q \times p$. After, there are just some binary operations to have clearly the good number we wish.

inv mod

To compute the inverse of an integer a modulo another integer p, we must first check if this possible. Indeed, this is possible only if a and m are relatively primes. If p is a prime number and $1 \le a < p$, this is always the case. That's why we will only deal with prime numbers in our code as we will need to compute inverse of numbers. To do that, we will use the extended Euclidean algorithm which consists on finding the integers u and v such that $a \times u + b \times v = GCD(a, b)$ for two integers a and b given. In particular, if we take b = p a prime number then we have $a \times u \equiv 1 \mod p$ so u will be the inverse we are looking for. egcd computes this u used in the function *inv* mod.

```
__device__ __host__ __inline__
void egcd(sfixn x, sfixn y, sfixn *ao, sfixn *bo, sfixn *vo)
{
    sfixn t, A, B, C, D, u, v, q;
   u = y; v = x;
    A = 1; B = 0;
    C = 0; D = 1;
    do {
        q = u / v;
        t = u;
        u = v;
        v = t - q * v;
        t = A;
        A = B;
        B = t - q * B;
        t = C;
        C = D;
        D = t - q * D;
    } while (v != 0);
    *ao = A;
    *bo = C;
    *vo = u;
}
__device__ __host__ __inline__
sfixn inv_mod(sfixn n, sfixn p)
{
    sfixn a, b, v;
    egcd(n, p, &a, &b, &v);
    if (b < 0) b += p;
    return b % p;
}
```

quo mod

Using the previous modular instructions, this one gives the quotient modulo a prime number of two integers.

```
__device__ __host__ __inline__
sfixn quo_mod(sfixn a, sfixn b, sfixn n, double ninv)
{
    return mul_mod(a, inv_mod(b, n), n, ninv);
}
```

2.6 Chinese Remainder Theorem

have our solution in $\mathbb{Z}[x]$:

As we are working modulo a prime number in our work, it is not sufficient to give the answer in \mathbb{Z} . We will need to run our code several times with different values of p and then recombine the results to get the real solution on \mathbb{Z} . In this section, we recall the Chinese Remainder theorem and explain how we can use it, the implementation in the code will be explained later.

Chinese Remainder theorem 1^{st} **version (CRT1).** Let us consider $m_1, m_2, ..., m_r$ a sequence of r positive integers which are pairwise coprime numbers. Let us consider also a sequence (a_i) of integers and the following system (S) of congruence equations :

$$(S): \begin{cases} x \equiv a_1 \mod m_1 \\ x \equiv a_2 \mod m_2 \\ \vdots \\ x \equiv a_r \mod m_r \end{cases}$$

Then (E) has a unique solution modulo $M = m_1 \times m_2 \times \cdots \times m_r$:

$$x = \sum_{i=1}^{r} a_i \times M_i \times y_i = a_1 \times M_1 \times y_1 + a_2 \times M_2 \times y_2 + \dots + a_r \times M_r \times y_r$$

with $\forall i \in \llbracket 1, r \rrbracket, \ M_i = \frac{M}{m_i} \text{ and } y_i \times M_i \equiv 1 \mod m_i.$

Running the code of the Taylor shift by 1 we implement a lot of times for different prime numbers m_i , we will obtain all the coefficients a_i and then we will just need to get the integers M_i and y_i to have $x \mod M$. We can so use this theorem to solve our problem and find the different coefficients of our polynomial 'shifted'. One may notice that in this case, we will obtain the solution in $\mathbb{Z}[x]/M\mathbb{Z}$ and not in \mathbb{Z} as we want but according to the following lemma coming from [4], if M is sufficiently big then we

Lemma. Let $f \in \mathbb{Z}[x]$ be a nonzero polynomial of degree $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. If the coefficients of f are bounded in absolute value by $B \in \mathbb{N}$, then the coefficients of $g = f(x + a) \in \mathbb{Z}[x]$ are absolutely bounded by $B(|a|+1)^n$.

The Chinese Remainder Theorem is also known in its algebraic form :

Chinese Remainder theorem 2^{nd} **version (CRT2).** Let us consider $m_1, m_2, ..., m_r$ a sequence of r positive integers which are pairwise coprime numbers and $M = m_1 \times m_2 \times \cdots \times m_r$. Then :

$$\mathbb{Z}/M\mathbb{Z} \cong \mathbb{Z}/m_1\mathbb{Z} \times \mathbb{Z}/m_2\mathbb{Z} \times \cdots \times \mathbb{Z}/m_r\mathbb{Z}.$$

3 Taylor shift

The Taylor shift by a of a polynomial P consists on evaluating the coefficients of P(x + a). So, for a polynomial $P = \sum_{0 \le i \le n} f_i x^i \in \mathbb{Z}[x]$ and $a \in \mathbb{Z}$, we want to compute the coefficients $g_0, \ldots, g_n \in \mathbb{Z}$ of the Taylor expansion :

$$Q(x) = \sum_{0 \le k \le n} g_k x^k = P(x+a) = \sum_{0 \le i \le n} f_i (x+a)^i$$

There exists several classical polynomial arithmetic methods and also asymptotically fast methods described in [4]. Among the three classical polynomial arithmetic methods explained in [4], all these methods amount to deal with the Horner's method to do a Taylor shift by 1. We have already explained in what consists this method in the part Horner's rule. I implement the Horner's method in C++ code, see appendix for this code.

Concerning the asymptotically fast methods, if we take a look at the different execution times, we remark that the divide and conquer (D & C) method is the fastest one. This is the method we favour for parallel programming. I implement also a melt of the convolution method and the D & C method in C++ code, just to have a preview of the result and compare it with the Horner's method and the D & C method in parallel. I don't develop too much this method for the reason I had implemented the Horner's method and it was sufficient to compare with the parallel method. In our work we mainly want to do a Taylor shift by 1.

3.1 Divide & Conquer method (D & C)

This method consists to split a polynomial P of degree $n = 2^e - 1$ (so this polynomial as 2^e coefficients) in other polynomials we split also. We will call *size of a polynomial* the number of coefficients of this polynomial, so we consider here polynomials of size a power of 2. We split the polynomial considered as the following (for a Taylor shift by 1):

At the beginning, we split P like this :

$$P(x) = P^{(0)}(x+1) + (x+1)^{\frac{n+1}{2}} \times P^{(1)}(x+1)$$

Then, we evaluate $P^{(0)}(x+1)$ and $P^{(1)}(x+1)$ recursively. So we have finally to consider 3 things, the computations of all the $(x+1)^{2^i}$ for $i \in [0, e-1]$, a multiplication of one of these $(x+1)^{2^i}$ with the evaluation of a $P^{(j)}(x+1)$ and then an addition. One may notice that :

- We just need all the Taylor shift by 1 of the monomial x^{2^i} for $i \in [0, e-1]$, namely $(x+1)^{2^i}$.
- At each step, we split polynomials of size 2^d in two polynomials of size 2^{d-1} , so at each step of the recursion, we approach a size which will be more and more easier to compute (and the size is always a power of 2).
- Contrary to the polynomial $P^{(j)}$ we consider, $(x+1)^{2^i}$ is not a power of 2 (except for i = 0, 1). This is a problem we will have to solve later, and we will see why and what's our strategy.
- At the next step of this recursion, we call the coefficients of P(x).

We can represent the way to do this recursion as the following tree. At the beginning we want to split the polynomial P(x+1) not evaluated in two polynomials, which need to be split in turn, and so on. So the recursion begins at the top of this tree.

The first problem we can encounter is the fact it is not simple to make a recursive algorithm in parallel. That's why finally we will consider the tree since its base, i.e. from the coefficients of the input polynomial coefficients. In the C++ code, I did the recursive method, and it was easier to write a method from the base in parallel. In each branch, we see if we need to multiply the polynomial evaluated at the base by a monomial shift or not. We see that for each step, the parallelism can be obtained easily. Now the difficulty is to work step by step, to consider the good sizes of the arrays, the number of polynomials, the position of the coefficients we are modifying, and the way to do that as fast as possible.

3.2 Compute the $(x + 1)^{2^{i}}$ s

Idea

To compute the sequence of $(x+1)^{2^i}$, we have different ways to proceed. But all the classic ways are not necessary the best to compute all the coefficients.

If we need all the $(x + 1)^j$ for $j \in [\![1, n]\!]$, it will be better to use the formula $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$ to compute each element and proceed to a divide and conquer method to compute in parallel the coefficients. But, we just need the coefficients of $(x + 1)^{2^i}$. Then, if we proceed with a divide and conquer on all the elements of $(x + 1)^j$ and just keep the $(x + 1)^{2^i}$, we can have a lot of computations, in particular for *i* big, which won't be stored and just be needed to go to the next power of (x + 1). That's not what we want, so we will use the formula of the binomial coefficients with the factorial sequence to get directly the coefficient of each $(x + 1)^{2^i}$.

With the method I will explain in this part, I think we loose a little time at the beginning, computing yet the factorial sequence in parallel. But after, the computations are fast and nothing is superfluous.

So, to compute the Newton's binomial coefficients, we want to use the following formula :

$$\forall n \in \mathbb{N}, (x+1)^n = \sum_{k=0}^n \binom{n}{k} x^k \text{ with } \binom{n}{k} = \frac{n!}{k! (n-k)!}$$

We need so to compute all the elements $i! \forall i \in [0, n]$.

The sequence of factorials

To use the previous formula to get all the binomials' coefficients, we need the values of each $i! \mod p$ for $i \in [0, n]$.

One may notice that to obtain i!, we need (i - 1)!. So if we consider the computation in serie of all the i!, it may be very long to obtain n! for n big.

First of all, we need an array of size n + 1, called *Factorial_device* in my code as we also need 0!. But we don't really need to compute 0! = 1 so we'll consider the following computations on *Factorial_device* + 1 thus we just compute i! for $i \in [\![1, n]\!]$. Now we consider computations of size $n = 2^e$ with $e \in \mathbb{N}^*$. As n is a power of 2, I was looking for a code to compute pairwise elements.

Mapping for the computation of the factorial sequence

To understand the code, see the following picture from the bottom which is the first step : the initialization. First we initialize the array $Factorial_device + 1$ letting the even elements as their position and we do multiplications on the odd elements.

Then, in each step, we consider the array per parts. We can see a part in each step as the following : we multiply the element of a position by a same number for a part, these 'same numbers' are what I call "pillar factors", represented by the darkest boxes. We can see that step after step, we compute several i! in parallel and finally get every i! in $\log_2(n)$ steps.

Notation : x is the product of all the integers between the two integers of the product

Example : 9 x 13 = 9 x 10 x 11 x 12 x 13

The straight lines represent the multiplications done from a lower level to the upper level and where the product is stored.

Colored boxes are the boxes modified at each step (or level). The darkest boxes show the elements used several times in multiplications.

See in the **Appendix** the file Taylor_shift_kernel.cu and in particular the procedures identity_GPU, create_factorial_step0_GPU and create_factorial_stepi_GPU which correspond to the different steps of the computation in parallel of the sequence of factorials. First we initialize the n + 1 positions in the array Factorial_device with their position or 1 for Factorial_device[0] with identity_GPU and then the two other procedures modify n/2 positions of the array at each step. The procedure create_factorial_stepi_GPU has only one problem, if we take a look at the previous graphic we can see that in each step, a lot of threads will need the same "pillar factor", so many threads will take the value

of a same position in the array at the same time, there is an overlap reducing performances of the code. This part needs to be worked to find another way to do the computation of the factorial elements to improve a little more the efficiency of my code.

The array of the $(x+1)^{2^i}$ s

To do the Taylor shift by 1, we need to compute all the $(x + 1)^{2^i}$ as we said before. As now we have the sequence of the factorials, we can compute in parallel each coefficient of the $(x + 1)^{2^i}$ but do we really need all of them?

If we look at the following Pascal triangle until the binomial coefficients of $(x + 1)^8$, naively we just need to use the coefficients colored in yellow. But, a lot of them are 1, we can avoid to have too much ones in the array. Moreover, we don't really need $(x + 1)^0$. We want also to store these coefficients in an array of 1 dimension so successively. If we store the coefficients naively, we will store the following sequence : 1, 1, 1, 1, 2, 1, 1, 4, 6, 4, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1. We have to keep in mind also that when we will need to use $(x + 1)^{2^i}$, we will need to know the position of this $(x + 1)^{2^i}$ in our array.

1																
1	1		_													
1	2	1														
1	3	3	1													
1	4	6	4	1												
1	5	10	10	5	1											
1	6	15	20	15	6	1										
1	7	21	35	35	21	7	1		_							
1	8	28	56	70	56	28	8	1								
1	9	36	84	126	126	84	36	9	1		_					
1	10	45	120	210	252	210	120	45	10	1						
1	11	55	165	330	462	462	330	165	55	11	1					
1	12	66	220	495	792	924	792	495	220	66	12	1				
1	13	78	286	715					715	286	78	13	1			
1	14	91	364								364	91	14	1		
1	15	105	455									455	105	15	1	
1	16	120	560										560	120	16	1

Pascal triangle

Now, if we avoid all the ones in the first column of the Pascal triangle (except the first for $(x + 1)^0$, even though it is useless), the sequence to store becomes : 1, 1, 2, 1, 4, 6, 4, 1, 8, 28, 56, 70, 56, 28, 8, 1. This sequence is better as the coefficients of $(x + 1)^{2^i}$ are easily found at the position $2^i - 1$ (except for the first but keep in mind it is useless). Thus, most of the ones in this sequences can be used to represent two consecutive $(x + 1)^{2^i}$.

Moreover, for a polynomial of degree n, this array is of size... n! So like this, this array will be very practical to use. For $n = 16 = 2^4$, we will use the following array :

This array is called *Monomial_shift_device* in the code and created by the procedure *develop_x_shift*. Each thread needs first of all to know what $(x + 1)^{2^i}$ it deals with and after the coefficient it needs to compute with the function *create_binomial2_GPU*.

One may notice that if we think more on how to reduce computations, the Pascal triangle is symmetric. So approximatively the half of the coefficients don't really need to be stored as I do for the moment. For example, in the case n = 16 I have taken, we could just store 1, 2, 4, 6, 8, 28, 56, 70 which will be an array of size n/2 and after find a way to use this smaller array correctly to use the coefficient. It is possible and it is a way of reflection I keep in mind when we will try to improve our code when it will be completely finished.

4 First steps : Polynomials of size 2 to 512

4.1 The beginning

First of all, we need to have in input the different coefficients of the polynomial we want to be shifted by 1. I made a code called *aleaPol.cpp* to create random polynomials of the size wanted. This code stores the coefficients created in a file line per line. So the input is a file we need to read in serie and then store its data in an array to begin our program. To do that, we have obviously a cost in time which increases with the size of the polynomial. The way to store efficiently the polynomials is also a question we must think.

At the beginning of the Taylor shift, after the array *Monomial_shift* is built, we need to copy the array *Polynomial* for the device and then do the first step, which is very simple, this is done by the procedure *init polynomial shift GPU*.

Since the second step, computations become less obvious.

4.2 The following steps

Let us recall what we have to do. In each step of the previous tree we saw before, the half of the branches need to be multiplied by $(x + 1)^{2^i}$, *i* being the current step; then, the results must be added with the previous polynomials of each branch. All these computations are done in parallel for each part of the tree.

First of all, we need to determinate which polynomials we have to multiply between us. This is what we do with the procedure $transfert_array_GPU$. This procedure stores in the array Mgpu the polynomials we need to be multiplied, at a little difference we will explain with the following procedure.

4.3 The plain multiplication & the right shift

Now I want to multiply in parallel all the polynomials I have stored in Mgpu. A member of the laboratory, Anis Sardar Haque has implemented a very efficient multiplication called listPlainMulGpu of a list of polynomials I wanted to use for its efficiency. I need to be careful with this because the use I want to do with it is different from the use done by other codes written by the laboratory. So, I face to different problems.

Before seeing these problems, let us explain how works exactly *listPlainMulGpu* :

listPlainMulGpu do pairwise products of polynomials of the same size in a list containing these polynomial. For example, an array may contain the coefficients of eight polynomials called P_i for $i \in [0, 7]$ with *listPlainMulGpu*, we can multiply in parallel four products : the products $P_0 \times P_1$, $P_2 \times P_3$, $P_4 \times P_5$ and $P_6 \times P_7$. To do that, we need in particular in parameter the array containing the polynomials to multiply (*Mgpu1*), the array which will contain the products (*Mgpu2*), the size of the polynomials *length_poly*, the number of polynomials called *poly_on_layer* (for our example *poly_on_layer* = 8), the number of threads used for one multiplication, the number of multiplications in a thread block, and obviously p and its inverse for computations modulo p. If *Mgpu1* contains k polynomials of size m then *Mgpu1* is of size

 $k \times m$) and Mgpu2 contains k/2 polynomials of size 2m - 1 so Mgpu2 is of size $\frac{k}{2} \times (2m - 1) \neq k \times m$. So, for example after the plain multiplication, the following array Mgpu1 of size

poly on layer \times lenght poly = $8 \times 128 = 1024$:

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline P_0 & P_1 & P_2 & P_3 & P_4 & P_5 & P_6 & P_7 \\ \hline \end{array}$$

becomes the following array Mgpu2 of size

$$\frac{poly_on_layer}{2} \times (2 \times lenght_poly - 1) = 4 \times 255 = 1020 :$$

$$\boxed{P_0 \times P_1 \mid P_2 \times P_3 \mid P_4 \times P_5 \mid P_6 \times P_7}$$

Now, let us explain what are the problem we face.

First of all, the multiplications we want to do are not between polynomials of the same size. If we look at the tree of computations, we can see that we have to multiply a polynomial $P(X) = \sum_{i=0}^{n-1} a_i X^i$ of size $n = 2^k$ by $(X + 1)^n$, we obtain a polynomial of size 2^{k+1} but P(X) and $(X + 1)^n$ have for size respectively n and n+1. So, to use the multiplication, either we can put zeros on polynomials to have the same sizes (but we will have a lot of multiplications by zeros which will be useless), or we think another way to use the multiplication.

Secondly, the initial code of the plain multiplication considers that the output array has a different size compared to the former array, as I have just shown in the previous arrays (size of 1024 for the first and 1020 for the second). My objective is to keep the same size as the product of my polynomials are different and to allow me to keep at each step polynomial sizes as a power of 2.

So I clearly need to modify this procedure a little bit to adapt it for what I want to do with. My idea was the following :

I decompose the multiplication in another multiplication, a right shift and an addition. As we need the Newton's binomial coefficients, the way to store them I used before was a power of 2. Consider $local_n = 2^k$:

$$\forall j \in \llbracket 0, local_n-1 \rrbracket, Monomial_shift[local_n+j] = \binom{local_n}{j+1}$$

so at *Monomial_shift* + *local_n*, we store the coefficients of $[(X+1)^{local_n} - 1]/X$, this polynomial is of size *local_n* and thus I want to use this polynomial instead of $(X+1)^m$ for the multiplication.

To understand what we can do, imagine we have to multiply locally a polynomial Q(X) of size $m = 2^k$ by $(X + 1)^m$, let us decompose $Q(X) \times (X + 1)^m$ and see how to proceed according to the following to compute $Q(X) \times (X + 1)^m$:

$$Q(X) \times (X+1)^{m} = \left(\sum_{i=0}^{2^{k}-1} a_{i} X^{i}\right) \times (X+1)^{2^{k}}$$

= $Q(X) \times [(X+1)^{m} - 1 + 1]$
= $Q(X) \times [(X+1)^{m} - 1] + Q(X)$
= $Q(X) \times X \times \frac{(X+1)^{m} - 1}{X} + Q(X)$
= $X \times \left(Q(X) \times \frac{(X+1)^{m} - 1}{X}\right) + Q(X)$

So let us keep in mind the formula obtained :

$$Q(X) \times (X+1)^m = X \times \left(Q(X) \times \frac{(X+1)^m - 1}{X}\right) + Q(X)$$

This formula is very interesting because it allows to solve the problems I explained before. Let us explain why. The polynomials Q(X) and $[(X + 1)^m - 1]/X$ are of the same size m so can be computed with the plain multiplication described before. Then, as it is not what we really want, we need to multiply the result by X which corresponds for our arrays to a right shift of all the coefficients computed, then I won't need to decrease of 1 the size of each product if I do the right shift within this procedure. And then, we just need to add the previous value of Q to get the result we wish. I called this modified procedure listPlainMulGpu and right shift. Just see now a concrete example.

Example: We want to compute $(3 + 4x) \times (x + 1)^2$. Then we store the following coefficients in the array Mgpu1: [3, 4, 2, 1]. If we write what happens, this is :

$$\begin{aligned} (3+4x)\times(x+1)^2 &= x\left[(3+4x)\times(2+x)\right] + (3+4x) & \text{decomposition to simplify the problem} \\ &= x\left(6+11x+4x^2+0x^3\right) + (3+4x) & \text{plain multiplication done} \\ &= (0+6x+11x^2+4x^3) + (3+4x) & \text{right shift done} \\ &= 3+10x+11x^2+4x^3 & \text{addition done} \end{aligned}$$

 $listPlainMulGpu_and_right_shift$ does the product giving $6 + 11x + 4x^2$ and stores it like this [0, 6, 11, 4] so we have done the right shift for the multiplication by x (I write useless zeros in the calculations to show they correspond to a position in the array Mgpu2), then we just need to sum with the polynomial, we notice that we just need to sum the half of the coefficients, to do that, I will use the procedure called *semi* add I explain in the following part.

4.4 Partial additions

As we just saw in the previous part, at the end, we need to add the missing parts Q(X) to obtain exactly the products we want. If we look precisely at these additions, we don't really need to add all the positions of the arrays. Indeed, if we look at the previous example, just the half of the coefficients of the polynomial were added to Q(X) as the size of the Q(X) is the half of the sizes of the polynomials obtained with the procedure *listPlainMulGpu_and_right_shift*. Now we have really multiplied the half of the branches of the current step, we have to add the polynomials computed in these branches with the polynomials of the branches where there were not any multiplication to do.

So, to sum up, $semi_add$ adds the elements Q(X) which were missing to do correctly $Q(X) \times (X+1)^{2^i}$ and then adds in some way $P^{(0)}$ with $P^{(1)} \times (X+1)^{2^i}$ (with $Q = P^{(1)}$). This ends a loop. For the next loop, we do the same with polynomial sizes increased by a factor of 2 and a number of polynomials considered to be multiplied divided by 2. This corresponds respectively to $local_n*=2$ and polyOnLayerCurrent/=2.

4.5 The arrays

Some arrays are used in all what I have described before. But let us explained exactly the choice of these arrays and what each array does exactly.

At the first step, the array *Polynomial_device* contains all the coefficients defining the polynomial we want to be shifted. Inside this array, the coefficients are store in the increasing order of the power of x. We do then the first step of the tree in the array *Polynomial_shift_device[0]* which must contain at the end of the loop the polynomials for the next step.

Since the second step, the array Mgpu contains exclusively all the polynomials which need to be multiplied pairwise. For example, at the step 2, let us consider the array :

$$Polynomial_shift_device[0] = \boxed{1 \ | \ 2 \ | \ 3 \ | \ 4 \ | \ 5 \ | \ 6 \ | \ 7 \ | \ 8}$$

Then, some polynomials of size 2 inside need to be multiplied by $(x+1)^2$ so we store in Mgpu:

We store then the result of $listPlainMulGpu_and_right_shift$ in $Polynomial_shift_device[1]$. To complete this array, we add the missing part to have exactly $Q(X) \times (X+1)^{2^i}$ so we add parts of $Polynomial_shift_device[0]$ with Mgpu, and then to finish we complete $Polynomial_shift_device[1]$, ready for the next step.

Before to comment the other step, one can see that at each step since now, we just need the previous $Polynomial_shift_device[i-1]$ to compute $Polynomial_shift_device[i]$ (and a new Mgpu). We don't need to keep all these arrays, but just the previous one at each step. So, to avoid useless arrays and costly cud-aMalloc, I modified my code to just use $Polynomial_shift_device[i\%2]$ and $Polynomial_shift_device[(i+1)\%2]$ so that finally in each step we invert $Polynomial_shift_device[0]$ and $Polynomial_shift_device[1]$. Thus, whatever is the size of the polynomial we consider at the beginning, we have the same number of arrays in the code, at least before the step 10.

Now, we come in a new part of the code. The plain multiplication implemented by the laboratory is very efficient for multiplying polynomials of degrees at most the number of threads in a thread block, so for polynomials of degrees 512 for my machine. This multiplication can't be done for polynomials of degree size more than 512, at least, it can't be sufficiently efficient. Then we need to proceed differently. For bigger degrees, we need to use FFT. The Section 5 explains what it is exactly and the way we use it.

5 Fast Fourier Transform (FFT)

In this section, we will describe what is the Discrete Fourier Transform (DFT), the Fast Fourier Transform (FFT) and how we use it in our code. First of all, let us consider in all this section two univariate polynomials $f, g \in R[x]$ of degree less than an integer n, where R is a commutative ring with units. We want to multiply these two polynomials. To not enter in too much details as we just need to apply the theory, we will consider generally rings such that $R = \mathbb{Z}/m\mathbb{Z}$ with $m \in \mathbb{N}^*$.

The product $f \times g$ is of degree less than 2n - 1. We assume we are given a subset **E** of R such that $card(\mathbf{E}) = 2n - 1$ and that $\forall r \in \mathbf{E}$, we know f(r) and g(r). The values f(r)g(r) can define the polynomial fg completely thanks to the Lagrange interpolation as we have sufficiently values. The cost of defining fg like this is 2n - 1. To build the coefficients directly of fg has a cost in $\Theta(n^2)$. We want to avoid this high cost using another way to do multiplication : this is what FFT will do. the underlying idea of the fast polynomial multiplication based on the Discrete Fourier Transform is the following : assume that there exists a subset P of R with 2n - 1 elements such that :

- evaluating f and g at every $r \in P$ can be done at nearly linear time cost, such as $\Theta(n \log(n))$,
- interpolating f(r)g(r) for $r \in P$ can be done at nearly linear time cost.
- Then the multiplication of f by g, represented by their coefficients, can be done in $\Theta(n \log(n))$.

5.1 Discrete Fourier Transform

Definition. Let n be a positive integer and $\omega \in R$.

- ω is a n-th root of unity if $\omega^n = 1$.
- ω is a primitive n-th root of unity if :
- (1) $\omega^n = 1.$
- (2) ω is a unit in R.
- (3) for every prime divisor t of n the element $\omega^{n/t} 1$ is neither zero nor a zero divisor.

Let n be a positive integer and $\omega \in R$ be a primitive n-th root of unity. In what follows we identify every univariate polynomial

$$f = \sum_{i=0}^{n-1} f_i \, x^i \in R[x]$$

of degree less than n with its coefficient vector $(f_0, \ldots, f_{n-1}) \in \mathbb{R}^n$.

Definition. The *R*-linear map

$$DFT_{\omega}: \begin{cases} R^n & \to R^n \\ f & \mapsto (f(1), f(\omega), f(\omega^2), \dots, f(\omega^{n-1})) \end{cases}$$

which evaluates a polynomial at the powers of ω is called the Discrete Fourier Transform (DFT).

Proposition. The R-linear map DFT_{ω} is an isomorphism.

Then we can represent a polynomial f by the DFT representation with ω we will determine in our code.

5.2 Convolution of polynomials

Let n be a positive integer and $\omega \in R$ be a primitive n-th root of unity.

Definition. The convolution with respect to n of the polynomials $f = \sum_{0 \le i < n} f_i x^i$ and $g = \sum_{0 \le i < n} g_i x^i$ in R[x] is the polynomial

$$h = \sum_{0 \le k < n} h_k x^k$$

such that for every $k \in \llbracket 0, n-1 \rrbracket$ the coefficient h_k is given by

$$h_k = \sum_{i+j \equiv k \mod n} f_i \, g_j$$

The polynomial h is also denoted by $f *_n g$ or simply by f * g if not ambiguous.

The convolution f * g (of size n) and the product p = fg (of size 2n - 1) are different. Let us try to find a relation between these polynomials. We have :

$$p = \sum_{k=0}^{2n-2} p_k x^k$$

where for every $k \in [0, 2n-2]$ the coefficient p_k is given by

$$p_k = \sum_{i+j=k} f_i \, g_j$$

We can rearrange the polynomial p as follows :

$$p = \sum_{0 \le k < n} (p_k x^k) + x^n \sum_{0 \le k < n-1} (p_{k+n} x^k)$$

=
$$\sum_{0 \le k < n} (p_k + p_{k+n} (x^n - 1 + 1)) x^k$$

=
$$\sum_{0 \le k < n} ((p_k + p_{k+n}) x^k) + (x^n - 1) \sum_{0 \le k < n} ((p_k + p_{k+n}) x^k)$$

=
$$f * g \mod (x^n - 1)$$

Lemma. For $f, g \in R[x]$ univariate polynomials of degree less than n we have

$$DFT_{\omega}(f * g) = DFT_{\omega}(f)DFT_{\omega}(g)$$

where the product of the vectors $DFT_{\omega}(f)$ and $DFT_{\omega}(g)$ is computed componentwise.

This lemma allows us to understand that to compute a convolution product is the same as computing a scalar product.

5.3 The Fast Fourier Transform

The Fast Fourier Transform computes the DFT quickly and its inverse. This important algorithm for computer science was (re)-discovered by Cooley and Tukey in 1965.Let n be a positive even integer, $\omega \in R$ be a primitive n-th root of unity and $f = \sum_{0 \le i < n} f_i x^i$. In order to evaluate f at $1, \omega, \omega^2, \ldots, \omega^{n-1}$, the Cooley-Tukey algorithm follows a divide and conquer strategy. In [7], Marc Moreno Maza details how this algorithm is done and how the cost of the classical multiplication ($\Theta(n^2)$) can be decreased if we do the multiplication using FFT ($\Theta(n \log(n))$).

The picture below shows how we will proceed to multiply two polynomials using FFT :

FFT-based univariate polynomial multiplication over $\mathbb{Z}/p\mathbb{Z}$

6 Polynomials of high degrees (> 512)

As we saw in Section 4, we cannot use the Plain Multiplication for polynomials of size more than 512. And step by step, we increase the size of the polynomials considered we want to multiply. We need to think another way to do a fast multiplication. The previous section explains the idea we want to use for this new case.

Since the step when we need to multiply polynomials of size more than 512 (which is the limit size of the number of threads per thread block), we will proceed to the FFT. The procedures and functions I will use for FFT (*primitive_root*, *list_stockham_dev* and *list_pointwise_mul*) were implemented by a Wei Pan, a previous PhD student in the laboratory. The thesis he made put in evidence that some prime numbers improve performances of FFT, see [8] for more details. We will talk about these prime numbers in the part "Next works".

6.1 The array for FFT operations

Even though we need to think the multiplication differently, the other procedures we have done for the smallest size of the polynomials considered are still used. Indeed, first of all, we use again *trans-fert_array_GPU* to put the polynomials we want to be computed in the array Mgpu.

But now, this array is not sufficient to be used for FFT. Indeed, we saw before that to compute the product of two polynomials f and g of size n using FFT, we need to know the values of $f(w^i)$ and $g(w^i)$ for $i \in [0, 2n - 2]$. Firstly, we need to convert Mgpu in another array twice bigger than it, this array is called fft_device . This array is the same than Mgpu but contains some zeros between all the polynomials of this array. fft_device is created thanks to the procedure transfert_array_fft_GPU.

6.2 Multiplication using FFT

Now, we need to do the multiplication like explained in the previous section, but first of all, we need to define the value of ω (w in my code) which has to be a 2^{i+1} -th root of unity in $\mathbb{Z}/p\mathbb{Z}$ at the step i, this is done by the function *primitive* root.

We need then to evaluate with the procedure $list_stockham_dev$ (thanks to this ω and its powers) the polynomials we have stored in transfert_array_fft_GPU. Then the positions of the array fft_device where there were zeros contain now the evaluation of the polynomials for some values of ω^j . We follow exactly the scheme at the end of the previous section concerning FFT, we need then to do the pointwise multiplication which is just a multiplication coefficient per coefficient of the pairwise polynomials considered, done by list pointwise multiplication.

Then, we need to transform again our polynomial doing the inverse operation of the FFT we have done. To do that, we need this time to consider another ω which is the invert of the one we use for the FFT.

We don't really obtain the products we want, but we have them up to a multiplicative factor, so we just need to divide all the coefficients of the polynomials obtained by ω being the inverse of $2^{i+1} \mod p$. The reason is explained in [7]. Moreover, we have an array twice bigger than we want, the parts of the array where there were zeros before the FFT are know values which are useless. So we can come back again to an array of the size of the input polynomial.

To finish the step, we do a *semi* add as we did for small degree.

7 Future works

7.1 Reflection remarks and improvements

Some procedure and functions I have implemented can be improved.

I think notably to the factorial procedure which has the default that in each step, some threads are calling the same elements of an array. This is not disturbing as it has a work of $\Theta(n \log(n))$ and this is called just once at the beginning. It is also possible that the way to compute the $(x + 1)^{2^i}$ I had chosen is not the best, and if there exists a better way to compute this, maybe it doesn't need to compute the factorial sequence.

I can probably use more the shared memory and reduce the global work for example when I store several times the polynomials $(x + 1)^{2^{i}}$ and I would like to take a look at the use of the global memory.

7.2 Prime numbers to consider

The Taylor_shift procedure I have implemented is done modulo a prime number p. According to the Section 2.6, we need to do this Taylor shift several times with different primes numbers and then use the Chinese Remainder Theorem to have the Taylor shift by 1 of the input polynomial in \mathbb{Z} .

Two questions arises :

- (1) What prime numbers p must we use?
- (2) How many such primes numbers must we use?

The works of Wei Pan (see [8]) put in evidence that primes numbers of the form $p = M \times 2^i + 1$ bring best performances for FFT than other prime numbers with *i* and *M* integers such that *M* is odd and $M < 2^i$. *p* must be also sufficiently greater than the degree of the incoming polynomial, otherwise the monomials of big degrees which compose the input polynomial won't be taken into account.

To find these prime numbers, we can run a MAPLE code which will be more adapted to deal with prime number with its pre-existing functions. Here is a prototype of such a code :

```
A:= Array(1..500):
p:= 962592769:
pow := 2^26:
pow2 := 2^19:
i:= 0:
while ((i<400) and (p>pow)) do
    if ((p-1 mod pow2) = 0) then
        A[i] := p:
        i := i+1:
        end if:
        p := prevprime(p):
        end do:
```

This code can give a list of prime numbers, we have such a list but it does not contain sufficiently primes numbers for the moment. Now, let us explain how many such prime numbers we need. According to the calculation we just made, we can need approximatively 300 prime numbers for polynomials of degree 10000, so we need to create a table containing the prime numbers we want to use. The Taylor shift we implement will be called several times for these different prime numbers, and with an increasing size of the polynomial, we will need more or less calls of this procedure.

7.3 Combining several computations of the Taylor shift procedure

Now the problem we are actually discussing is the way to recombine the output solutions modulo prime numbers efficiently using the Chinese Remainder Theorem. In input, we will have m_1, \ldots, m_s

prime numbers and the s polynomials of size d shifted by 1 stored in an array X[1:s][1:d] such that the s first positions of this array contain the first coefficient of each polynomial, then the second coefficient of each polynomial...

Let us consider $\mathbf{x} = (x_1, \ldots, x_s)$.

The objective is to compute the image a of \mathbf{x} by $\mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_s\mathbb{Z} \cong \mathbb{Z}/m_1 \dots m_s\mathbb{Z}$. According to [9], we can represent a by $\mathbf{b} = (b_1, \dots, b_s)$ such that

$$a = b_1 + b_2 m_1 + b_3 m_1 m_2 + \dots + b_s m_1 m_2 \dots m_{s-1}$$

The idea of [9] is to compute *a* step by step using a mixed representation by a matrix formula. My work until this report ends here, but I'll explain how to use this radix representation when I will defend my internship.

8 Benchmarks

First of all, to be sure that the Taylor shift by 1 was done correctly, I needed some comparisons, like using Maple, or other codes, in particular in C++. I used mainly the comparison of my CUDA code with the execution of the Horner's method in C++, which is the fastest compared to the Divide and Conquer method in C++ and the execution on Maple.

In the following graphics, MAPLE is not represented because the execution time increases by a factor of 4 each time we multiply by 2 the number of coefficients of the polynomial we want to be shifted by 1. Nevertheless, I show the execution time of the Maple script I used in the array of the execution times.

Here are the different results obtained for different sizes of random polynomials. Let us recall that these polynomials are of degree $n = 2^e - 1$:

Execution time in seconds								
е	n	GPU	CPU : HOR	CPU : DNC	Maple 16			
3	8	0.001518	0.000128	0.000141	< 0.001			
4	16	0.001432	0.000186	0.000172	< 0.001			
5	32	0.001590	0.000167	0.000191	< 0.001			
6	64	0.001773	0.000192	0.000294	0.008			
7	128	0.002016	0.000261	0.000628	0.024			
8	256	0.003036	0.000593	0.002331	0.084			
9	512	0.002624	0.001278	0.006304	0.320			
10	1024	0.005756	0.005940	0.032073	1.400			
11	2048	0.009317	0.015312	0.095027	5.640			
12	4096	0.013475	0.076866	0.376543	24.478			
13	8192	0.019674	0.324029	1.498890	104.438			
14	16384	0.027229	1.282708	6.861433	437.848			
15	32768	0.042561	5.110919	23.907799	1781.427			
16	65536	0.064306	15.184347	114.988129	7407.063			
17	131072	0.127214	80.625801	477.934692	> 10000			

To compare more in details, let us take a look at the different pictures we can have using gnuplot. Gnuplot scripts can be seen in the appendix. The execution times of MAPLE 16 don't appear as they increase too much compared to my other results. I show different graphics, considering e in x-axis then n, as my results are for polynomials of size 2^e . The results with n in x-axis are more eloquent concerning the fact that the execution time becomes linear when n increases by a factor of 2.

The following graphic is more eloquent concerning the linear increasing of the execution time of the GPU depending on the size of the polynomial considered (a power of 2). Nevertheless, the execution time is not really linear. Indeed, the cuda code contains also a part executed in serie, like when we read the polynomial in a file and also when we store the result in a file.

Execution time of the GPU in function of n

Now let us take a look at the execution times for the Horner's method and for the Divide and Conquer method in serie, so with the CPU only. The two methods are not linear and increase by a factor of 4 according to the previous array.

Execution time of the CPU in function of n

We clearly see that the Horner's method in serie is more efficient than the Divide and Conquer method in serie. To see exactly what happens for small degrees and big degree for the three methods, namely the GPU DNC method, the CPU DNC method and the CPU Horner's method (when I say GPU I mean 'in serie', and when I say CPU I mean 'in serie'). Let's consider the two following graphics.

Execution times in function of n for small degrees

For small degrees, we see that the execution time of the GPU code is approximatively the same and worst than the execution times of the CPU execution times. The reasons are very simple, for small degrees, we need the same number of arrays in the CUDA code than for the big degrees, even though obviously they are not at the same size than for big degrees. Allocate memory for the GPU takes a lot of time at the scale of the execution times for small degrees, so finally there are a lot of communications just for 'small' computations. To conclude with this, for small degrees, it will be better to do the Taylor shift by 1 in serie. There is also the fact that we don't compute the same way the Taylor shift in the three methods, even though for the divide and conquer in serie, the only difference is the way we do the multiplication (and obviously the fact it is in serie).

Let's see the comparison for the next degrees :

Execution times in function of n for big degrees

For big degrees, using the GPU gives best performances with a execution time of approximatively 0.1 second for a polynomial of size 2^{17} . We see clearly a huge gap between the execution times of the different methods implemented, and remember that I didn't put the execution time using Maple also. We see that to parallelize the Taylor shift, is a real challenge, notably for MAPLE, which has finally the worst execution time for big degrees.

9 Conclusion

To realize something which seems simple at the first look becomes tricky when you want to parallelize it. We face problems and we must elaborate solutions using our knowledge, our own researches and using the researches of scientifics. This internship becomes me aware of the utility to be informed of the works and papers submitted by scientifics around the world.

To realize the Taylor shift by 1 as fast as possible is a part of a huge and difficult work. When this will be done thanks to the work on the mix-radix representation, we will be able to continue towards the isolation of the real roots of a univariate polynomial, but we don't forget that we will have other steps like considering rational then real polynomials, and so considering other works, other algorithms like the VCA algorithm which is the algorithm we want to use.

When we call several times the same procedure, even if the execution time of this procedure is very small, then we can have a very high execution time. For example, to run a Taylor shift with my code for a polynomial of size 2^{17} modulo a prime number cost 0.1s approximatively. To obtain the Taylor shift in \mathbb{Z} , we need to call this for more than 300 prime numbers, then finally we will have a cost of more than 30s for getting a Taylor shift in \mathbb{Z} . In the VCA algorithm, we use a lot this Taylor shift, then we multiply our 30s again by a factor. Finally, even if you improve a little the procedures which are called several times, as the *mul_mod* procedure in my Taylor shift code, we will have a huge gain of performances in our main code, that's why we do the maximum to parallelize everything can be parallelized in the best possible way.

10 Appendix

10.1 Divide and Conquer Cuda code

```
taylor shift.cu
```

```
#include "taylor shift conf.h"
#include "inlines.h"
#include "taylor shift cpu.h"
#include "taylor shift kernel.h"
#include "taylor_shift.h"
#include "taylor shift fft.h"
#include "list pointwise mul.h"
\#include "list_stockham.h"
/* Important to notice :
  n : number of coefficients of the polynomial considered
 n{-}1 : degree of the polynomial considered
 p : prime number, it must be greater than n
*/
// Taylor shift procedure
void taylor_shift_GPU(sfixn n, sfixn e, char *file, sfixn p, double pinv)
{
  // declaration of variables
  sfixn i, nb blocks, local n;
  sfixn *Factorial_device;
  sfixn *Polynomial, *Polynomial device;
  sfixn * Monomial shift device;
  sfixn *temp;
  sfixn *Mgpu;
  sfixn *Polynomial shift device[2];
  float cpu time, gpu time, outerTime;
  cudaEvent t start, stop; /* Initial and final time */
  cudaEventCreate(&start);
  cudaEventCreate(&stop);
  cudaEventRecord(start, 0);
  // beginning parameters
  local n = 2;
  stock file in array(file, n, Polynomial);
// printf(" * pinv = \%0.201f \ n", pinv);
  // TIME
  cudaEventRecord(stop, 0);
  cudaEventSynchronize(stop);
  cudaEventElapsedTime(&cpu time, start, stop);
  cudaEventDestroy(stop);
```

```
cpu_time /= 1000.0;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);
// Create the array Factorial
cudaMalloc((void **)\&Factorial device, (n+1) * sizeof(sfixn));
nb blocks = number of blocks(n+1);
cudaThreadSynchronize();
identity GPU \ll nb blocks, NB THREADS>>>(Factorial device, n+1);
cudaThreadSynchronize();
nb blocks = number of blocks (n/2);
create factorial step0 GPU \ll nb blocks, NB THREADS>>>(Factorial device+1,)
n, e, p, pinv);
cudaThreadSynchronize();
sfixn L = 1;
for (i = 1; i < e; i + +)
ł
 L *= 2;
 create factorial stepi GPU <<<< nb blocks, NB THREADS>>>(Factorial device+1,)
 n, e, p, pinv, L);
 cudaThreadSynchronize();
}
// Create the array of the (x+1)^{i}
cudaMalloc( (void **) & Monomial shift device , n * sizeof(sfixn) ); // n+1
cudaThreadSynchronize();
nb \ blocks = number \ of \ blocks(n);
develop xshift GPU <<<< nb blocks, NB THREADS>>> (Monomial shift device, n, \setminus
Factorial device, p, pinv);
cudaThreadSynchronize();
cudaFree(Factorial device);
1st step : initialization
   cudaMalloc( (void **) &Polynomial device, n * sizeof(sfixn) );
cudaMemcpy( Polynomial device, Polynomial, n*sizeof(sfixn), \
cudaMemcpyHostToDevice );
free (Polynomial);
cudaMalloc( (void **) &Polynomial shift device[0], n * sizeof(sfixn) );
cudaThreadSynchronize();
// initialize polynomial shift
nb blocks = number of blocks (n/2);
init\_polynomial\_shift\_GPU <<< nb blocks, NB THREADS>>>(Polynomial device, )
Polynomial shift device [0], n, p);
cudaThreadSynchronize();
```

```
33
```

```
\mathrm{next} steps (i<10)
```

```
sfixn polyOnLayerCurrent = n/2;
sfixn mulInThreadBlock;
cudaMalloc((void **)&Mgpu, n * sizeof(sfixn));
sfixn I = 9;
if (e < 9)
 I = e;
cudaMalloc( (void **) &Polynomial shift device[1], n * sizeof(sfixn) );
cudaThreadSynchronize();
// LOOP
for (i = 1; i < I; i + +)
{
 // transfer the polynomials which will be computed
 nb\_blocks = number\_of\_blocks(n);
 transfert array GPU <<< nb blocks, NB THREADS>>>(Mgpu, \
 Polynomial shift device [(i+1)\%2], Monomial shift device, n, local n, p, pinv);
 cudaThreadSynchronize();
 // Compute the product of the polynomials in Mgpu ('P2 * Bin' with Bin
 // the array of binomials) and store them in Polynomial shift device [i%2]
 // shifted at the right for the multiplication by x so do
 // [( (x+1)^i - 1 ) / x ] * P2(x+1), then multiply it by x so we have
 //[(x+1)^{i} - 1] * P2(x+1)
 mulInThreadBlock = (sfixn) floor((double) NB THREADS / (double) (2*local n));
 nb\_blocks = (sfixn) ceil(((double) polyOnLayerCurrent/(double)mulInThreadBlock)*0.5);
 listPlainMulGpu and right shift GPU <<<< nb blocks, NB THREADS>>>(Mgpu,
 Polynomial shift device [i\%2], local n, polyOnLayerCurrent, 2*local n, \backslash
 mulInThreadBlock, p, pinv);
 cudaThreadSynchronize();
    add [(x+1)^i - 1] * P2(x+1) with P2(x+1) then we get (x+1)^i * P2(x+1)
 //
    then do P1(x+1) + (x+1)^{i} * P2(x+1)
 nb_blocks = number_of_blocks(n/2);
 semi add GPU<<<nb blocks, NB THREADS>>>(Polynomial shift device[i\%2], Mgpu, \land
 Polynomial shift device [(i+1)\%2], n, local n, p);
 cudaThreadSynchronize();
 // for the next step
 polyOnLayerCurrent = 2;
 local n *= 2;
}
  next steps : FFT (i \ge 10)
```

```
sfixn J = e;
if (e < 9)
 J \ = \ 9\,;
sfixn w;
sfixn *fft device;
cudaMalloc( (void **) &fft device, 2 * n * sizeof(sfixn) );
cudaThreadSynchronize();
// LOOP
for (i = 9; i < J; i + +)
{
 // transfer the polynomials which will be FFTed and Mgpu
  nb \ blocks = number \ of \ blocks(n);
 transfert array GPU <<<< nb blocks, NB THREADS>>>(Mgpu, \
  Polynomial shift device [(i+1)\%2], Monomial shift device, n, local n, p, pinv);
  cudaThreadSynchronize();
  nb blocks = number of blocks (2*n);
  transfert array fft GPU <<< nb blocks, NB THREADS>>>(fft device, Mgpu, n, \backslash
  local n);
  cudaThreadSynchronize();
 // Convert the polynomials in the FFT world
 w = primitive root(i+1, p);
 list stockham dev(fft device, polyOnLayerCurrent, i+1, w, p);
  cudaThreadSynchronize();
  // same operation than for ListPlainMul but in the FFT world
  nb blocks = number of blocks(2*n);
  list pointwise mul <<<nb blocks, NB THREADS>>>(fft device, 2*local n, p, pinv, \setminus
  2 * n);
  cudaThreadSynchronize();
 // return to the real world
 w = inv \mod(w, p);
 list stockham dev(fft device, polyOnLayerCurrent, i+1, w, p);
  cudaThreadSynchronize();
  // adjust the real coefficients : we need to multiplicate by the following w
  // to have to correct size
 w = inv \mod (2 * local n, p);
  nb blocks = number of blocks(n);
 mult adjust GPU<<<nb blocks, NB THREADS>>>(Polynomial shift device[i\%2], \
  fft device, n, local n, w, p, pinv);
  cudaThreadSynchronize();
  // semi add
  nb blocks = number of blocks(n/2);
 semi add GPU<<<nb blocks, NB THREADS>>>(Polynomial shift device[i\%2], Mgpu, \land
  Polynomial_shift_device[(i+1)%2], n, local_n, p);
  cudaThreadSynchronize();
  // for the next steps
  polyOnLayerCurrent = 2;
```

```
35
```

```
local n *= 2;
  }
  /*
    end : results
     // Copy the last array containing the Taylor shift by 1 of the input polynomial
  temp = (sfixn*) malloc(n * sizeof(sfixn));
  cudaMemcpy( temp, Polynomial shift device [(e-1)\%2], n*sizeof(sfixn), \backslash
  cudaMemcpyDeviceToHost );
  cudaThreadSynchronize();
  // TIME
  cudaEventRecord(stop, 0);
  cudaEventSynchronize(stop);
  cudaEventElapsedTime(&gpu time, start, stop);
  cudaEventDestroy(stop);
  gpu time /= 1000.0;
  cudaEventCreate(&start);
  cudaEventCreate(&stop);
  cudaEventRecord(start, 0);
  // stockes the array of Newton's coefficients in a file
  char name file [100];
  sprintf(name file, "Pol%d.shiftGPU %d.dat\0", e, p);
  stock array in file(name file, temp, n);
  // deallocation of the last arrays
  free(temp);
  cudaFree(Monomial shift device);
  cudaFree (Mgpu);
  cudaFree(fft device);
  for (i=0; i<2; i++)
   cudaFree(Polynomial shift device[i]);
  // TIME
  cudaEventRecord(stop, 0);
  cudaEventSynchronize(stop);
  cudaEventElapsedTime(&outerTime, start, stop);
  cudaEventDestroy(stop);
  outerTime /= 1000.0;
  cpu time += outerTime;
}
taylor shift cpu.cu
#include "taylor shift conf.h"
#include "taylor shift cpu.h"
// error message if there is a lack of arguments
```

```
// to make the program
void error message(sfixn m)
{
  if (m < 3)
    {
      printf ("****** ERROR, not enough arguments ! \
      ****** \wedge n The program works with the following parameters: (n n'');
      printf ("1st parameter : file containing coefficients of the \setminus
      polynomial you want to consider.\langle n'' \rangle;
      printf ("2nd parameter : prime number p. n");
      exit(1);
    }
}
// computes the nomber of blocks
sfixn number of blocks(sfixn n)
{
  sfixn res;
  res = n/NB THREADS;
  if (n \% \text{ NB THREADS } != 0)
    res++;
  return res;
}
// stocks a file in an array
void stock file in array(char* filename, sfixn n, sfixn* & a)
{
  ifstream data file;
  sfixn i;
  data file.open(filename);
  if (! data file.is open())
    {
      printf ("\n Error while reading the file %s. Please check \setminus
      if it exists ! \ n", filename);
      exit(1);
    }
  a = (sfixn*) malloc (n*sizeof(sfixn));
  for (i=0; i< n; i++)
    data file >> a[i];
  data_file.close();
}
// stockes the array of Newton's coefficients in a file
void stock_array_in_file(const char *name_file, sfixn *T, sfixn size)
{
```

```
sfixn i;
  FILE * file = NULL;
  file = fopen (name file, "w+");
  if (file = NULL)
  {
    printf ("error when opening the file ! \ n");
    exit(1);
  }
  // writting the file
  fprintf(file, "\%d", T[0]);
  for (i=1; i<size; i++)
    fprintf(file, "\normalfont{math$n$}d", T[i]);
  fclose(file);
}
// computes the number of lines of a file
sfixn size_file(char* filename)
{
  sfixn size = 0;
  ifstream in (filename);
  std::string line;
  while(std::getline(in, line))
    size++;
  in.close();
  return size;
}
// display of an array
void display array(sfixn *T, sfixn size)
{
  sfixn k;
  printf("[");
  for (k=0; k<size; k++)
    printf("%d", T[k]);
  printf("] \langle n \rangle;
}
// addition of two arrays
void add arrays(sfixn *res, sfixn *T1, sfixn *T2, sfixn size, sfixn p)
{
  sfixn i;
  for (i=0; i<size; i++)
    res[i] = (T1[i] + T2[i]) \% p;
}
```

```
// Horner's method to compute g(x) = f(x+1) (equivalent to Shaw &
//Traub's method for a=1)
void horner shift CPU(sfixn *Polynomial, sfixn *Polynomial shift, <math>\setminus
                      sfixn n, sfixn p)
{
  sfixn i;
  sfixn *temp;
  temp = (sfixn*) calloc (n, size of (sfixn));
  Polynomial shift [0] = Polynomial [n-1];
  for (i = 1; i < n; i + +)
  {
    memcpy(temp+1, Polynomial shift, i*sizeof(sfixn));
    add arrays (Polynomial shift, Polynomial shift, temp, n, p);
    Polynomial shift [0] = (Polynomial shift [0] + Polynomial [n-1-i]) \% p;
  }
  free(temp);
}
taylor shift kernel.cu
#include "taylor shift conf.h"
#include "taylor_shift_kernel.h"
#include "inlines.h"
// fast multiplication of two polynomials, created by
// Sardar Haque, I modify just a line to use it in my code
__global__ void listPlainMulGpu_and_right_shift_GPU(sfixn *Mgpu1,\
                sfixn *Mgpu2 , sfixn length_poly, sfixn poly_on_layer,\
                sfixn threadsForAmul, sfixn mulInThreadBlock, sfixn p,
                double pinv)
{
__shared__ sfixn sM[2*Tmul];
sM is the shared memory where the all the coefficients and intermediate
multiplications results are stored. For each multiplication it reserve
4* length poly -1 spaces. mulID is the multiplication ID. It refers to
the poly in Mgpu2 on which it will work. mulID must be less than
(poly_on_layer/2).
*/
  sfixn mulID= ((threadIdx.x/threadsForAmul) + blockIdx.x*mulInThreadBlock);
  if (mulID < (poly on layer/2) & threadIdx.x < threadsForAmul*mulInThreadBlock)
  {
  /*
  The next 10 lines of code copy the polynomials in Mgpul from global memory to
  shared memory.
  Each thread is responsible of copying one coefficient.
 A thread will copy a coefficient from
 Mgpu1[(mulD* length poly*2)...(mulD* length poly*2) + length poly*2 -1].
```

```
39
```

```
j+u gives the right index of the coefficient in Mgpul.
In sM, the coefficients are stored at the lower part.
t will find the right (4* \text{length poly} - 1) spaced slot for it.
s gives the start index of its right slot.
s+u gives right position for the index.
*/
  sfixn j = (mulID * length poly * 2);
  sfixn q = (mulID*(2*length poly)); // modified, clean the -1
  sfixn t = (threadIdx.x/threadsForAmul);
  sfixn u = threadIdx.x \% threadsForAmul;
  sfixn s = t * (4 * length poly - 1);
  sfixn k = s + length_poly;
  sfixn l = k + length_poly;
  sfixn c = l+u;
  sfixn a, b, i;
  sM[s+u] = Mgpu1[j + u];
  syncthreads();
  if (u != (2*length poly-1))
  {
/*
In the multiplication space, the half of the leading coefficients
are computed differently than the last half. Here the computation of
first half are shown. the last half is shown in else statement.
In both cases sM[c] is the cofficient on which this thread will work on.
sM[a] is the coefficient of one poly.
sM[b] is the coefficient of the other poly.
*/
    if (u < length poly)
    {
      \mathbf{a} = \mathbf{s};
      \mathbf{b} = \mathbf{k} + \mathbf{u};
      sM[c] = mul mod(sM[a], sM[b], p, pinv);
      ++a; --b;
      for (i = 0; i < u; ++i, ++a, --b)
        sM[c] = add mod(mul_mod(sM[a], sM[b], p, pinv), sM[c], p);
        Mgpu2[q+u+1] = sM[c]; //+1 added
    }
    else
      b = 1 - 1;
      a = (u - length poly) + 1 + s;
      sM[c] = mu mod(sM[a], sM[b], p, pinv);
      ++a; --b;
      sfixn tempU = u;
      u = (2*length poly-2) - u;
```

```
for (i = 0; i < u; ++i, ++a, --b)
           sM[c] = add_mod(mul_mod(sM[a], sM[b], p, pinv), sM[c], p);
         Mgpu2[q+tempU+1] = sM[c]; //+1 added
    }
  }
  else
    Mgpu2[q] = 0; // added for put 0 at position
  }
}
// create array identity (initialization of the array Fact)
__global__ void identity_GPU(sfixn *T, sfixn n)
  sfixn k = blockIdx.x * blockDim.x + threadIdx.x;
  sfixn boolean = (sfixn) (k == 0);
  if (k < n+1)
    T[k] = k + boolean;
}
// create all the elements of Factorial (%p)
\_\_global\_\_ void create\_factorial\_GPU(sfixn *Fact, sfixn n, sfixn e, \label{eq:global})
                                          sfixn p, double pinv)
// warning : n+1 is the size of Fact but we will just full the n
//last element, not the first one
{
  sfixn k = blockIdx.x * blockDim.x + threadIdx.x;
  sfixn i, j, part, pos, base;
  sfixn L = 1;
  sfixn B = 2;
  if (k < n/2)
  {
    // step 1
    \operatorname{Fact}[2 * k + 1] = \operatorname{mul} \operatorname{mod}(\operatorname{Fact}[2 * k], \operatorname{Fact}[2 * k + 1], p, pinv);
    ____syncthreads();
    // next steps
    for (i = 1; i < e; i + +)
    {
      B *= 2;
      L *= 2;
      part = k / L;
      pos = k \% L;
       \__syncthreads();
      j = L + part * B + pos;
       ____syncthreads();
       base = Fact [L + part *B - 1];
       syncthreads();
       Fact[j] = mul_mod(base, Fact[j], p, pinv);
```

```
__syncthreads();
}
 }
}
__global___void_create_factorial_step0_GPU(sfixn *Fact, sfixn n, \
                                     sfixn e, sfixn p, double pinv)
// warning : n+1 is the size of Fact but we will just full the n
//last element, not the first one
  sfixn k = blockIdx.x * blockDim.x + threadIdx.x;
  if (k < n/2)
  {
    // step 1
    Fact [2 * k+1] = mul mod (Fact [2 * k], Fact [2 * k+1], p, pinv);
  }
}
__global___void_create_factorial_stepi_GPU(sfixn_*Fact, sfixn_n, \
                            sfixn e, sfixn p, double pinv, sfixn L)
// warning : n+1 is the size of Fact but we will just full the n last
  element, not the first one
//
  sfixn k = blockIdx.x * blockDim.x + threadIdx.x;
  sfixn j, part, pos, base;
  sfixn B = 2 * L;
  if (k < n/2)
  {
    // next steps
      part = k / L;
      pos = k \% L;
      j = L + part *B + pos;
      base = Fact [L + part *B - 1];
      Fact[j] = mul_mod(base, Fact[j], p, pinv);
  }
}
___global___ void inverse_p_GPU(sfixn *T, sfixn p, double pinv) {
// create an array of the inverse numbers in Z/pZ
  sfixn i;
  sfixn k = blockIdx.x * blockDim.x + threadIdx.x;
  if (k < p)
  {
    if (k > 1)
      for (i=2; i<p; i++)
        {
          if (mul mod(k, i, p, pinv) == 1)
          {
```

```
T[k] = i;
                        // to stop the loop
            i = p;
          }
        }
    else if (k = 1)
      T[1] = 1;
    else // (k = 0)
      T[0] = 0;
  }
}
// create the inverse of a number in Z/pZ
__device__ sfixn inverse_GPU(sfixn k, sfixn p, double pinv) {
  sfixn i, res;
  if (k > 1)
    for (i = 2; i < p; i + +)
      {
        if (mul mod(k, i, p, pinv) == 1)
        {
          res = i;
          i = p;
                     // to stop the loop
        }
      }
  else if (k = 1)
    res = 1;
  \texttt{else} \ // \ (\texttt{k} == 0)
    res = 0;
  return res;
}
// creates an array of the Newton's Binomials until n modulo p
// (! size of the array = n+1)
__device__ sfixn create_binomial_GPU(sfixn *Factorial, sfixn *Inverse p, \
                                   sfixn n, sfixn p, double pinv, sfixn id)
{
  sfixn l = n - id;
  sfixn temp = mul mod(Factorial[id], Factorial[1], p, pinv);
  return mul mod(Factorial[n], Inverse p[temp], p, pinv);
}
// create the Newton's Binomial coefficient "n choose id" modulo p
// return "n choose id" = n! / [id!(n-id)!] mod p
__device__ sfixn create_binomial2_GPU(sfixn *Factorial, sfixn n, sfixn p, \
                                        double pinv, sfixn id)
{
  sfixn l = n - id;
  sfixn prod = mul_mod(Factorial[id], Factorial[1], p, pinv);
```

```
return quo mod(Factorial[n], prod, p, pinv);
}
// create the array of the coefficients of (x+1)^{k} for k in (1,2^{(e-1)})
__global__ void develop_xshift_GPU(sfixn *T, sfixn n, sfixn *Factorial, \
                                      sfixn p, double pinv)
{
  sfixn k = blockIdx.x * blockDim.x + threadIdx.x;
  sfixn m;
  sfixn pow2 = 1;
  if (k < n)
  {
//
     if (k > 1)
    {
     m = (k+1)/2; //k/2
      while (m != 0)
      {
        m /= 2;
        pow2 = 2;
      }
      T[k] = create\_binomial2\_GPU(Factorial, pow2, p, pinv, k+1 - pow2);
    }
  }
}
// create the product of two arrays representing polynomials
__device__ void conv_prod_GPU(sfixn *res, sfixn *T1, sfixn *T2, sfixn m, \
                                sfixn p, sfixn local n)
{
  sfixn i, j;
  sfixn K = blockIdx.x * blockDim.x + threadIdx.x;
  if (K < m)
  ł
    for (j=0; j<K; j++)
    {
      i = K - j;
                             //K = i+j
// if i < local_n + 1 then T1[i] != 0, else T1[i] = 0 so useless computations
      if ((i < local n+1) \&\& (j < local n))
        res[K] = (res[K] + T1[i]*T2[j]) \% p;
    }
    for (j=K+1; j<m; j++)
    ł
      \mathbf{i} = \mathbf{K} + \mathbf{m} - \mathbf{j};
      if ((i < local n+1) \&\& (j < local n))
        res[K] = (res[K] + T1[i] * T2[j]) \% p;
    }
  }
```

```
44
```

```
}
// addition of two arrays
__global__ void add_arrays_GPU(sfixn *res, sfixn *T1, sfixn *T2, sfixn size, \
                                 sfixn p)
{
  sfixn i = blockIdx.x * blockDim.x + threadIdx.x;
  if (i < size)
    \operatorname{res}[i] = \operatorname{add} \operatorname{mod}(\operatorname{T1}[i], \operatorname{T2}[i], p);
}
// creates an array of zeros
sfixn i = blockIdx.x * blockDim.x + threadIdx.x;
  if (i < n)
   T[i] = 0;
}
// initialize Polynomial shift
__global__ void init_polynomial_shift_GPU(sfixn *Polynomial, \
                      sfixn *Polynomial_shift, sfixn n, sfixn p)
{
  sfixn i = blockIdx.x * blockDim.x + threadIdx.x;
  sfixn j = 2*i;
  if (i < n/2)
  {
      if (i \% 2 == 0)
      Polynomial shift [j] = add mod(Polynomial [j], Polynomial [j+1], p);
//
      else // (i \% 2 == 1)
      Polynomial shift [j+1] = Polynomial [j+1];
  }
  /* EXAMPLE for n=8 :
     after this procedure :
     Polynomial shift = [f0+f1, f1, f2+f3, f3, f4+f5, f5, f6+f7, f7] */
}
// transfer at each step the polynomials which need to be multiplicated
\_global\_\_ void transfert\_array\_GPU(sfixn *Mgpu, sfixn *Polynomial\_shift, \label{eq:global})
      sfixn *Monomial_shift, sfixn n, sfixn local_n, sfixn p, double pinv)
{
  sfixn i = blockIdx.x * blockDim.x + threadIdx.x;
// sfixn B = 2*local n;
  sfixn pos, part, bool1, bool2;
// __shared__ sfixn sM[NB_THREADS];
                        EXAMPLE
  /*
```

ARRAY Polynomial_shift_device[i-1] considered

	X		Y
part=0	part = 1	part=2	part=3

 $local_n = size of a part$

ARRAY Mgpu[i] considered

 $B = 2 * local_n = size of a PART$ $m = local_n$

We want to fill the array Mgpu[i] like this : the polynomials which need to be multiplicated by $(x+1)^m$ are of odd part and we store them at the beginning of each PART of Mgpu[i]. The end of each part doesn't really contain $(x+1)^m$ as we need arrays to be multiplicated, so we avoid the multiplication by 1. Thus the end of each PART contains exactly :

```
if (i < n-1)
      T[i+1] = a;
    else
      T[0] = 0;
  }
}
// add parts of three arrays between them
__global__ void semi_add_GPU(sfixn *NewPol, sfixn *PrevPol1, \setminus
              sfixn *PrevPol2, sfixn n, sfixn local n, sfixn p)
{
  sfixn i = blockIdx.x * blockDim.x + threadIdx.x;
  sfixn part = i / local_n;
  sfixn pos = i \% local n;
  sfixn \ j \ = \ 2 \ * \ local_n \ * \ part \ + \ pos;
  sfixn res;
  if (i < n/2)
  {
      res = add mod(PrevPol1[j], PrevPol2[j], p);
      NewPol[j] = add mod(NewPol[j], res, p);
  }
}
taylor shift fft.cu
```

ARRAY fft considered

real coeffs	useless	real coeffs	useless
PART=0		PART=2	

 $B = 2 * local_n = size of a PART$

ARRAY Polynomial_shift_device considered

```
real coeffs
                          real coeffs
            part = 0
                            part = 1
    B = 2 * local n = size of a part
                                                                  */
  sfixn i = blockIdx.x * blockDim.x + threadIdx.x;
  sfixn B = 2*local n;
  if (i < n)
   {
      sfixn part = i / B;
      sfixn pos = i \% B;
      sfixn bool1 = (sfixn) (pos != 0);
      Polynomial_shift[i] = bool1 * mul_mod(winv, fft[2*B*part + pos -1], \setminus
                                                p, pinv);
    }
}
// transfer at each step the polynomials which need to be multiplicated
__global__ void transfert_array_fft_GPU(sfixn *fft, sfixn *Mgpu, sfixn n, \setminus
                                          sfixn local n)
{
  sfixn i = blockIdx.x * blockDim.x + threadIdx.x;
// sfixn B = 2*local n;
  sfixn part, pos, bool1, bool2;
  part = i / local n;
  pos = i \% local n;
  bool2 = part \% 2;
  bool1 = 1 - bool2;
  if (i < 2*n)
  {
11
      if (part \% 2 == 0)
      fft[i] = bool1 * Mgpu[(part/2)*local n + pos];
      else
        fft[i] = 0;
//
  }
}
 __global___void_full_monomial(sfixn_*Mgpu, sfixn_*Monomial_shift, \
sfixn n, sfixn local n)
{
  sfixn i = blockIdx.x * blockDim.x + threadIdx.x;
  sfixn part = i / local_n;
  sfixn pos = i \% local n;
  if (i < n)
  {
```

```
if (part \% 2 == 1)
      Mgpu[i] = Monomial_shift[pos];
  }
}
taylor shift conf.h
#ifndef _TAYLOR_SHIFT CONF H
#define TAYLOR SHIFT CONF H
// Libraries :
# include <stdlib.h>
\# include < stdio.h>
\# include < string.h>
# include <time.h>
# include <ctime>
# include <math.h>
# include <unistd.h>
\# include <iostream>
\# include <fstream>
using namespace std;
// Number of threads per block (size of a block) :
\#define NB\_THREADS 512
//#define MAX LEVEL 25
typedef int sfixn;
const sfixn Tmul = 512;
// \text{const} int BASE 1 = 31;
// Debuging flags
//#define DEBUG 0
#endif // TAYLOR SHIFT CONF H
File calling these procedures : testGPU.cu
  This code calls the procedure taylor_shift included in the file \mathit{taylor}\_\mathit{shift.cu} :
#include "taylor shift.h"
#include "taylor shift cpu.h"
#include "taylor_shift_conf.h"
```

```
#finctude 'taylor_shift_confin
#include "taylor_shift_kernel.h"
int main(int argc, char* argv[])
{
    // temporal data
    float total_time;
    cudaEvent_t start, stop; /* Initial and final time */
    // TIME
```

```
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);
// declaration of variables
int n, e, p;
double pinv;
char name file [100];
error message(argc);
p = atoi(argv[2]);
pinv = (double) 1/p;
n = size file(argv[1]);
e = (int) log2((double) n);
sprintf(name file, "Pol%d.shiftGPU %d.dat\0", e, p);
taylor shift GPU(n, e, argv[1], p, pinv);
// TIME
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&total time, start, stop);
cudaEventDestroy(stop);
total time /= 1000.0;
printf("%d %.6f ", e, total time);
return 0;
```

10.2 Horner's method C++ code

}

```
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include <unistd.h>
#include <iostream>
#include <fstream>
using namespace std;
/* Important to notice :
  n : number of coefficients of the polynomial considered
 n-1 : degree of the polynomial considered
 p : prime number, it must be greater than n
*/
// error message if there is a lack of arguments to make the program
void error message(int m)
{
```

```
if (m < 3)
    {
      printf ("******* ERROR, not enough arguments ! ********\n\
              The program works with the following parameters: (n/n'');
      printf ("1st parameter : file containing coefficients of the \backslash
              polynomial you want to consider.\langle n'' \rangle;
      printf ("2nd parameter : prime number p. n");
      exit(1);
    }
}
// function modulo (faster than using %p)
int double mul mod(int a, int b, int p, double pinv)
ł
  int q = (int) ((((double) a) * ((double) b)) * pinv);
  int res = a * b - q * p;
  return (res < 0) ? (-res) : res;
}
// creates an array of the sequence of the factorials until n
// modulo p (! size of the array = n+1)
void create factorial (int *Factorial, int n, int p, double pinv)
{
  int k;
  Factorial[0] = 1;
  Factorial[1] = 1;
  for (k=2; k< n+1; k++)
    Factorial[k] = double mul mod(k, Factorial[k-1], p, pinv);
}
// creates an array of the Newton's Binomials until n
// modulo p (! size of the array = n+1)
void create binomial CPU(int *Binomial, int *Factorial, \
                          int *Inverse p, int n, int p, double pinv)
{
 int k, l;
  int temp;
  for (k=0; k< n+1; k+) // we create together two parts of the array Binomial
  ł
    l = n-k;
    if (k>l)
                         // and finally this loop has just n/2 steps
      break;
    temp = double mul mod(Factorial[k], Factorial[l], p, pinv);
    Binomial[k] = double mul mod(Factorial[n], Inverse p[temp], p, pinv);
    Binomial[1] = Binomial[k];
  }
}
// stocks a file in an array
void stock file in array(char* filename, int n, int* & a)
{
```

```
ifstream data file;
  int i;
  data file.open(filename);
  if (! data file.is open())
    {
      printf ("\n Error while reading the file %s. Please check \setminus
                  if it exists ! \ n", filename);
      exit(1);
    }
  a = (int*) malloc (n*sizeof(int));
  for (i = 0; i < n; i + +)
    data file >> a[i];
  data file.close();
}
// stockes the array of Newton's coefficients in a file
void stock array in file(const char *name file, int *T, int size)
ł
  int i;
 FILE* file = NULL;
  file = fopen(name file, "w+");
  if (file == NULL)
  {
    printf ("error when opening the file ! \ n");
    exit(1);
  }
  // writting the file
  fprintf(file, "\%d", T[0]);
  for (i=1; i < size; i++)
    fprintf(file, "\n%d", T[i]);
  fclose(file);
}
// computes the number of lines of a file
int size file (char* filename)
{
  int size = 0;
  ifstream in (filename);
  std::string line;
  while(std::getline(in, line))
    size++;
  in.close();
  return size;
}
```

```
// display of an array
void display array(int *T, int size)
{
  int k;
  printf("[");
  for (k=0; k<size; k++)
    printf("%d ", T[k]);
  printf("] \langle n \rangle;
}
// create an array of the inverse numbers in \rm Z/pZ
void inverse p(int *T, int p, double pinv)
{
  int i, j;
 T[0] = 0;
  T[1] = 1;
  for (i=2; i < p; i++)
    for (j=2; j < p; j++)
      if (double_mul_mod(i, j, p, pinv) = 1)
      {
        T[i] = j;
        T[j] = i;
        break;
      }
}
// create the array of the coefficients of (x+1)^k for several k
void develop xshift(int *T, int e, int *F actorial, int *Inverse p,
                     int p, double pinv, int n)
{
  int i, j;
  int *bin;
  int power2 i = 2;
                          // for (x+1)^{0}
  T[0] = 1;
  T[1] = 1;
                          // for (x+1)^{1}
  T[n] = 1;
  for (i=2; i<e+1; i++) // for (x+1)^{i} with i in (2,e)
  ł
    bin = (int*) malloc((power2 i+1)*sizeof(int));
    create binomial CPU(bin, Factorial, Inverse p, power2 i, p, pinv);
    for (j=0; j<power2_i; j++)
      T[power2_i+j] = bin[j];
    free (bin);
    power2 i *= 2;
  }
}
// create the product of two arrays representing polynomials
void conv prod(int *res, int *T1, int *T2, int m, int p)
{
  int i, j, k;
```

```
for (i = 0; i < m; i + +)
    for (j=0; j < m; j++)
    {
      k = (i+j) \% m;
      res[k] = (res[k] + T1[i]*T2[j]) \% p;
  }
}
// addition of two arrays
void add arrays (int *res, int *T1, int *T2, int size, int p)
{
  int i;
  for (i=0; i<size; i++)
    res[i] = (T1[i] + T2[i]) \% p;
}
// creates Polynomial shift(x) = Polynomial(x+1)
void create polynomial shift CPU(int * Polynomial, int *T, )
            int *Monomial shift, int n, int p, double pinv, int local n)
{
  int i, j;
  int *Temp1, *Temp2, *Temp3, *res;
  if (local n != 1)
  {
    create polynomial shift CPU(Polynomial, T, Monomial shift, n, p, \setminus
                                  pinv, local n/2;
    if (local n != n)
    {
      Temp1 = (int *) calloc (2*local n, sizeof(int));
      Temp2 = (int *) calloc (2*local n, sizeof (int));
      Temp3 = (int *) calloc (2*local n, sizeof (int));
          = (int *) malloc (2*local n * size of (int));
      res
      memcpy(Temp3, Monomial shift + local n, (local n+1) * size of (int));
      for (j=0; j<n; j+=2*local n)
      ł
        memcpy(Temp1, T + j, local_n*sizeof(int));
        memcpy(Temp2, T + local_n + j, local_n * sizeof(int));
        for (i=0; i<2*local n; i++)
          res[i] = 0;
        conv prod(res, Temp3, Temp2, 2*local n, p);
        add_arrays(res, res, Temp1, 2*local_n, p);
        memcpy(T + j, res, 2*local n*sizeof(int));
      }
      free (Temp1);
      free(Temp2);
      free (Temp3);
      free(res);
    }
```

```
}
  else
  {
    for (i=0; i< n; i+=2)
    {
      T[i] = Polynomial[i] + Polynomial[i+1];
      T[i+1] = Polynomial[i+1];
    }
  }
}
int add mod(int a, int b, int p) {
    int r = a + b;
    r = p;
    r += (r >> 31) \& p;
    return r;
}
// Horner's method to compute g(x) = f(x+1) (equivalent to Shaw &
// Traub's method for a=1)
void horner shift CPU(int *Polynomial, int *Polynomial shift, int n, int p)
ł
  int i;
  int *temp;
  temp = (int *) calloc (n, size of (int));
  Polynomial\_shift[0] = Polynomial[n-1];
  for (i=1; i< n; i++)
  {
    memcpy(temp+1, Polynomial shift, i*sizeof(int));
    add arrays (Polynomial shift, Polynomial shift, temp, n, p);
    Polynomial shift [0] = add \mod(Polynomial \operatorname{shift} [0], Polynomial [n-1-i], p);
  }
  free(temp);
}
// MAIN
int main(int argc, char* argv[])
{
  // TIME
  cudaEvent t start, stop;
                                /* Initial and final time */
  cudaEventCreate(&start);
  cudaEventCreate(&stop);
  cudaEventRecord(start, 0);
  int n, p, e;
  int *Polynomial, *Polynomial shift2;
  float cpu time;
                           /* Total time of the cpu in seconds */
  // beginning parameters
```

```
error message(argc);
p = atoi(argv[2]);
n = size_file(argv[1]);
e = (int) log2((double) n);
stock file in array(argv[1], n, Polynomial);
Polynomial shift2 = (int*) calloc(n, sizeof(int));
horner shift CPU(Polynomial, Polynomial shift2, n, p);
// save in files the polynomial shift
char name file [100];
sprintf(name file, "Pol%d.shiftCPU %d.dat\0", e, p);
stock_array_in_file(name_file, Polynomial_shift2, n);
free (Polynomial);
free(Polynomial shift2);
// TIME
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&cpu time, start, stop);
cudaEventDestroy(stop);
printf("%.6f ", cpu time);
return 0;
```

10.3 Divide and Conquer C++ code

}

```
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include <unistd.h>
#include <iostream>
#include <fstream>
using namespace std;
typedef int sfixn;
const int BASE_1 = 31;
/* Important to notice :
  n : number of coefficients of the polynomial considered
 n-1 : degree of the polynomial considered
  p : prime number, it must be greater than n
*/
sfixn add mod(sfixn a, sfixn b, sfixn p) {
    sfixn r = a + b;
    r = p;
    r += (r >> BASE 1) \& p;
```

```
return r;
}
sfixn mul mod(sfixn a, sfixn b, sfixn n, double ninv) {
    sfixn q = (sfixn) ((((double) a) * ((double) b)) * ninv);
    sfixn res = a * b - q * n;
    res = n;
    res += (res >> BASE 1) \& n;
    return res;
}
void egcd(sfixn x, sfixn y, sfixn *ao, sfixn *bo, sfixn *vo) {
    sfixn t, A, B, C, D, u, v, q;
    u = y; v = x;
    A = 1; B = 0;
    C = 0; D = 1;
    do {
        \mathbf{q} = \mathbf{u} / \mathbf{v};
         t = u;
         u = v;
         \mathbf{v} = \mathbf{t} - \mathbf{q} \ast \mathbf{v};
         t = A;
        A = B;
        B = t - q * B;
         t = C;
         C = D;
        D \;=\; t \;-\; q \;\; * \; D\,;
     \} while (v != 0); 
    *ao = A;
    *bo = C;
    *vo = u;
}
sfixn inv mod(sfixn n, sfixn p) {
    sfixn a, b, v;
    egcd\,(\,n\,,\ p\,,\ \&a\,,\ \&b\,,\ \&v\,)\,;
    if (b < 0) b += p;
    return b % p;
}
sfixn quo mod(sfixn a, sfixn b, sfixn n, double ninv) {
    return mul_mod(a, inv_mod(b, n), n, ninv);
}
// error message if there is a lack of arguments to make the program
void error message(int m)
ł
  if (m < 3)
```

```
{
      printf("******* ERROR, not enough arguments ! ********\n\setminus
              The program works with the following parameters:(n \setminus n'');
      printf ("1st parameter : file containing coefficients of the \
              polynomial you want to consider.(n'');
      printf ("2nd parameter : prime number p. n");
      exit(1);
    }
}
// function modulo (faster than using %p)
int double mul mod(int a, int b, int p, double pinv)
ł
  int q = (int) ((((double) a) * ((double) b)) * pinv);
  int res = a * b - q * p;
  return (res < 0) ? (-res) : res;
}
// creates an array of the sequence of the factorials until n
// modulo p (! size of the array = n+1)
void create factorial (int *Factorial, int n, int p, double pinv)
{
  int k;
  Factorial[0] = 1;
  Factorial[1] = 1;
  for (k=2; k< n+1; k++)
    Factorial[k] = double mul mod(k, Factorial[k-1], p, pinv);
}
// creates an array of the Newton's Binomials until n
// modulo p (! size of the array = n+1)
void create_binomial_CPU(int *Binomial, int *Factorial, \setminus
                          int n, int p, double pinv)
{
  int k, l;
 int temp;
  for (k=0; k< n+1; k+) // we create together two parts of the array Binomial
  ł
    l = n-k;
    if (k>l)
                      // and finally this loop has just n/2 steps
      break;
    temp = mul mod(Factorial[k], Factorial[l], p, pinv);
    Binomial[k] = quo mod(Factorial[n], temp, p, pinv);
    Binomial[l] = Binomial[k];
  }
}
// stocks a file in an array
void stock file in array(char* filename, int n, int* & a)
ł
  ifstream data_file;
```

```
int i;
  data_file.open(filename);
  if (! data file.is open())
    {
      printf ("\n Error while reading the file %s. Please \setminus
                  check if it exists ! \ n", filename);
      exit(1);
    }
  a = (int *) malloc (n*sizeof(int));
  for (i=0; i< n; i++)
    data\_file >> a[i];
  data file.close();
}
// stockes the array of Newton's coefficients in a file
void stock_array_in_file(const char *name_file, int *T, int size)
{
  int i;
  FILE * file = NULL;
  file = fopen(name_file, "w+");
  if (file == NULL)
  {
    printf ("error when opening the file ! \ n");
    exit(1);
  }
  // writting the file
  fprintf(file, "%d", T[0]);
  for (i = 1; i < size; i++)
    fprintf(file, "\normalfont{nmm}d", T[i]);
  fclose(file);
}
// computes the number of lines of a file
int size_file(char* filename)
{
  int size = 0;
  ifstream in (filename);
  std::string line;
  while(std::getline(in, line))
    size++;
  in.close();
  return size;
}
// display of an array
```

```
void display array(int *T, int size)
{
  int k;
  printf("[");
  for (k=0; k<size; k++)
    printf("%d", T[k]);
  printf("] \langle n");
}
// create an array of the inverse numbers in Z/pZ
void inverse p(int *T, int p, double pinv)
{
  int i,j;
  T[0] = 0;
 T[1] = 1;
  for (i = 2; i < p; i + +)
    for (j=2; j < p; j++)
      if (mul mod(i, j, p, pinv) == 1)
      {
        T[i] = j;
        T[j] = i;
        break;
      }
}
// create the array of the coefficients of (x+1)^k for several k
void develop xshift(int *T, int e, int *Factorial, int p, double pinv, int n)
{
  int i, j;
  int *bin;
  int power2 i = 2;
                          // for (x+1)^0
  T[0] = 1;
 T[1] = 1;
                          // for (x+1)^{1}
  T[n] = 1;
  for (i=2; i<e+1; i++) // for (x+1)^{i} with i in (2,e)
  {
    bin = (int *) malloc ((power2 i+1)*sizeof (int));
    create binomial CPU(bin, Factorial, power2 i, p, pinv);
    for (j=0; j < power2 i; j++)
      T[power2_i+j] = bin[j];
    free(bin);
    power2 i *= 2;
  }
}
// create the product of two arrays representing polynomials
void conv prod(int *res, int *T1, int *T2, int m, int p, double pinv)
{
  int i, j, k, temp;
  for (i = 0; i < m; i + +)
    for (j=0; j < m; j++)
```

```
{
      k = add mod(i, j, m);
      temp = mul mod(T1[i], T2[j], p, pinv);
      res[k] = add mod(res[k], temp, p);
  }
}
// addition of two arrays
void add arrays(int *res, int *T1, int *T2, int size, int p)
{
  int i;
  for (i=0; i<size; i++)
    \operatorname{res}[i] = \operatorname{add} \operatorname{mod}(\operatorname{T1}[i], \operatorname{T2}[i], p);
}
// creates Polynomial_shift(x) = Polynomial(x+1)
void create polynomial shift CPU(int *Polynomial, int *T, \setminus
     int *Monomial shift, int n, int p, double pinv, int local n)
{
  int i, j;
  int *Temp1, *Temp2, *Temp3, *res;
  if (local n != 1)
  {
    create polynomial shift CPU(Polynomial, T, Monomial shift, n, <math>\setminus
                                    p, pinv, local n/2;
    if (local n != n)
    {
      Temp1 \ = \ (int *) \ calloc (2*local_n , \ sizeof(int));
      Temp2 = (int *) calloc (2*local n, sizeof(int));
      Temp3 = (int *) calloc(2*local n, sizeof(int));
           = (int*) malloc(2*local n * sizeof(int));
      res
      memcpy(Temp3, Monomial shift + local n, (local n+1) * size of (int));
      for (j=0; j<n; j+=2*local n)
      ł
        memcpy(Temp1, T + j, local n * sizeof(int));
        memcpy (Temp2, T + local n + j, local n + size of (int));
         for (i=0; i<2*local n; i++)
           res[i] = 0;
         conv prod(res, Temp3, Temp2, 2*local_n, p, pinv);
        add_arrays(res, res, Temp1, 2*local n, p);
        memcpy(T + j, res, 2*local n*sizeof(int));
      }
      free (Temp1);
      free(Temp2);
      free (Temp3);
      free (res);
    }
  }
```

```
else // (local n == 1)
  {
   for (i=0; i< n; i+=2)
    {
     T[i] = add mod(Polynomial[i], Polynomial[i+1], p);
     T[i+1] = Polynomial[i+1];
   }
 }
}
// MAIN
int main(int argc, char* argv[])
{
  float cpu time;
                          /* Total time of the cpu in seconds */
 // TIME
  cudaEvent t start, stop;
                               /* Initial and final time */
  cudaEventCreate(&start);
  cudaEventCreate(&stop);
  cudaEventRecord(start, 0);
 int n, p, e;
  int *Factorial, *Binomial;
  int *Polynomial, *Polynomial shift1;
  int *Monomial shift;
  double pinv;
  // beginning parameters
  error message(argc);
  p = atoi(argv[2]);
  pinv = (double) 1/p;
 n = size file(argv[1]);
  e = (int) log2((double) n);
  stock file in array(argv[1], n, Polynomial);
  // allocation of memory
                    = (int*) malloc((n+1)*sizeof(int));
  Factorial
  Binomial
                    = (int*) malloc((n+1)*sizeof(int));
                    = (int *) malloc ((n+1)*size of (int));
  Monomial shift
  Polynomial shift1 = (int *) calloc (n, sizeof(int));
  // instructions
  create_factorial(Factorial, n, p, pinv);
  create binomial CPU(Binomial, Factorial, n, p, pinv);
  develop xshift (Monomial shift, e, Factorial, p, pinv, n);
  create polynomial shift CPU (Polynomial, Polynomial shift1, \
                               Monomial shift, n, p, pinv, n);
  // save in files the polynomial_shift
  char name file [100];
  sprintf(name file, "Pol%d.shiftCPU %d.dat\0", e, p);
  stock array in file(name file, Polynomial shift1, n);
```

```
// free memory
free (Factorial);
free (Binomial);
free (Polynomial_shift1);
free (Polynomial_shift1);
free (Monomial_shift);
// TIME
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&cpu_time, start, stop);
cudaEventDestroy(stop);
cpu_time /= 1000.0;
printf("%.6f ", cpu_time);
return 0;
```

10.4 Maple code

}

The procedure we describe in this part makes the Taylor shift by one of a polynomial pp of variable x in input modulo *prime* which is a prime number. We can create a random polynomial pp with the maple instruction *randpoly*, for example :

 $pp := randpoly(x, degree = 2^{10} - 1, terms = 2^{10})$:

Then we can run the following procedure with pp and a prime number we choose (958922753 as for the other examples). Here is the procedure :

```
xplus1 := proc(pp,x,prime)
local p, L, d, i, j, res, st, cputime:
  st := time():
  p := collect(pp, x):
 d := degree(p, x):
 L := Array (1..d+1):
  for i from d to 0 by -1 do
    L[d+1-i] := coeff(p, x, i):
  od :
  for i from 1 to d do
    for j from 2 to d-i+2 do
      L[j] := (L[j-1] + L[j]) \mod \text{ prime}:
    od :
  od :
  res := 0:
  for i from 1 to d+1 do
    res := (res + L[i] * x^{(d+1-i)}) \mod prime:
  od :
  cputime := time() - st;
 # return cputime:
```

return res; end:

References

- [1] Changbo Chen, Marc Moreno Maza, and Yuzhen Xie. Cache complexity and multicore implementation for univariate real root isolation. *Journal of Physics : Conferences Series*, 2010.
- [2] Pavel Emeliyanenko. Advanced Parallel Processing Technologies : 8th International Symposium, Efficient Multiplication of Polynomials on Graphics Hardware. Max-Planck-Institut für Informatik, Saarbrücken, Germany, 2009.
- [3] Pavel Emeliyanenko. High-performance polynomial gcd computations on graphics processors. pages 134–149, 2010.
- [4] Joachim Von Zur Gathen and Jürgen Gerhard. Fast algorithms for Taylor shifts and certain difference equations. Universität-GH Paderborn D-33095 Paderborn, Germany, 1997.
- [5] Joachim Von Zur Gathen and Jürgen Gerhard. Modern Computer Algebra 2nd edition. Universität-GH Paderborn D-33095 Paderborn, Germany, 2003.
- [6] A.B.M. Zunaid Haque. Multi-threaded real root isolation on multi-core architectures. PhD thesis, University of Western Ontario, London, Ontario, Canada, 2012.
- [7] Marc Moreno Maza. Foundations of computer algebra : Fast polynomial multiplication. 2008.
- [8] Wei Pan. Algorithmic Contributions to the Theory of Regular Chains. PhD thesis, University of Western Ontario, London, Ontario, Canada, 2011.
- [9] J. Schönheim. Conversion of Modular Numbers to their Mixed Radix representation by a Matrix Formula. Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel, 1967.