
Master degree in Mathematical Engineering (Advanced Scienti�c Computing) of Lille 1

Universities of Lille 1 and Western Ontario

internship report :

Real root isolation for univariate polynomials
on GPUs and multicores

Author :

Alexandre Temperville
Supervisor :

Dr. Marc Moreno Maza

April 16th - August 16th 2012

Presentation June 16th 2012

http://mathematiques.univ-lille1.fr/Formation/Masters-de-l-UFR-de-Mathematiques/Masters-ingenierie-mathematiques/Master-2-specialite-scientific-computing/

Acknowledgements

First of all, I thank Marc Moreno Maza to supervise me all these months and also for his welcome,
his help, his explanations and all the comments he gave me to improve my work and this paper. I want
to thank also all the team of the lab, Changbo Chen, Rong Xiao, Anis Sardar Haque and Paul Vrdim
for their advice concerning anything, whether it was for the work or for the city, their help and their
welcome.

I also thank all the professors of the Master Degree of Computer Sciences at Lille 1 for their patience
with my questions, their interesting courses, and in particular Chistophe Besse and Nouredine Melab who
are the professors in charge of this Master at Lille 1 for letting me discover all this year High Performance
Computing and for their involving in this Master allowing me to be put forth my best e�orts. I thank
also François Lemaire and Adrien Poteaux who coordinates relations between Lille 1 and UWO and for
lending one's support to me.

I thank also my roommates, Matthew and Raj, who give me a nice stay and also for their kindness,
their humor and their friendship. Life in Canada without them would not be the same.

To �nish I want to thank my family and my friends sending me emails, giving me shouts and news,
in particular my little brother Jérôme to help me in English. It was really encouraging from the part of
everyone, so thank you everybody.

1

Contents

1 Internship context . 3
1.1 University of Western Ontario of London (UWO) 3
1.2 Departments of Computer Science and Applied Mathematics 3
1.3 My supervisor, professor Marc Moreno Maza . 3
1.4 Maple . 3
1.5 Purpose of my internship . 3

2 Key points for the research of real roots of a univariate polynomial 5
2.1 Descartes' rule of signs . 5
2.2 Horner's method . 5
2.3 Example . 5
2.4 Vincent Collins Akritas Algorithm . 6
2.5 Modular arithmetic . 6
2.6 Chinese Remainder Theorem . 9

3 Taylor shift . 10
3.1 Divide & Conquer method (D & C) . 10

3.2 Compute the (x + 1)2
i

s . 11
4 First steps : Polynomials of size 2 to 512 . 15

4.1 The beginning . 15
4.2 The following steps . 15
4.3 The plain multiplication & the right shift . 15
4.4 Partial additions . 17
4.5 The arrays . 17

5 Fast Fourier Transform (FFT) . 19
5.1 Discrete Fourier Transform . 19
5.2 Convolution of polynomials . 19
5.3 The Fast Fourier Transform . 20

6 Polynomials of high degrees (> 512) . 22
6.1 The array for FFT operations . 22
6.2 Multiplication using FFT . 22

7 Future works . 23
7.1 Re�ection remarks and improvements . 23
7.2 Prime numbers to consider . 23
7.3 Combining several computations of the Taylor_shift procedure 23

8 Benchmarks . 25
9 Conclusion . 31
10 Appendix . 32

10.1 Divide and Conquer Cuda code . 32
10.2 Horner's method C++ code . 50
10.3 Divide and Conquer C++ code . 56
10.4 Maple code . 63

2

1 Internship context

1.1 University of Western Ontario of London (UWO)

The University of Western Ontario, located in the city of London and generally called UWO, is among
the top 10 Canadian universities. Renowned for the quality of its students' life, this university is also
worldly ranked between 150 and 300, from various sources.

1.2 Departments of Computer Science and Applied Mathematics

These departments are located in the building called Middlesex College we can see in the presentation
page.

1.3 My supervisor, professor Marc Moreno Maza

Marc Moreno Maza is an associate professor in the department of Computer Sciences and in the
department of Applied Mathematics at the University of Western Ontario. He is also a Principal Scientist
in the Ontario Research Centre for Computer Algebra (ORCCA).

Marc Moreno Maza's research activities have four directions :
� Study theoretical aspects of systems of polynomial equations and try to answer the question �what
is the best form for the set of solutions ?�

� Study algorithmic answers to the question �how can we compute this form of the set of solutions at
the lowest cost ?�

� Study implementation techniques for algorithms to make the best use of today's computers.
� Apply it to unsolved problems when the prototype solver is ready.

1.4 Maple

Conforming to the research activities of my supervisor and of the departments of Computer Science
and Applied Mathematics, we work in close cooperation with the software company Maplesoft, which
is developing and distributing the computer algebra system Maple. Our main purpose is to provide
Maple's end-users with symbolic computation tools that makes best use of computer resources and
takes advantage of hardware acceleration technologies, in particular graphics processing units (GPUs)
and multicores. Marc Moreno Maza's team is currently working on a library called cumodp which will be
integrated into Maple so as to do fast arithmetic operations over prime �elds (that is, modulo a prime
number).

1.5 Purpose of my internship

I participate to the elaboration of the library cumodp. My objective is to develop code for the exact
calculation of the real roots of univariate polynomials. Stating this problem is very easy. However, as
one dives into the details, one realizes that there are lots of challenges in order to reach highly e�cient
algorithmic and software solutions.

The �rst challenge is that of representation. Traditionally, scienti�c software provide numerical approx-
imations to the roots (real or complex) of a univariate polynomial which coe�cients might themselves be
known inaccurately. Nevertheless, in many applications, polynomial systems result from a mathematical
model and their coe�cients are known exactly. In this case, it is desirable to obtain closed form formulas

for the roots of such polynomials, like x =
1±
√

5

2
. It is well know, however, from Galois Theory, that

the roots of univariate polynomials of degree higher than 4 cannot be expressed by radicals.
In this context, computing the real roots of such a polynomial f(x) ∈ R[x] means determining pairwise

disjoint intervals with rational end points and an e�ective one-to-one map between those intervals and
the real roots of f(x).

3

Algorithms realizing this task are highly demanding in computer resources. In addition, such most
e�cient algorithms combine di�erent mathematical tools such as Descartes' rule of signs, Fast Fourier
Transforms (FFTs), continued fractions, computing by homomorphic images, etc. Therefore, one of my
�rst tasks when I arrived in London, was to learn these techniques which are at the core of the problem
which is proposed to me.

4

2 Key points for the research of real roots of a univariate poly-
nomial

2.1 Descartes' rule of signs

In his 1637 treaty called "La Géométrie", René Descartes expressed a rule allowing to estimate the
number c of positive real roots of a univariate polynomial, which we commonly call the Descartes's rule
of signs. Later, in 1828, Carl Friedrich Gauss proved that if we count the roots with their multiplicities,
then the number of positive roots has the same parity as c. Usually, Descartes' rule of signs refers also
to the enhancement of Gauss.

Descartes' rule of signs (DRS). Let us consider a univariate polynomial P ∈ R[X] and the sequence
(an) of its non-zero coe�cients. Let c be the number of sign changes of the sequence (an). Then the
number of positive roots of P is at most c.

Gauss' property. If we consider the previous rule of signs and count the roots with their multiplicities,
then the number of positive real roots of P has the same parity than c.

Consequence : We can also �nd the number of negative real roots applying Descartes' rule of signs to
Q(X) = P (−X).

This easy rule is the pillar of the reasoning in our work. Indeed, deciding where the real roots of a
polynomial are located reduces to the problem of counting the number of real roots of a polynomial in
an interval. The example of Section 2.3 illustrates this process. The following basic theorem plays an
essential role in the proof of Descartes' rule of signs.

Theorem of the intermediate values (TIV). If f is a real-valued continuous function on the interval
[a, b] and u is a number between f(a) and f(b), then there exists c ∈ [a, b] such that we have f(c) = u.

In particular if u = 0, then there exists c ∈ [a, b] such that f(c) = 0 holds.

2.2 Horner's method

This well-known high school tricks is used for evaluating a polynomial e�ciently. Instead of considering
P (X) =

∑n
i=0 ai X

i = a0 + a1 X + a2 X
2 + ... + an X

n, we write P as

P (X) = a0 + X (a1 + X (a2 + X (· · · (an−1 + (an X) · · ·)))) .

This allows one to reduce the number of coe�cient operation necessary to evaluate P (X) at a point from
Θ(n2) to Θ(n).

Example : Let us consider P (X) = 3X3 − 5X2 − 3X + 2. We want to calculate P (4) by hand.
Naive method : P (4) = 3× 43 − 5× 42 − 3× 4 + 2
So P (4) = 3× 43 − 5× 16− 12 + 2 = 3× 16× 4− 80− 10 = 3× 64− 90 = 192− 90 = 102
Horner's method : P (X) = 2 + X (−3 + X (−5 + 3X))
So : P (4) = 2 + 4 (−3 + 4 (−5 + 3 4)) = 2 + 4 (−3 + 4× 7) = 2 + 4× 25 = 102

2.3 Example

Let us consider P (X) = X3 + 3X2 −X − 2.
According to the Descartes' rule of signs, c = 1 so P has 1 positive root.
Let us consider Q(X) = P (−X) = −X3 + 3X2 + X − 2, here c = 2 so P has either 2 either 0 negative
roots. We have P (−1) = 1 and limX→−∞ P (X) = −∞ so there exists r1 ∈] −∞;−1[|P (r1) = 0, then
we deduce that there are exactly 2 negative roots.
Using the TIV for u = 0, we can re�ne these intervals, calculating P at some real numbers :
As P (−1) = 1 and P (−2) = −2, then r1 ∈]− 2,−1[.
As P (0) = −2 and P (−1) = 1, then the second negative root r2 ∈]− 1; 0[.
As P (0) = −2 and P (1) = 1, then the positive root is r3 ∈]0, 1[.

5

2.4 Vincent Collins Akritas Algorithm

To isolate the real roots of a polynomial P , our objective is to use the Vincent-Collins-Akritas (VCA)
Algorithm which computes a list of disjoint intervals with rational endpoints such that each real root of
P belongs to a single interval and each interval contains only one real root of P . As mentioned above,
the problem of isolating the real roots of P and that of counting its real roots are essentially the same.
Therefore, if an algorithm solves one of these two problems, then is solves the other. The following
Algorithm 1 (taken from [1]) uses Algorithm 2 and shows how we can reduce the search for the roots in
R to the search of the roots in]0, 1[.

Algorithm 1 calls several times the procedure RootsInZeroOne which, itself, performs several times
a Taylor shift by 1 (usually called Taylor shift). The Taylor shift by a ∈ R of a polynomial P consists
of computing the coe�cients of the polynomial P (x + a) in the monomial basis. We will see later what
there are di�erent ways to do this Taylor shift by 1. Even if evaluating P (x + 1) seems an operation
mathematically trivial, non-trivial algorithms have been developed to perform this operation e�ciently
on polynomials of large degrees.

Since the dominant computational costs of the VCA Algorithm comes from the Taylor shift by 1, it
is natural to optimize this operation, in particular, in terms of parallelism and data locality. Of course
Algorithms 1 and 2, with their divide and conquer scheme, seem to provide additional opportunities for
concurrent execution. However, the work load in the recursive calls of Algorithms 1 and 2 is generally
largely unbalanced, thus, leading to very little parallelism in practice.

2.5 Modular arithmetic

Computing with polynomials or matrices over Z (and thus Q, R, C) one generally observes that
expressions swell in the coe�cients. This phenomenon can be a severe performance bottleneck for com-
puter algebra software. There are essentially two ways to deal with that. One solution is to use highly
optimized multi-precision libraries, such as GMP, for computing in Z and Q. Another approach consists
in computing by homomorphic images. One popular way to do this is via (one of the variants of) the
Chinese Remainder Algorithm, the other one is to Hensel's Lemma. In our work, we rely on the former,
see Section 2.6.

6

Therefore, we replace computations (for instance the Taylor shift by 1) over Z by computations over
prime �elds of the form Z/pZ where p has machine word size. Then it becomes essential to perform
e�ciently arithmetic operations in Z/pZ.

In the C code below, used in my implementation, s�xn represents an integer according to the ar-
chitecture and operating system of the target computer. For Linux on Intel 64-bit, s�xn is an int) and
BASE_1 = 31.

add_mod

It corresponds to the addition modulo a number, using binary operations.

__device__ __host__ __inline__

sfixn add_mod(sfixn a, sfixn b, sfixn p)

{

sfixn r = a + b;

r -= p;

r += (r >> BASE_1) & p;

return r;

}

mul_mod

It corresponds to the multiplication modulo a number, using binary operations also, but contrary to
what we can expect, we use �oating point numbers and the Euclidean division.

__device__ __host__ __inline__

sfixn mul_mod(sfixn a, sfixn b, sfixn n, double ninv)

{

sfixn q = (sfixn) ((((double) a) * ((double) b)) * ninv2);

sfixn res = a * b - q * n;

res += (res >> BASE_1) & n;

res -= n;

res += (res >> BASE_1) & n;

return res;

}

The reason of the use of this mul_mod procedure is detailed in [8] pages 78-79, it takes advantage of
hardware �oating point arithmetic. Double precision �oating point numbers are encoded on 64 bits and
make this technique work correctly for primes p up to 30 bits. This technique comes from the Euclidean
division. Let us explain this, to obtain res = a× b mod p with p a prime number and res < p, then we
have to divide a× b by p to obtain the quotient q and then the remainder. This is equivalent to multiply
a× b with pinv and do an integer cast after so q = (int) a× b× pinv.
Let us consider prod = a× b. Let us recall also that the Euclidean division of a integer prod by another
p is of the form : prod = quotient ∗ p + remainder with q = quotient and res = remainder < p.

Then : res = a × b − q × p. After, there are just some binary operations to have clearly the good
number we wish.

inv_mod

To compute the inverse of an integer a modulo another integer p, we must �rst check if this possible.
Indeed, this is possible only if a and m are relatively primes. If p is a prime number and 1 ≤ a < p,
this is always the case. That's why we will only deal with prime numbers in our code as we will need to
compute inverse of numbers. To do that, we will use the extended Euclidean algorithm which consists

7

on �nding the integers u and v such that a × u + b × v = GCD(a, b) for two integers a and b given. In
particular, if we take b = p a prime number then we have a × u ≡ 1 mod p so u will be the inverse we
are looking for. egcd computes this u used in the function inv_mod.

__device__ __host__ __inline__

void egcd(sfixn x, sfixn y, sfixn *ao, sfixn *bo, sfixn *vo)

{

sfixn t, A, B, C, D, u, v, q;

u = y; v = x;

A = 1; B = 0;

C = 0; D = 1;

do {

q = u / v;

t = u;

u = v;

v = t - q * v;

t = A;

A = B;

B = t - q * B;

t = C;

C = D;

D = t - q * D;

} while (v != 0);

*ao = A;

*bo = C;

*vo = u;

}

__device__ __host__ __inline__

sfixn inv_mod(sfixn n, sfixn p)

{

sfixn a, b, v;

egcd(n, p, &a, &b, &v);

if (b < 0) b += p;

return b % p;

}

quo_mod

Using the previous modular instructions, this one gives the quotient modulo a prime number of two
integers.

__device__ __host__ __inline__

sfixn quo_mod(sfixn a, sfixn b, sfixn n, double ninv)

{

return mul_mod(a, inv_mod(b, n), n, ninv);

}

8

2.6 Chinese Remainder Theorem

As we are working modulo a prime number in our work, it is not su�cient to give the answer in Z.
We will need to run our code several times with di�erent values of p and then recombine the results to
get the real solution on Z. In this section, we recall the Chinese Remainder theorem and explain how we
can use it, the implementation in the code will be explained later.

Chinese Remainder theorem 1st version (CRT1). Let us consider m1, m2, ..., mr a sequence of
r positive integers which are pairwise coprime numbers. Let us consider also a sequence (ai) of integers
and the following system (S) of congruence equations :

(S) :

x ≡ a1 mod m1

x ≡ a2 mod m2

...

x ≡ ar mod mr

Then (E) has a unique solution modulo M = m1 ×m2 × · · · ×mr :

x =

r∑
i=1

ai ×Mi × yi = a1 ×M1 × y1 + a2 ×M2 × y2 + · · ·+ ar ×Mr × yr

with ∀i ∈ [1, r], Mi =
M

mi
and yi ×Mi ≡ 1 mod mi.

Running the code of the Taylor shift by 1 we implement a lot of times for di�erent prime numbers
mi, we will obtain all the coe�cients ai and then we will just need to get the integers Mi and yi to have
x mod M . We can so use this theorem to solve our problem and �nd the di�erent coe�cients of our
polynomial 'shifted'. One may notice that in this case, we will obtain the solution in Z[x]/MZ and not
in Z as we want but according to the following lemma coming from [4], if M is su�ciently big then we
have our solution in Z[x] :

Lemma. Let f ∈ Z[x] be a nonzero polynomial of degree n ∈ N and a ∈ Z. If the coe�cients of f are
bounded in absolute value by B ∈ N, then the coe�cients of g = f(x + a) ∈ Z[x] are absolutely bounded
by B(|a|+ 1)n.

The Chinese Remainder Theorem is also known in its algebraic form :

Chinese Remainder theorem 2nd version (CRT2). Let us consider m1, m2, ..., mr a sequence of r
positive integers which are pairwise coprime numbers and M = m1 ×m2 × · · · ×mr. Then :

Z/MZ ∼= Z/m1Z× Z/m2Z× · · · × Z/mrZ.

9

3 Taylor shift

The Taylor shift by a of a polynomial P consists on evaluating the coe�cients of P (x + a). So, for a
polynomial P =

∑
0≤i≤n fi x

i ∈ Z[x] and a ∈ Z, we want to compute the coe�cients g0, . . . , gn ∈ Z of
the Taylor expansion :

Q(x) =
∑

0≤k≤n

gk x
k = P (x + a) =

∑
0≤i≤n

fi (x + a)i

There exists several classical polynomial arithmetic methods and also asymptotically fast methods
described in [4]. Among the three classical polynomial arithmetic methods explained in [4], all these
methods amount to deal with the Horner's method to do a Taylor shift by 1. We have already explained
in what consists this method in the part Horner's rule. I implement the Horner's method in C++ code,
see appendix for this code.

Concerning the asymptotically fast methods, if we take a look at the di�erent execution times, we
remark that the divide and conquer (D & C) method is the fastest one. This is the method we favour
for parallel programming. I implement also a melt of the convolution method and the D & C method in
C++ code, just to have a preview of the result and compare it with the Horner's method and the D & C
method in parallel. I don't develop too much this method for the reason I had implemented the Horner's
method and it was su�cient to compare with the parallel method. In our work we mainly want to do a
Taylor shift by 1.

3.1 Divide & Conquer method (D & C)

This method consists to split a polynomial P of degree n = 2e−1 (so this polynomial as 2e coe�cients)
in other polynomials we split also. We will call size of a polynomial the number of coe�cients of this
polynomial, so we consider here polynomials of size a power of 2. We split the polynomial considered as
the following (for a Taylor shift by 1) :

At the beginning, we split P like this :

P (x) = P (0)(x + 1) + (x + 1)
n+1
2 × P (1)(x + 1)

Then, we evaluate P (0)(x + 1) and P (1)(x + 1) recursively. So we have �nally to consider 3 things,

the computations of all the (x + 1)2
i

for i ∈ [0, e− 1], a multiplication of one of these (x + 1)2
i

with the
evaluation of a P (j)(x + 1) and then an addition. One may notice that :

� We just need all the Taylor shift by 1 of the monomial x2i for i ∈ [0, e− 1], namely (x + 1)2
i

.
� At each step, we split polynomials of size 2d in two polynomials of size 2d−1, so at each step of
the recursion, we approach a size which will be more and more easier to compute (and the size is
always a power of 2).

� Contrary to the polynomial P (j) we consider, (x + 1)2
i

is not a power of 2 (except for i = 0, 1).
This is a problem we will have to solve later, and we will see why and what's our strategy.

� At the next step of this recursion, we call the coe�cients of P (x).

We can represent the way to do this recursion as the following tree. At the beginning we want to split
the polynomial P (x + 1) not evaluated in two polynomials, which need to be split in turn, and so on. So
the recursion begins at the top of this tree.

10

The �rst problem we can encounter is the fact it is not simple to make a recursive algorithm in
parallel. That's why �nally we will consider the tree since its base, i.e. from the coe�cients of the input
polynomial coe�cients. In the C++ code, I did the recursive method, and it was easier to write a method
from the base in parallel. In each branch, we see if we need to multiply the polynomial evaluated at the
base by a monomial shift or not. We see that for each step, the parallelism can be obtained easily. Now
the di�culty is to work step by step, to consider the good sizes of the arrays, the number of polynomials,
the position of the coe�cients we are modifying, and the way to do that as fast as possible.

3.2 Compute the (x+ 1)2
i
s

Idea

To compute the sequence of (x + 1)2
i

, we have di�erent ways to proceed. But all the classic ways are
not necessary the best to compute all the coe�cients.

If we need all the (x + 1)j for j ∈ [1, n], it will be better to use the formula
(
n+1
k+1

)
=
(
n
k

)
+
(

n
k+1

)
to

compute each element and proceed to a divide and conquer method to compute in parallel the coe�cients.
But, we just need the coe�cients of (x + 1)2

i

. Then, if we proceed with a divide and conquer on all the

elements of (x + 1)j and just keep the (x + 1)2
i

, we can have a lot of computations, in particular for i
big, which won't be stored and just be needed to go to the next power of (x + 1). That's not what we
want, so we will use the formula of the binomial coe�cients with the factorial sequence to get directly
the coe�cient of each (x + 1)2

i

.
With the method I will explain in this part, I think we loose a little time at the beginning, computing

yet the factorial sequence in parallel. But after, the computations are fast and nothing is super�uous.
So, to compute the Newton's binomial coe�cients, we want to use the following formula :

∀n ∈ N, (x + 1)n =

n∑
k=0

(
n

k

)
xk with

(
n

k

)
=

n!

k! (n− k)!

We need so to compute all the elements i! ∀i ∈ [0, n].

11

The sequence of factorials

To use the previous formula to get all the binomials' coe�cients, we need the values of each i! mod p
for i ∈ [0, n].

One may notice that to obtain i!, we need (i − 1)!. So if we consider the computation in serie of all
the i!, it may be very long to obtain n! for n big.

First of all, we need an array of size n+ 1, called Factorial_device in my code as we also need 0!. But
we don't really need to compute 0! = 1 so we'll consider the following computations on Factorial_device
+ 1 thus we just compute i! for i ∈ [1, n]. Now we consider computations of size n = 2e with e ∈ N∗. As
n is a power of 2, I was looking for a code to compute pairwise elements.

Mapping for the computation of the factorial sequence

To understand the code, see the following picture from the bottom which is the �rst step : the
initialization. First we initialize the array Factorial_device + 1 letting the even elements as their position
and we do multiplications on the odd elements.

Then, in each step, we consider the array per parts. We can see a part in each step as the following :
we multiply the element of a position by a same number for a part, these 'same numbers' are what I call
"pillar factors", represented by the darkest boxes. We can see that step after step, we compute several i!
in parallel and �nally get every i! in log2(n) steps.

See in the Appendix the �le Taylor_shift_kernel.cu and in particular the procedures identity_GPU,
create_factorial_step0_GPU and create_factorial_stepi_GPU which correspond to the di�erent steps
of the computation in parallel of the sequence of factorials. First we initialize the n + 1 positions in
the array Factorial_device with their position or 1 for Factorial_device[0] with identity_GPU and
then the two other procedures modify n/2 positions of the array at each step. The procedure cre-
ate_factorial_stepi_GPU has only one problem, if we take a look at the previous graphic we can see
that in each step, a lot of threads will need the same "pillar factor", so many threads will take the value

12

of a same position in the array at the same time, there is an overlap reducing performances of the code.
This part needs to be worked to �nd another way to do the computation of the factorial elements to
improve a little more the e�ciency of my code.

The array of the (x + 1)2
i

s

To do the Taylor shift by 1, we need to compute all the (x + 1)2
i

as we said before. As now we have

the sequence of the factorials, we can compute in parallel each coe�cient of the (x+1)2
i

but do we really
need all of them?

If we look at the following Pascal triangle until the binomial coe�cients of (x + 1)8, naively we just
need to use the coe�cients colored in yellow. But, a lot of them are 1, we can avoid to have too much
ones in the array. Moreover, we don't really need (x + 1)0. We want also to store these coe�cients in
an array of 1 dimension so successively. If we store the coe�cients naively, we will store the following
sequence : 1, 1, 1, 1, 2, 1, 1, 4, 6, 4, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1. We have to keep in mind also that when we
will need to use (x + 1)2

i

, we will need to know the position of this (x + 1)2
i

in our array.

Now, if we avoid all the ones in the �rst column of the Pascal triangle (except the �rst for (x + 1)0,
even though it is useless), the sequence to store becomes : 1, 1, 2, 1, 4, 6, 4, 1, 8, 28, 56, 70, 56, 28, 8, 1. This

sequence is better as the coe�cients of (x + 1)2
i

are easily found at the position 2i − 1 (except for the
�rst but keep in mind it is useless). Thus, most of the ones in this sequences can be used to represent

two consecutive (x + 1)2
i

.
Moreover, for a polynomial of degree n, this array is of size... n ! So like this, this array will be very

practical to use. For n = 16 = 24, we will use the following array :

1 1 2 1 4 6 4 1 8 28 56 70 56 28 8 1

13

This array is calledMonomial_shift_device in the code and created by the procedure develop_x_shift.

Each thread needs �rst of all to know what (x + 1)2
i

it deals with and after the coe�cient it needs to
compute with the function create_binomial2_GPU.

One may notice that if we think more on how to reduce computations, the Pascal triangle is symmetric.
So approximatively the half of the coe�cients don't really need to be stored as I do for the moment. For
example, in the case n = 16 I have taken, we could just store 1, 2, 4, 6, 8, 28, 56, 70 which will be an array
of size n/2 and after �nd a way to use this smaller array correctly to use the coe�cient. It is possible and
it is a way of re�ection I keep in mind when we will try to improve our code when it will be completely
�nished.

14

4 First steps : Polynomials of size 2 to 512

4.1 The beginning

First of all, we need to have in input the di�erent coe�cients of the polynomial we want to be shifted
by 1. I made a code called aleaPol.cpp to create random polynomials of the size wanted. This code stores
the coe�cients created in a �le line per line. So the input is a �le we need to read in serie and then store
its data in an array to begin our program. To do that, we have obviously a cost in time which increases
with the size of the polynomial. The way to store e�ciently the polynomials is also a question we must
think.

At the beginning of the Taylor shift, after the array Monomial_shift is built, we need to copy the
array Polynomial for the device and then do the �rst step, which is very simple, this is done by the
procedure init_polynomial_shift_GPU.

Since the second step, computations become less obvious.

4.2 The following steps

Let us recall what we have to do. In each step of the previous tree we saw before, the half of the
branches need to be multiplied by (x + 1)2

i

, i being the current step ; then, the results must be added
with the previous polynomials of each branch. All these computations are done in parallel for each part
of the tree.
First of all, we need to determinate which polynomials we have to multiply between us. This is what we
do with the procedure transfert_array_GPU. This procedure stores in the array Mgpu the polynomials
we need to be multiplied, at a little di�erence we will explain with the following procedure.

4.3 The plain multiplication & the right shift

Now I want to multiply in parallel all the polynomials I have stored in Mgpu. A member of the
laboratory, Anis Sardar Haque has implemented a very e�cient multiplication called listPlainMulGpu of
a list of polynomials I wanted to use for its e�ciency. I need to be careful with this because the use I
want to do with it is di�erent from the use done by other codes written by the laboratory. So, I face to
di�erent problems.

Before seeing these problems, let us explain how works exactly listPlainMulGpu :
listPlainMulGpu do pairwise products of polynomials of the same size in a list containing these

polynomial. For example, an array may contain the coe�cients of eight polynomials called Pi for i ∈ [0, 7]
with listPlainMulGpu, we can multiply in parallel four products : the products P0×P1, P2×P3, P4×P5 and
P6×P7. To do that, we need in particular in parameter the array containing the polynomials to multiply
(Mgpu1), the array which will contain the products (Mgpu2), the size of the polynomials length_poly,
the number of polynomials called poly_on_layer (for our example poly_on_layer = 8), the number of
threads used for one multiplication, the number of multiplications in a thread block, and obviously p and
its inverse for computations modulo p. If Mgpu1 contains k polynomials of size m then Mgpu1 is of size

k ×m) and Mgpu2 contains k/2 polynomials of size 2m− 1 so Mgpu2 is of size
k

2
× (2m− 1) 6= k ×m.

So, for example after the plain multiplication, the following array Mgpu1 of size

poly_on_layer × lenght_poly = 8× 128 = 1024 :

P0 P1 P2 P3 P4 P5 P6 P7

becomes the following array Mgpu2 of size

poly_on_layer

2
× (2× lenght_poly − 1) = 4× 255 = 1020 :

P0 × P1 P2 × P3 P4 × P5 P6 × P7

15

Now, let us explain what are the problem we face.
First of all, the multiplications we want to do are not between polynomials of the same size. If we

look at the tree of computations, we can see that we have to multiply a polynomial P (X) =
∑n−1

i=0 ai X
i

of size n = 2k by (X + 1)n, we obtain a polynomial of size 2k+1 but P (X) and (X + 1)n have for size
respectively n and n+1. So, to use the multiplication, either we can put zeros on polynomials to have the
same sizes (but we will have a lot of multiplications by zeros which will be useless), or we think another
way to use the multiplication.

Secondly, the initial code of the plain multiplication considers that the output array has a di�erent
size compared to the former array, as I have just shown in the previous arrays (size of 1024 for the �rst
and 1020 for the second). My objective is to keep the same size as the product of my polynomials are
di�erent and to allow me to keep at each step polynomial sizes as a power of 2.

So I clearly need to modify this procedure a little bit to adapt it for what I want to do with. My idea
was the following :

I decompose the multiplication in another multiplication, a right shift and an addition. As we need
the Newton's binomial coe�cients, the way to store them I used before was a power of 2. Consider
local_n = 2k :

∀j ∈ [0, local_n− 1], Monomial_shift[local_n + j] =

(
local_n

j + 1

)
so at Monomial_shift + local_n, we store the coe�cients of [(X + 1)local_n− 1]/X, this polynomial is of
size local_n and thus I want to use this polynomial instead of (X + 1)m for the multiplication.

To understand what we can do, imagine we have to multiply locally a polynomial Q(X) of size m = 2k

by (X + 1)m, let us decompose Q(X)× (X + 1)m and see how to proceed according to the following to
compute Q(X)× (X + 1)m :

Q(X)× (X + 1)m =

2k−1∑
i=0

ai X
i

× (X + 1)2
k

= Q(X)× [(X + 1)m − 1 + 1]

= Q(X)× [(X + 1)m − 1] + Q(X)

= Q(X)×X ×
(X + 1)m − 1

X
+ Q(X)

= X ×

(
Q(X)×

(X + 1)m − 1

X

)
+ Q(X)

So let us keep in mind the formula obtained :

Q(X)× (X + 1)m = X ×

(
Q(X)×

(X + 1)m − 1

X

)
+ Q(X)

This formula is very interesting because it allows to solve the problems I explained before. Let us
explain why. The polynomials Q(X) and [(X + 1)m − 1]/X are of the same size m so can be computed
with the plain multiplication described before. Then, as it is not what we really want, we need to multiply
the result by X which corresponds for our arrays to a right shift of all the coe�cients computed, then I
won't need to decrease of 1 the size of each product if I do the right shift within this procedure. And then,
we just need to add the previous value of Q to get the result we wish. I called this modi�ed procedure
listPlainMulGpu_and_right_shift. Just see now a concrete example.

16

Example : We want to compute (3 + 4x)× (x + 1)2.
Then we store the following coe�cients in the array Mgpu1 : [3, 4, 2, 1].
If we write what happens, this is :

(3 + 4x)× (x + 1)2 = x [(3 + 4x)× (2 + x)] + (3 + 4x) decomposition to simplify the problem

= x (6 + 11x + 4x2 + 0x3) + (3 + 4x) plain multiplication done

= (0 + 6x + 11x2 + 4x3) + (3 + 4x) right shift done

= 3 + 10x + 11x2 + 4x3 addition done

listPlainMulGpu_and_right_shift does the product giving 6 + 11x + 4x2 and stores it like this
[0, 6, 11, 4] so we have done the right shift for the multiplication by x (I write useless zeros in the calcu-
lations to show they correspond to a position in the array Mgpu2), then we just need to sum with the
polynomial, we notice that we just need to sum the half of the coe�cients, to do that, I will use the
procedure called semi_add I explain in the following part.

4.4 Partial additions

As we just saw in the previous part, at the end, we need to add the missing parts Q(X) to obtain
exactly the products we want. If we look precisely at these additions, we don't really need to add all
the positions of the arrays. Indeed, if we look at the previous example, just the half of the coe�cients of
the polynomial were added to Q(X) as the size of the Q(X) is the half of the sizes of the polynomials
obtained with the procedure listPlainMulGpu_and_right_shift. Now we have really multiplied the half
of the branches of the current step, we have to add the polynomials computed in these branches with the
polynomials of the branches where there were not any multiplication to do.

So, to sum up, semi_add adds the elements Q(X) which were missing to do correctly Q(X)×(X+1)2
i

and then adds in some way P (0) with P (1)×(X+1)2
i

(with Q = P (1)). This ends a loop. For the next loop,
we do the same with polynomial sizes increased by a factor of 2 and a number of polynomials considered to
be multiplied divided by 2. This corresponds respectively to local_n∗ = 2 and polyOnLayerCurrent/ =
2.

4.5 The arrays

Some arrays are used in all what I have described before. But let us explained exactly the choice of
these arrays and what each array does exactly.

At the �rst step, the array Polynomial_device contains all the coe�cients de�ning the polynomial we
want to be shifted. Inside this array, the coe�cients are store in the increasing order of the power of x.
We do then the �rst step of the tree in the array Polynomial_shift_device[0] which must contain at the
end of the loop the polynomials for the next step.

Since the second step, the array Mgpu contains exclusively all the polynomials which need to be
multiplied pairwise. For example, at the step 2, let us consider the array :

Polynomial_shift_device[0] = 1 2 3 4 5 6 7 8

Then, some polynomials of size 2 inside need to be multiplied by (x + 1)2 so we store in Mgpu :

Mgpu = 3 4 2 1 5 6 2 1

We store then the result of listPlainMulGpu_and_right_shift in Polynomial_shift_device[1]. To com-

plete this array, we add the missing part to have exactly Q(X) × (X + 1)2
i

so we add parts of Polyno-
mial_shift_device[0] with Mgpu, and then to �nish we complete Polynomial_shift_device[1], ready for
the next step.

17

Before to comment the other step, one can see that at each step since now, we just need the previous
Polynomial_shift_device[i-1] to compute Polynomial_shift_device[i] (and a new Mgpu). We don't need
to keep all these arrays, but just the previous one at each step. So, to avoid useless arrays and costly cud-
aMalloc, I modi�ed my code to just use Polynomial_shift_device[i%2] and Polynomial_shift_device[(i+1)%2]
so that �nally in each step we invert Polynomial_shift_device[0] and Polynomial_shift_device[1]. Thus,
whatever is the size of the polynomial we consider at the beginning, we have the same number of arrays
in the code, at least before the step 10.

Now, we come in a new part of the code. The plain multiplication implemented by the laboratory is
very e�cient for multiplying polynomials of degrees at most the number of threads in a thread block,
so for polynomials of degrees 512 for my machine. This multiplication can't be done for polynomials of
degree size more than 512, at least, it can't be su�ciently e�cient. Then we need to proceed di�erently.
For bigger degrees, we need to use FFT. The Section 5 explains what it is exactly and the way we use it.

18

5 Fast Fourier Transform (FFT)

In this section, we will describe what is the Discrete Fourier Transform (DFT), the Fast Fourier
Transform (FFT) and how we use it in our code. First of all, let us consider in all this section two
univariate polynomials f, g ∈ R[x] of degree less than an integer n, where R is a commutative ring with
units. We want to multiply these two polynomials. To not enter in too much details as we just need to
apply the theory, we will consider generally rings such that R = Z/mZ with m ∈ N∗.

The product f × g is of degree less than 2n − 1. We assume we are given a subset E of R such that
card(E) = 2n−1 and that ∀r ∈ E, we know f(r) and g(r). The values f(r)g(r) can de�ne the polynomial
fg completely thanks to the Lagrange interpolation as we have su�ciently values. The cost of de�ning
fg like this is 2n− 1. To build the coe�cients directly of fg has a cost in Θ(n2). We want to avoid this
high cost using another way to do multiplication : this is what FFT will do. the underlying idea of the
fast polynomial multiplication based on the Discrete Fourier Transform is the following : assume that
there exists a subset P of R with 2n− 1 elements such that :

� evaluating f and g at every r ∈ P can be done at nearly linear time cost, such as Θ(n log(n)),
� interpolating f(r)g(r) for r ∈ P can be done at nearly linear time cost.
Then the multiplication of f by g, represented by their coe�cients, can be done in Θ(n log(n)).

5.1 Discrete Fourier Transform

De�nition. Let n be a positive integer and ω ∈ R.
� ω is a n-th root of unity if ωn = 1.
� ω is a primitive n-th root of unity if :
(1) ωn = 1.
(2) ω is a unit in R.
(3) for every prime divisor t of n the element ωn/t − 1 is neither zero nor a zero divisor.

Let n be a positive integer and ω ∈ R be a primitive n-th root of unity. In what follows we identify
every univariate polynomial

f =

n−1∑
i=0

fi x
i ∈ R[x]

of degree less than n with its coe�cient vector (f0, . . . , fn−1) ∈ Rn.

De�nition. The R-linear map

DFTω :

{
Rn → Rn

f 7→ (f(1), f(ω), f(ω2), . . . , f(ωn−1))

which evaluates a polynomial at the powers of ω is called the Discrete Fourier Transform (DFT).

Proposition. The R-linear map DFTω is an isomorphism.

Then we can represent a polynomial f by the DFT representation with ω we will determine in our
code.

5.2 Convolution of polynomials

Let n be a positive integer and ω ∈ R be a primitive n-th root of unity.

De�nition. The convolution with respect to n of the polynomials f =
∑

0≤i<n fi x
i and g =

∑
0≤i<n gi x

i

in R[x] is the polynomial

h =
∑

0≤k<n

hk x
k

19

such that for every k ∈ [0, n− 1] the coe�cient hk is given by

hk =
∑

i+j≡k mod n

fi gj

The polynomial h is also denoted by f ∗n g or simply by f ∗ g if not ambiguous.

The convolution f ∗ g (of size n) and the product p = fg (of size 2n− 1) are di�erent. Let us try to
�nd a relation between these polynomials. We have :

p =

2n−2∑
k=0

pk x
k

where for every k ∈ [0, 2n− 2] the coe�cient pk is given by

pk =
∑

i+j=k

fi gj

We can rearrange the polynomial p as follows :

p =
∑

0≤k<n

(
pk x

k
)

+ xn
∑

0≤k<n−1

(
pk+n x

k
)

=
∑

0≤k<n

(pk + pk+n (xn − 1 + 1)) xk

=
∑

0≤k<n

(
(pk + pk+n) xk

)
+ (xn − 1)

∑
0≤k<n

(
(pk + pk+n) xk

)
≡ f ∗ g mod (xn − 1)

Lemma. For f, g ∈ R[x] univariate polynomials of degree less than n we have

DFTω(f ∗ g) = DFTω(f)DFTω(g)

where the product of the vectors DFTω(f) and DFTω(g) is computed componentwise.

This lemma allows us to understand that to compute a convolution product is the same as computing
a scalar product.

5.3 The Fast Fourier Transform

The Fast Fourier Transform computes the DFT quickly and its inverse. This important algorithm for
computer science was (re)-discovered by Cooley and Tukey in 1965.Let n be a positive even integer, ω ∈ R
be a primitive n-th root of unity and f =

∑
0≤i<n fi x

i. In order to evaluate f at 1, ω, ω2, . . . , ωn−1, the
Cooley-Tukey algorithm follows a divide and conquer strategy. In [7], Marc Moreno Maza details how
this algorithm is done and how the cost of the classical multiplication (Θ(n2)) can be decreased if we do
the multiplication using FFT (Θ(n log(n))).

The picture below shows how we will proceed to multiply two polynomials using FFT :

20

FFT-based univariate polynomial multiplication over Z/pZ

21

6 Polynomials of high degrees (> 512)

As we saw in Section 4, we cannot use the Plain Multiplication for polynomials of size more than 512.
And step by step, we increase the size of the polynomials considered we want to multiply. We need to
think another way to do a fast multiplication. The previous section explains the idea we want to use for
this new case.

Since the step when we need to multiply polynomials of size more than 512 (which is the limit size
of the number of threads per thread block), we will proceed to the FFT. The procedures and functions
I will use for FFT (primitive_root, list_stockham_dev and list_pointwise_mul) were implemented by a
Wei Pan, a previous PhD student in the laboratory. The thesis he made put in evidence that some prime
numbers improve performances of FFT, see [8] for more details. We will talk about these prime numbers
in the part "Next works".

6.1 The array for FFT operations

Even though we need to think the multiplication di�erently, the other procedures we have done for
the smallest size of the polynomials considered are still used. Indeed, �rst of all, we use again trans-
fert_array_GPU to put the polynomials we want to be computed in the array Mgpu.

But now, this array is not su�cient to be used for FFT. Indeed, we saw before that to compute the
product of two polynomials f and g of size n using FFT, we need to know the values of f(wi) and g(wi)
for i ∈ [0, 2n − 2]. Firstly, we need to convert Mgpu in another array twice bigger than it, this array is
called �t_device. This array is the same than Mgpu but contains some zeros between all the polynomials
of this array. �t_device is created thanks to the procedure transfert_array_�t_GPU.

6.2 Multiplication using FFT

Now, we need to do the multiplication like explained in the previous section, but �rst of all, we need
to de�ne the value of ω (w in my code) which has to be a 2i+1-th root of unity in Z/pZ at the step i,
this is done by the function primitive_root.

We need then to evaluate with the procedure list_stockham_dev (thanks to this ω and its powers) the
polynomials we have stored in transfert_array_�t_GPU. Then the positions of the array �t_device where
there were zeros contain now the evaluation of the polynomials for some values of ωj . We follow exactly the
scheme at the end of the previous section concerning FFT, we need then to do the pointwise multiplication
which is just a multiplication coe�cient per coe�cient of the pairwise polynomials considered, done by
list_pointwise_mul.

Then, we need to transform again our polynomial doing the inverse operation of the FFT we have
done. To do that, we need this time to consider another ω which is the invert of the one we use for the
FFT.

We don't really obtain the products we want, but we have them up to a multiplicative factor, so we
just need to divide all the coe�cients of the polynomials obtained by ω being the inverse of 2i+1 mod p.
The reason is explained in [7]. Moreover, we have an array twice bigger than we want, the parts of the
array where there were zeros before the FFT are know values which are useless. So we can come back
again to an array of the size of the input polynomial.

To �nish the step, we do a semi_add as we did for small degree.

22

7 Future works

7.1 Re�ection remarks and improvements

Some procedure and functions I have implemented can be improved.
I think notably to the factorial procedure which has the default that in each step, some threads are

calling the same elements of an array. This is not disturbing as it has a work of Θ(n log(n)) and this is

called just once at the beginning. It is also possible that the way to compute the (x + 1)2
i

I had chosen
is not the best, and if there exists a better way to compute this, maybe it doesn't need to compute the
factorial sequence.

I can probably use more the shared memory and reduce the global work for example when I store
several times the polynomials (x + 1)2

i

and I would like to take a look at the use of the global memory.

7.2 Prime numbers to consider

The Taylor_shift procedure I have implemented is done modulo a prime number p. According to the
Section 2.6, we need to do this Taylor shift several times with di�erent primes numbers and then use the
Chinese Remainder Theorem to have the Taylor shift by 1 of the input polynomial in Z.

Two questions arises :
(1) What prime numbers p must we use ?
(2) How many such primes numbers must we use ?
The works of Wei Pan (see [8]) put in evidence that primes numbers of the form p = M × 2i + 1 bring

best performances for FFT than other prime numbers with i and M integers such that M is odd and
M < 2i. p must be also su�ciently greater than the degree of the incoming polynomial, otherwise the
monomials of big degrees which compose the input polynomial won't be taken into account.

To �nd these prime numbers, we can run a MAPLE code which will be more adapted to deal with
prime number with its pre-existing functions. Here is a prototype of such a code :

A:= Array(1..500):

p:= 962592769:

pow := 2^26:

pow2 := 2^19:

i:= 0:

while ((i<400) and (p>pow)) do

if ((p-1 mod pow2) = 0) then

A[i] := p:

i := i+1:

end if:

p := prevprime(p):

end do:

This code can give a list of prime numbers, we have such a list but it does not contain su�ciently
primes numbers for the moment. Now, let us explain how many such prime numbers we need. According
to the calculation we just made, we can need approximatively 300 prime numbers for polynomials of
degree 10000, so we need to create a table containing the prime numbers we want to use. The Taylor
shift we implement will be called several times for these di�erent prime numbers, and with an increasing
size of the polynomial, we will need more or less calls of this procedure.

7.3 Combining several computations of the Taylor_shift procedure

Now the problem we are actually discussing is the way to recombine the output solutions modulo
prime numbers e�ciently using the Chinese Remainder Theorem. In input, we will have m1, . . . ,ms

23

prime numbers and the s polynomials of size d shifted by 1 stored in an array X[1 : s][1 : d] such that the
s �rst positions of this array contain the �rst coe�cient of each polynomial, then the second coe�cient
of each polynomial...
Let us consider x = (x1, . . . , xs).

The objective is to compute the image a of x by Z/m1Z× · · · × Z/msZ ∼= Z/m1 . . .msZ. According
to [9], we can represent a by b = (b1, . . . , bs) such that

a = b1 + b2m1 + b3m1m2 + · · ·+ bsm1m2 . . .ms−1

The idea of [9] is to compute a step by step using a mixed representation by a matrix formula. My
work until this report ends here, but I'll explain how to use this radix representation when I will defend
my internship.

24

8 Benchmarks

First of all, to be sure that the Taylor shift by 1 was done correctly, I needed some comparisons, like
using Maple, or other codes, in particular in C++. I used mainly the comparison of my CUDA code with
the execution of the Horner's method in C++, which is the fastest compared to the Divide and Conquer
method in C++ and the execution on Maple.

In the following graphics, MAPLE is not represented because the execution time increases by a factor
of 4 each time we multiply by 2 the number of coe�cients of the polynomial we want to be shifted by 1.
Nevertheless, I show the execution time of the Maple script I used in the array of the execution times.

Here are the di�erent results obtained for di�erent sizes of random polynomials. Let us recall that
these polynomials are of degree n = 2e − 1 :

Execution time in seconds
e n GPU CPU : HOR CPU : DNC Maple 16

3 8 0.001518 0.000128 0.000141 <0.001
4 16 0.001432 0.000186 0.000172 <0.001
5 32 0.001590 0.000167 0.000191 <0.001
6 64 0.001773 0.000192 0.000294 0.008
7 128 0.002016 0.000261 0.000628 0.024
8 256 0.003036 0.000593 0.002331 0.084
9 512 0.002624 0.001278 0.006304 0.320
10 1024 0.005756 0.005940 0.032073 1.400
11 2048 0.009317 0.015312 0.095027 5.640
12 4096 0.013475 0.076866 0.376543 24.478
13 8192 0.019674 0.324029 1.498890 104.438
14 16384 0.027229 1.282708 6.861433 437.848
15 32768 0.042561 5.110919 23.907799 1781.427
16 65536 0.064306 15.184347 114.988129 7407.063
17 131072 0.127214 80.625801 477.934692 >10000

To compare more in details, let us take a look at the di�erent pictures we can have using gnuplot.
Gnuplot scripts can be seen in the appendix. The execution times of MAPLE 16 don't appear as they
increase too much compared to my other results. I show di�erent graphics, considering e in x-axis then
n, as my results are for polynomials of size 2e. The results with n in x-axis are more eloquent concerning
the fact that the execution time becomes linear when n increases by a factor of 2.

25

Execution time of the GPU in function of e

The following graphic is more eloquent concerning the linear increasing of the execution time of the
GPU depending on the size of the polynomial considered (a power of 2). Nevertheless, the execution
time is not really linear. Indeed, the cuda code contains also a part executed in serie, like when we read
the polynomial in a �le and also when we store the result in a �le.

26

Execution time of the GPU in function of n

Now let us take a look at the execution times for the Horner's method and for the Divide and Conquer
method in serie, so with the CPU only. The two methods are not linear and increase by a factor of 4
according to the previous array.

27

Execution time of the CPU in function of n

We clearly see that the Horner's method in serie is more e�cient than the Divide and Conquer method
in serie. To see exactly what happens for small degrees and big degree for the three methods, namely the
GPU DNC method, the CPU DNC method and the CPU Horner's method (when I say GPU I mean 'in
serie', and when I say CPU I mean 'in serie'). Let's consider the two following graphics.

28

Execution times in function of n for small degrees

For small degrees, we see that the execution time of the GPU code is approximatively the same
and worst than the execution times of the CPU execution times. The reasons are very simple, for small
degrees, we need the same number of arrays in the CUDA code than for the big degrees, even though
obviously they are not at the same size than for big degrees. Allocate memory for the GPU takes a lot
of time at the scale of the execution times for small degrees, so �nally there are a lot of communications
just for 'small' computations. To conclude with this, for small degrees, it will be better to do the Taylor
shift by 1 in serie. There is also the fact that we don't compute the same way the Taylor shift in the
three methods, even though for the divide and conquer in serie, the only di�erence is the way we do the
multiplication (and obviously the fact it is in serie).

Let's see the comparison for the next degrees :

29

Execution times in function of n for big degrees

For big degrees, using the GPU gives best performances with a execution time of approximatively
0.1 second for a polynomial of size 217. We see clearly a huge gap between the execution times of the
di�erent methods implemented, and remember that I didn't put the execution time using Maple also.
We see that to parallelize the Taylor shift, is a real challenge, notably for MAPLE, which has �nally the
worst execution time for big degrees.

30

9 Conclusion

To realize something which seems simple at the �rst look becomes tricky when you want to parallelize
it. We face problems and we must elaborate solutions using our knowledge, our own researches and using
the researches of scienti�cs. This internship becomes me aware of the utility to be informed of the works
and papers submitted by scienti�cs around the world.

To realize the Taylor shift by 1 as fast as possible is a part of a huge and di�cult work. When this
will be done thanks to the work on the mix-radix representation, we will be able to continue towards the
isolation of the real roots of a univariate polynomial, but we don't forget that we will have other steps
like considering rational then real polynomials, and so considering other works, other algorithms like the
VCA algorithm which is the algorithm we want to use.

When we call several times the same procedure, even if the execution time of this procedure is very
small, then we can have a very high execution time. For example, to run a Taylor shift with my code for
a polynomial of size 217 modulo a prime number cost 0.1s approximatively. To obtain the Taylor shift in
Z, we need to call this for more than 300 prime numbers, then �nally we will have a cost of more than
30s for getting a Taylor shift in Z. In the VCA algorithm, we use a lot this Taylor shift, then we multiply
our 30s again by a factor. Finally, even if you improve a little the procedures which are called several
times, as the mul_mod procedure in my Taylor shift code, we will have a huge gain of performances in
our main code, that's why we do the maximum to parallelize everything can be parallelized in the best
possible way.

31

10 Appendix

10.1 Divide and Conquer Cuda code

taylor_shift.cu

#inc lude " tay lo r_sh i f t_con f . h"
#inc lude " i n l i n e s . h"
#inc lude " tay lor_shi f t_cpu . h"
#inc lude " tay l o r_sh i f t_ke rne l . h"
#inc lude " t ay l o r_sh i f t . h"
#inc lude " t ay l o r_ sh i f t_ f f t . h"
#inc lude " l i st_pointwise_mul . h"
#inc lude " l i st_stockham . h"

/* Important to no t i c e :

n : number o f c o e f f i c i e n t s o f the polynomial cons ide r ed
n−1 : degree o f the polynomial cons ide r ed
p : prime number , i t must be g r e a t e r than n

*/

// Taylor_sh i f t procedure
void taylor_shift_GPU (s f i x n n , s f i x n e , char * f i l e , s f i x n p , double pinv)
{

// d e c l a r a t i on o f v a r i a b l e s
s f i x n i , nb_blocks , local_n ;
s f i x n *Factor i a l_dev i ce ;
s f i x n *Polynomial , *Polynomial_device ;
s f i x n *Monomial_shift_device ;
s f i x n *temp ;
s f i x n *Mgpu ;
s f i x n *Polynomial_shi f t_device [2] ;
f l o a t cpu_time , gpu_time , outerTime ;
cudaEvent_t s ta r t , stop ; /* I n i t i a l and f i n a l time */

cudaEventCreate(& s t a r t) ;
cudaEventCreate(&stop) ;
cudaEventRecord (s ta r t , 0) ;

// beg inning parameters
local_n = 2 ;
stock_f i l e_in_array (f i l e , n , Polynomial) ;

// p r i n t f (" * pinv = %0.20 l f \n" , pinv) ;

// TIME
cudaEventRecord (stop , 0) ;
cudaEventSynchronize (stop) ;
cudaEventElapsedTime(&cpu_time , s ta r t , stop) ;
cudaEventDestroy (stop) ;

32

cpu_time /= 1000 . 0 ;
cudaEventCreate(& s t a r t) ;
cudaEventCreate(&stop) ;
cudaEventRecord (s ta r t , 0) ;

// Create the array Fac t o r i a l
cudaMalloc ((void **) &Factor ia l_dev ice , (n+1) * s i z e o f (s f i x n)) ;
nb_blocks = number_of_blocks (n+1);
cudaThreadSynchronize () ;
identity_GPU<<<nb_blocks , NB_THREADS>>>(Factor ia l_dev ice , n+1);
cudaThreadSynchronize () ;
nb_blocks = number_of_blocks (n /2) ;
create_factorial_step0_GPU<<<nb_blocks , NB_THREADS>>>(Factor i a l_dev i ce +1,\
n , e , p , pinv) ;
cudaThreadSynchronize () ;
s f i x n L = 1 ;
f o r (i =1; i<e ; i++)
{

L *= 2 ;
create_factorial_stepi_GPU<<<nb_blocks , NB_THREADS>>>(Factor i a l_dev i ce +1,\
n , e , p , pinv , L) ;
cudaThreadSynchronize () ;

}

// Create the array o f the (x+1)^ i
cudaMalloc ((void **) &Monomial_shift_device , n * s i z e o f (s f i x n)) ; // n+1
cudaThreadSynchronize () ;
nb_blocks = number_of_blocks (n) ;
develop_xshift_GPU<<<nb_blocks , NB_THREADS>>>(Monomial_shift_device , n , \
Factor ia l_dev ice , p , pinv) ;
cudaThreadSynchronize () ;
cudaFree (Facto r i a l_dev i ce) ;

/* **

1 s t s tep : i n i t i a l i z a t i o n

** */

cudaMalloc ((void **) &Polynomial_device , n * s i z e o f (s f i x n)) ;
cudaMemcpy(Polynomial_device , Polynomial , n* s i z e o f (s f i x n) , \
cudaMemcpyHostToDevice) ;
f r e e (Polynomial) ;
cudaMalloc ((void **) &Polynomial_shi f t_device [0] , n * s i z e o f (s f i x n)) ;
cudaThreadSynchronize () ;

// i n i t i a l i z e po lynomia l_sh i f t
nb_blocks = number_of_blocks (n /2) ;
init_polynomial_shift_GPU<<<nb_blocks , NB_THREADS>>>(Polynomial_device , \
Polynomial_shi f t_device [0] , n , p) ;
cudaThreadSynchronize () ;

/* **

33

next s t ep s (i <10)

** */

s f i x n polyOnLayerCurrent = n/2 ;
s f i x n mulInThreadBlock ;
cudaMalloc ((void **)&Mgpu, n * s i z e o f (s f i x n)) ;
s f i x n I = 9 ;
i f (e < 9)

I = e ;
cudaMalloc ((void **) &Polynomial_shi f t_device [1] , n * s i z e o f (s f i x n)) ;
cudaThreadSynchronize () ;

// LOOP
f o r (i =1; i<I ; i++)
{

// t r a n s f e r the polynomia ls which w i l l be computed
nb_blocks = number_of_blocks (n) ;
transfert_array_GPU<<<nb_blocks , NB_THREADS>>>(Mgpu, \
Polynomial_shi f t_device [(i +1)%2] , Monomial_shift_device , n , local_n , p , pinv) ;
cudaThreadSynchronize () ;

// Compute the product o f the polynomia l s in Mgpu ('P2 * Bin ' with Bin
// the array o f b inomia l s) and s t o r e them in Polynomial_shi f t_device [i %2]
// s h i f t e d at the r i g h t f o r the mu l t i p l i c a t i o n by x so do
// [((x+1)^ i − 1) / x] * P2(x+1) , then mult ip ly i t by x so we have
// [(x+1)^ i − 1] * P2(x+1)
mulInThreadBlock = (s f i x n) f l o o r ((double) NB_THREADS / (double) (2* local_n)) ;
nb_blocks = (s f i x n) c e i l (((double) polyOnLayerCurrent /(double) mulInThreadBlock) * 0 . 5) ;
listPlainMulGpu_and_right_shift_GPU<<<nb_blocks , NB_THREADS>>>(Mgpu, \
Polynomial_shi f t_device [i %2] , local_n , polyOnLayerCurrent , 2* local_n , \
mulInThreadBlock , p , pinv) ;
cudaThreadSynchronize () ;

// add [(x+1)^ i − 1] * P2(x+1) with P2(x+1) then we get (x+1)^ i * P2(x+1) \
then do P1(x+1) + (x+1)^ i *P2(x+1)

nb_blocks = number_of_blocks (n /2) ;
semi_add_GPU<<<nb_blocks , NB_THREADS>>>(Polynomial_shi f t_device [i %2] , Mgpu, \
Polynomial_shi f t_device [(i +1)%2] , n , local_n , p) ;
cudaThreadSynchronize () ;

// f o r the next s tep
polyOnLayerCurrent /= 2 ;
local_n *= 2 ;

}

/* **

next s t ep s : FFT (i >= 10)

** */

34

s f i x n J = e ;
i f (e < 9)
J = 9 ;

s f i x n w;
s f i x n * f f t_dev i c e ;
cudaMalloc ((void **) &f f t_dev i ce , 2 * n * s i z e o f (s f i x n)) ;
cudaThreadSynchronize () ;

// LOOP
f o r (i =9; i<J ; i++)
{

// t r a n s f e r the polynomia ls which w i l l be FFTed and Mgpu
nb_blocks = number_of_blocks (n) ;
transfert_array_GPU<<<nb_blocks , NB_THREADS>>>(Mgpu, \
Polynomial_shi f t_device [(i +1)%2] , Monomial_shift_device , n , local_n , p , pinv) ;
cudaThreadSynchronize () ;
nb_blocks = number_of_blocks (2*n) ;
transfert_array_fft_GPU<<<nb_blocks , NB_THREADS>>>(f f t_dev i ce , Mgpu, n , \
local_n) ;
cudaThreadSynchronize () ;

// Convert the polynomia ls in the FFT world
w = pr imit ive_root (i +1, p) ;
l ist_stockham_dev (f f t_dev i ce , polyOnLayerCurrent , i +1, w, p) ;
cudaThreadSynchronize () ;

// same operat ion than f o r ListPla inMul but in the FFT world
nb_blocks = number_of_blocks (2*n) ;
l i st_pointwise_mul<<<nb_blocks , NB_THREADS>>>(f f t_dev i ce , 2* local_n , p , pinv , \
2*n) ;
cudaThreadSynchronize () ;

// re turn to the r e a l world
w = inv_mod(w, p) ;
l ist_stockham_dev (f f t_dev i ce , polyOnLayerCurrent , i +1, w, p) ;
cudaThreadSynchronize () ;

// ad jus t the r e a l c o e f f i c i e n t s : we need to mu l t i p l i c a t e by the f o l l ow i ng w
// to have to c o r r e c t s i z e
w = inv_mod(2* local_n , p) ;
nb_blocks = number_of_blocks (n) ;
mult_adjust_GPU<<<nb_blocks , NB_THREADS>>>(Polynomial_shi f t_device [i %2] , \
f f t_dev i ce , n , local_n , w, p , pinv) ;
cudaThreadSynchronize () ;

// semi_add
nb_blocks = number_of_blocks (n /2) ;
semi_add_GPU<<<nb_blocks , NB_THREADS>>>(Polynomial_shi f t_device [i %2] , Mgpu, \
Polynomial_shi f t_device [(i +1)%2] , n , local_n , p) ;
cudaThreadSynchronize () ;

// f o r the next s t ep s
polyOnLayerCurrent /= 2 ;

35

local_n *= 2 ;
}

/* **

end : r e s u l t s

** */

// Copy the l a s t array conta in ing the Taylor s h i f t by 1 o f the input polynomial
temp = (s f i x n *) mal loc (n * s i z e o f (s f i x n)) ;
cudaMemcpy(temp , Polynomial_shi f t_device [(e−1)%2] , n* s i z e o f (s f i x n) , \
cudaMemcpyDeviceToHost) ;
cudaThreadSynchronize () ;

// TIME
cudaEventRecord (stop , 0) ;
cudaEventSynchronize (stop) ;
cudaEventElapsedTime(&gpu_time , s ta r t , stop) ;
cudaEventDestroy (stop) ;
gpu_time /= 1000 . 0 ;
cudaEventCreate(& s t a r t) ;
cudaEventCreate(&stop) ;
cudaEventRecord (s ta r t , 0) ;

// s t o cke s the array o f Newton ' s c o e f f i c i e n t s in a f i l e
char name_file [1 0 0] ;
s p r i n t f (name_file , "Pol%d . shiftGPU_%d . dat \0" , e , p) ;
s tock_array_in_f i l e (name_file , temp , n) ;

// d e a l l o c a t i o n o f the l a s t a r rays
f r e e (temp) ;
cudaFree (Monomial_shift_device) ;
cudaFree (Mgpu) ;
cudaFree (f f t_dev i c e) ;
f o r (i =0; i <2; i++)

cudaFree (Polynomial_shi f t_device [i]) ;

// TIME
cudaEventRecord (stop , 0) ;
cudaEventSynchronize (stop) ;
cudaEventElapsedTime(&outerTime , s ta r t , stop) ;
cudaEventDestroy (stop) ;
outerTime /= 1000 . 0 ;
cpu_time += outerTime ;

}

taylor_shift_cpu.cu

#inc lude " tay lo r_sh i f t_con f . h"
#inc lude " tay lor_shi f t_cpu . h"

// e r r o r message i f the re i s a l ack o f arguments

36

// to make the program
void error_message (s f i x n m)
{

i f (m < 3)
{

p r i n t f ("********** ERROR, not enough arguments ! \
**********\nThe program works with the f o l l ow i n g parameters : \ n\n ") ;
p r i n t f ("1 s t parameter : f i l e conta in ing c o e f f i c i e n t s o f the \
polynomial you want to con s id e r . \ n ") ;
p r i n t f ("2nd parameter : prime number p . \ n ") ;

e x i t (1) ;
}

}

// computes the nomber o f b locks
s f i x n number_of_blocks (s f i x n n)
{

s f i x n r e s ;
r e s = n/NB_THREADS;
i f (n % NB_THREADS != 0)

r e s++;
return r e s ;

}

// s to ck s a f i l e in an array
void stock_f i l e_in_array (char * f i l ename , s f i x n n , s f i x n * & a)
{

i f s t r e am data_f i l e ;
s f i x n i ;
da ta_f i l e . open (f i l ename) ;

i f (! da ta_f i l e . is_open ())
{

p r i n t f ("\n Error whi l e read ing the f i l e %s . P lease check \
i f i t e x i s t s ! \ n" , f i l ename) ;
e x i t (1) ;

}

a = (s f i x n *) mal loc (n* s i z e o f (s f i x n)) ;

f o r (i =0; i<n ; i++)
da ta_f i l e >> a [i] ;

da ta_f i l e . c l o s e () ;
}

// s t o cke s the array o f Newton ' s c o e f f i c i e n t s in a f i l e
void stock_array_in_f i l e (const char *name_file , s f i x n *T, s f i x n s i z e)
{

37

s f i x n i ;
FILE* f i l e = NULL;

f i l e = fopen (name_file , "w+");
i f (f i l e == NULL)
{

p r i n t f (" e r r o r when opening the f i l e ! \ n ") ;
e x i t (1) ;

}

// wr i t t i n g the f i l e
f p r i n t f (f i l e , "%d" , T [0]) ;
f o r (i =1; i<s i z e ; i++)

f p r i n t f (f i l e , "\n%d" , T[i]) ;
f c l o s e (f i l e) ;

}

// computes the number o f l i n e s o f a f i l e
s f i x n s i z e_ f i l e (char * f i l ename)
{

s f i x n s i z e = 0 ;
i f s t r e am in (f i l ename) ;
std : : s t r i n g l i n e ;

whi l e (std : : g e t l i n e (in , l i n e))
s i z e++;

in . c l o s e () ;

r e turn s i z e ;
}

// d i sp l ay o f an array
void disp lay_array (s f i x n *T, s f i x n s i z e)
{

s f i x n k ;
p r i n t f (" [") ;
f o r (k=0; k<s i z e ; k++)

p r i n t f ("%d " , T[k]) ;
p r i n t f ("] \n ") ;

}

// add i t i on o f two ar rays
void add_arrays (s f i x n * res , s f i x n *T1 , s f i x n *T2 , s f i x n s i z e , s f i x n p)
{

s f i x n i ;
f o r (i =0; i<s i z e ; i++)

r e s [i] = (T1 [i] + T2 [i]) % p ;
}

38

// Horner ' s method to compute g (x) = f (x+1) (equ iva l en t to Shaw &
//Traub ' s method f o r a=1)
void horner_shift_CPU (s f i x n *Polynomial , s f i x n *Polynomial_shi ft , \

s f i x n n , s f i x n p)
{

s f i x n i ;
s f i x n *temp ;
temp = (s f i x n *) c a l l o c (n , s i z e o f (s f i x n)) ;

Polynomia l_shi f t [0] = Polynomial [n−1] ;

f o r (i =1; i<n ; i++)
{

memcpy(temp+1, Polynomial_shi ft , i * s i z e o f (s f i x n)) ;
add_arrays (Polynomial_shi ft , Polynomial_shi ft , temp , n , p) ;
Polynomia l_shi f t [0] = (Polynomia l_shi f t [0] + Polynomial [n−1− i]) % p ;

}

f r e e (temp) ;
}

taylor_shift_kernel.cu

#inc lude " tay lo r_sh i f t_con f . h"
#inc lude " tay l o r_sh i f t_ke rne l . h"
#inc lude " i n l i n e s . h"

// f a s t mu l t i p l i c a t i o n o f two polynomials , c r ea ted by
// Sardar Haque , I modify j u s t a l i n e to use i t in my code
__global__ void listPlainMulGpu_and_right_shift_GPU (s f i x n *Mgpu1 , \

s f i x n *Mgpu2 , s f i x n length_poly , s f i x n poly_on_layer , \
s f i x n threadsForAmul , s f i x n mulInThreadBlock , s f i x n p , \
double pinv)

{

__shared__ s f i x n sM[2*Tmul] ;
/*
sM i s the shared memory where the a l l the c o e f f i c i e n t s and in te rmed ia t e
mu l t i p l i c a t i o n s r e s u l t s are s to r ed . For each mu l t i p l i c a t i o n i t r e s e r v e
4* length_poly −1 spaces . mulID i s the mu l t i p l i c a t i o n ID . I t r e f e r s to
the poly in Mgpu2 on which i t w i l l work . mulID must be l e s s than
(poly_on_layer / 2) .
*/

s f i x n mulID= ((threadIdx . x/ threadsForAmul) + blockIdx . x*mulInThreadBlock) ;

i f (mulID < (poly_on_layer /2) && threadIdx . x < threadsForAmul*mulInThreadBlock)
{
/*
The next 10 l i n e s o f code copy the polynomia l s in Mgpu1 from g l oba l memory to
shared memory .
Each thread i s r e s p on s i b l e o f copying one c o e f f i c i e n t .
A thread w i l l copy a c o e f f i c i e n t from
Mgpu1 [(mulID* length_poly * 2) . . . (mulID* length_poly *2) + length_poly *2 −1].

39

j+u g i v e s the r i gh t index o f the c o e f f i c i e n t in Mgpu1 .

In sM, the c o e f f i c i e n t s are s to r ed at the lower part .
t w i l l f i nd the r i g h t (4* length_poly−1) spaced s l o t f o r i t .
s g i v e s the s t a r t index o f i t s r i g h t s l o t .
s+u g i v e s r i g h t p o s i t i o n f o r the index .
*/

s f i x n j = (mulID* length_poly *2) ;
s f i x n q = (mulID*(2* length_poly)) ; // modif ied , c l ean the −1
s f i x n t = (threadIdx . x/ threadsForAmul) ;
s f i x n u = threadIdx . x % threadsForAmul ;

s f i x n s = t *(4* length_poly −1);
s f i x n k = s + length_poly ;
s f i x n l = k + length_poly ;
s f i x n c = l+u ;
s f i x n a , b , i ;

sM[s+u] = Mgpu1 [j + u] ;
__syncthreads () ;

i f (u != (2* length_poly−1))
{

/*
In the mu l t i p l i c a t i o n space , the h a l f o f the l e ad ing c o e f f i c i e n t s
are computed d i f f e r e n t l y than the l a s t h a l f . Here the computation o f
f i r s t h a l f are shown . the l a s t h a l f i s shown in e l s e statement .
In both ca s e s sM[c] i s the c o f f i c i e n t on which t h i s thread w i l l work on .
sM[a] i s the c o e f f i c i e n t o f one poly .
sM[b] i s the c o e f f i c i e n t o f the other poly .
*/

i f (u < length_poly)
{

a = s ;
b = k + u ;
sM[c] = mul_mod(sM[a] , sM[b] , p , pinv) ;
++a ; −−b ;

f o r (i = 0 ; i < u ; ++i , ++a , −−b)
sM[c] = add_mod(mul_mod(sM[a] , sM[b] , p , pinv) ,sM[c] ,p) ;
Mgpu2 [q+u+1] = sM[c] ; //+1 added

}

e l s e
{

b = l − 1 ;
a = (u − length_poly) + 1 + s ;
sM[c] = mul_mod(sM[a] , sM[b] , p , pinv) ;
++a ; −−b ;

s f i x n tempU = u ;
u = (2* length_poly−2) − u ;

40

f o r (i = 0 ; i < u ; ++i , ++a , −−b)
sM[c] = add_mod(mul_mod(sM[a] , sM[b] , p , pinv) ,sM[c] ,p) ;

Mgpu2 [q+tempU+1] = sM[c] ; //+1 added
}

}

e l s e
Mgpu2 [q] = 0 ; // added f o r put 0 at p o s i t i o n

}
}

// c r ea t e array i d e n t i t y (i n i t i a l i z a t i o n o f the array Fact)
__global__ void identity_GPU (s f i x n *T, s f i x n n)
{

s f i x n k = blockIdx . x * blockDim . x + threadIdx . x ;
s f i x n boolean = (s f i x n) (k == 0) ;

i f (k < n+1)
T[k] = k + boolean ;

}

// c r ea t e a l l the e lements o f Fa c t o r i a l (%p)
__global__ void create_factorial_GPU (s f i x n *Fact , s f i x n n , s f i x n e , \

s f i x n p , double pinv)
// warning : n+1 i s the s i z e o f Fact but we w i l l j u s t f u l l the n
// l a s t element , not the f i r s t one
{

s f i x n k = blockIdx . x * blockDim . x + threadIdx . x ;
s f i x n i , j , part , pos , base ;
s f i x n L = 1 ;
s f i x n B = 2 ;

i f (k < n/2)
{

// step 1
Fact [2* k+1] = mul_mod(Fact [2* k] , Fact [2* k+1] , p , pinv) ;
__syncthreads () ;

// next s t ep s
f o r (i =1; i<e ; i++)
{
B *= 2 ;
L *= 2 ;
part = k / L ;
pos = k % L ;
__syncthreads () ;
j = L + part *B + pos ;
__syncthreads () ;
base = Fact [L + part *B − 1] ;
__syncthreads () ;
Fact [j] = mul_mod(base , Fact [j] , p , pinv) ;

41

__syncthreads () ;
}

}
}

__global__ void create_factorial_step0_GPU (s f i x n *Fact , s f i x n n , \
s f i x n e , s f i x n p , double pinv)

// warning : n+1 i s the s i z e o f Fact but we w i l l j u s t f u l l the n
// l a s t element , not the f i r s t one
{

s f i x n k = blockIdx . x * blockDim . x + threadIdx . x ;

i f (k < n/2)
{

// step 1
Fact [2* k+1] = mul_mod(Fact [2* k] , Fact [2* k+1] , p , pinv) ;

}
}

__global__ void create_factorial_stepi_GPU (s f i x n *Fact , s f i x n n , \
s f i x n e , s f i x n p , double pinv , s f i x n L)

// warning : n+1 i s the s i z e o f Fact but we w i l l j u s t f u l l the n l a s t
// element , not the f i r s t one
{

s f i x n k = blockIdx . x * blockDim . x + threadIdx . x ;
s f i x n j , part , pos , base ;
s f i x n B = 2 * L ;

i f (k < n/2)
{

// next s t ep s
part = k / L ;
pos = k % L ;
j = L + part *B + pos ;
base = Fact [L + part *B − 1] ;
Fact [j] = mul_mod(base , Fact [j] , p , pinv) ;

}
}

// c r ea t e an array o f the i nv e r s e numbers in Z/pZ
__global__ void inverse_p_GPU(s f i x n *T, s f i x n p , double pinv)
{

s f i x n i ;
s f i x n k = blockIdx . x * blockDim . x + threadIdx . x ;

i f (k < p)
{

i f (k > 1)
f o r (i =2; i<p ; i++)
{

i f (mul_mod(k , i , p , pinv) == 1)
{

42

T[k] = i ;
i = p ; // to stop the loop

}
}

e l s e i f (k == 1)
T[1] = 1 ;

e l s e // (k == 0)
T[0] = 0 ;

}
}

// c r ea t e the i nv e r s e o f a number in Z/pZ
__device__ s f i x n inverse_GPU(s f i x n k , s f i x n p , double pinv)
{

s f i x n i , r e s ;

i f (k > 1)
f o r (i =2; i<p ; i++)
{

i f (mul_mod(k , i , p , pinv) == 1)
{

r e s = i ;
i = p ; // to stop the loop

}
}

e l s e i f (k == 1)
r e s = 1 ;

e l s e // (k == 0)
r e s = 0 ;

re turn r e s ;
}

// c r e a t e s an array o f the Newton ' s Binomials u n t i l n modulo p
// (! s i z e o f the array = n+1)
__device__ s f i x n create_binomial_GPU (s f i x n *Facto r i a l , s f i x n * Inverse_p , \

s f i x n n , s f i x n p , double pinv , s f i x n id)
{

s f i x n l = n − id ;
s f i x n temp = mul_mod(Fa c t o r i a l [id] , Fa c t o r i a l [l] , p , pinv) ;

r e turn mul_mod(Fa c t o r i a l [n] , Inverse_p [temp] , p , pinv) ;
}

// c r ea t e the Newton ' s Binomial c o e f f i c i e n t "n choose id " modulo p
// return "n choose id " = n ! / [id ! (n−id) !] mod p
__device__ s f i x n create_binomial2_GPU (s f i x n *Facto r i a l , s f i x n n , s f i x n p , \

double pinv , s f i x n id)
{

s f i x n l = n − id ;
s f i x n prod = mul_mod(Fac t o r i a l [id] , Fa c t o r i a l [l] , p , pinv) ;

43

re turn quo_mod(Fac t o r i a l [n] , prod , p , pinv) ;
}

// c r ea t e the array o f the c o e f f i c i e n t s o f (x+1)^k f o r k in (1 ,2^(e−1))
__global__ void develop_xshift_GPU (s f i x n *T, s f i x n n , s f i x n *Facto r i a l , \

s f i x n p , double pinv)
{

s f i x n k = blockIdx . x * blockDim . x + threadIdx . x ;
s f i x n m;
s f i x n pow2 = 1 ;

i f (k < n)
{

// i f (k > 1)
{
m = (k+1)/2; //k/2

whi l e (m != 0)
{
m /= 2 ;
pow2 *= 2 ;

}

T[k] = create_binomial2_GPU (Facto r i a l , pow2 , p , pinv , k+1 − pow2) ;
}

}
}

// c r ea t e the product o f two ar rays r ep r e s en t i ng polynomia l s
__device__ void conv_prod_GPU(s f i x n * res , s f i x n *T1 , s f i x n *T2 , s f i x n m,\

s f i x n p , s f i x n local_n)
{

s f i x n i , j ;
s f i x n K = blockIdx . x * blockDim . x + threadIdx . x ;

i f (K < m)
{

f o r (j =0; j<K; j++)
{

i = K − j ; // K = i+j
// i f i < local_n + 1 then T1 [i] != 0 , e l s e T1 [i] = 0 so u s e l e s s computations

i f ((i < local_n+1) && (j < local_n))
r e s [K] = (r e s [K] + T1 [i]*T2 [j]) % p ;

}

f o r (j=K+1; j<m; j++)
{

i = K + m − j ;
i f ((i < local_n+1) && (j < local_n))

r e s [K] = (r e s [K] + T1 [i]*T2 [j]) % p ;
}

}

44

}

// add i t i on o f two ar rays
__global__ void add_arrays_GPU(s f i x n * res , s f i x n *T1 , s f i x n *T2 , s f i x n s i z e , \

s f i x n p)
{

s f i x n i = blockIdx . x * blockDim . x + threadIdx . x ;

i f (i<s i z e)
r e s [i] = add_mod(T1 [i] , T2 [i] , p) ;

}

// c r e a t e s an array o f z e r o s
__global__ void Zeros_GPU(s f i x n *T, s f i x n n)
{

s f i x n i = blockIdx . x * blockDim . x + threadIdx . x ;

i f (i < n)
T[i] = 0 ;

}

// i n i t i a l i z e Polynomia l_shi f t
__global__ void init_polynomial_shift_GPU (s f i x n *Polynomial , \

s f i x n *Polynomial_shi ft , s f i x n n , s f i x n p)
{

s f i x n i = blockIdx . x * blockDim . x + threadIdx . x ;
s f i x n j = 2* i ;
i f (i < n/2)
{

// i f (i % 2 == 0)
Polynomia l_shi f t [j] = add_mod(Polynomial [j] , Polynomial [j +1] , p) ;

// e l s e // (i % 2 == 1)
Polynomia l_shi f t [j +1] = Polynomial [j +1] ;

}

/* EXAMPLE f o r n=8 :
a f t e r t h i s procedure :
Polynomia l_shi f t = [f 0+f1 , f1 , f 2+f3 , f3 , f 4+f5 , f5 , f 6+f7 , f 7] */

}

// t r a n s f e r at each step the polynomia l s which need to be mu l t i p l i c a t ed
__global__ void transfert_array_GPU (s f i x n *Mgpu, s f i x n *Polynomial_shi ft , \

s f i x n *Monomial_shift , s f i x n n , s f i x n local_n , s f i x n p , double pinv)
{

s f i x n i = blockIdx . x * blockDim . x + threadIdx . x ;
// s f i x n B = 2* local_n ;

s f i x n pos , part , bool1 , bool2 ;

// __shared__ s f i x n sM[NB_THREADS] ;

/* EXAMPLE

−−

45

ARRAY Polynomial_shi f t_device [i −1] cons ide r ed
_________ _________ _________ _________
	X		Y
_________	_________	_________	_________

part=0 part=1 part=2 part=3

local_n = s i z e o f a part

−−

ARRAY Mgpu [i] cons ide r ed
___________________ ___________________
X (x+1)^m	Y (x+1)^m
___________________	___________________

PART=0 PART=1

B = 2 * local_n = s i z e o f a PART
m = local_n

We want to f i l l the array Mgpu [i] l i k e t h i s : the po lynomia l s
which need to be mu l t i p l i c a t ed by (x+1)^m are o f odd part and
we s t o r e them at the beg inning o f each PART of Mgpu [i] . The end
o f each part doesn ' t r e a l l y conta in (x+1)^m as we need ar rays
to be mu l t ip l i c a t ed , so we avoid the mu l t i p l i c a t i o n by 1 .
Thus the end o f each PART conta in s exac t l y :

[(x+1)^m − 1] / x = m + . . . + x^(m−1) {m elements } */

i f (i < n)
{

part = i / local_n ;
pos = i % local_n ; // i = part * local_n + pos
bool2 = part % 2 ; // = 0 or 1
bool1 = 1 − bool2 ; // = 1 or 0 , bool1 and bool2 are c o n t r a r i e s

Mgpu [i] = bool1 * Polynomia l_shi f t [local_n+i] + \
bool2 * Monomial_shift [local_n+pos] ;

}
}

__global__ void right_shift_GPU (s f i x n *T, s f i x n n)
{

s f i x n i = blockIdx . x * blockDim . x + threadIdx . x ;
s f i x n a ;

i f (i < n)
{

a = T[i] ;
__syncthreads () ;

46

i f (i < n−1)
T[i +1] = a ;

e l s e
T[0] = 0 ;

}
}

// add par t s o f three ar rays between them
__global__ void semi_add_GPU(s f i x n *NewPol , s f i x n *PrevPol1 , \

s f i x n *PrevPol2 , s f i x n n , s f i x n local_n , s f i x n p)
{

s f i x n i = blockIdx . x * blockDim . x + threadIdx . x ;
s f i x n part = i / local_n ;
s f i x n pos = i % local_n ;
s f i x n j = 2 * local_n * part + pos ;
s f i x n r e s ;

i f (i < n/2)
{

r e s = add_mod(PrevPol1 [j] , PrevPol2 [j] , p) ;
NewPol [j] = add_mod(NewPol [j] , res , p) ;

}
}

taylor_shift_�t.cu

#inc lude " tay lo r_sh i f t_con f . h"
#inc lude " tay lor_shi f t_cpu . h"
#inc lude " tay l o r_sh i f t_ke rne l . h"
#inc lude " t ay l o r_sh i f t . h"
#inc lude " t ay l o r_ sh i f t_ f f t . h"
#inc lude " i n l i n e s . h"

__global__ void mult_adjust_GPU(s f i x n *Polynomial_shi ft , s f i x n * f f t ,
s f i x n n , s f i x n local_n , s f i x n winv , s f i x n p , double pinv)

{
/* EXAMPLE

−−

ARRAY f f t cons ide r ed
_______________ _______________ _______________ _______________
r e a l c o e f f s	u s e l e s s	r e a l c o e f f s	u s e l e s s
_______________	_______________	_______________	_______________

PART=0 PART=2

B = 2 * local_n = s i z e o f a PART

−−

ARRAY Polynomial_shi f t_device cons ide r ed

47

r e a l c o e f f s	r e a l c o e f f s
_______________	_______________

part=0 part=1

B = 2 * local_n = s i z e o f a part
*/

s f i x n i = blockIdx . x * blockDim . x + threadIdx . x ;
s f i x n B = 2* local_n ;

i f (i < n)
{

s f i x n part = i / B;
s f i x n pos = i % B;
s f i x n bool1 = (s f i x n) (pos != 0) ;

Polynomia l_shi f t [i] = bool1 * mul_mod(winv , f f t [2*B*part + pos −1] , \
p , pinv) ;

}
}

// t r a n s f e r at each step the polynomia l s which need to be mu l t i p l i c a t ed
__global__ void transfert_array_fft_GPU (s f i x n * f f t , s f i x n *Mgpu, s f i x n n , \

s f i x n local_n)
{

s f i x n i = blockIdx . x * blockDim . x + threadIdx . x ;
// s f i x n B = 2* local_n ;

s f i x n part , pos , bool1 , bool2 ;
part = i / local_n ;
pos = i % local_n ;
bool2 = part % 2 ;
bool1 = 1 − bool2 ;

i f (i <2*n)
{

// i f (part % 2 == 0)
f f t [i] = bool1 * Mgpu [(part /2)* local_n + pos] ;

// e l s e
// f f t [i] = 0 ;

}
}

__global__ void full_monomial (s f i x n *Mgpu, s f i x n *Monomial_shift , \
s f i x n n , s f i x n local_n)
{

s f i x n i = blockIdx . x * blockDim . x + threadIdx . x ;
s f i x n part = i / local_n ;
s f i x n pos = i % local_n ;

i f (i < n)
{

48

i f (part % 2 == 1)
Mgpu [i] = Monomial_shift [pos] ;

}
}

taylor_shift_conf.h

#i f n d e f _TAYLOR_SHIFT_CONF_H_
#de f i n e _TAYLOR_SHIFT_CONF_H_

// L i b r a r i e s :
inc lude <s t d l i b . h>
inc lude <s td i o . h>
inc lude <s t r i n g . h>
inc lude <time . h>
inc lude <ctime>
inc lude <math . h>
inc lude <uni s td . h>
inc lude <iostream>
inc lude <fstream>
us ing namespace std ;

// Number o f threads per block (s i z e o f a block) :
#de f i n e NB_THREADS 512

//#de f i n e MAX_LEVEL 25

typede f i n t s f i x n ;

const s f i x n Tmul = 512 ;
// const i n t BASE_1 = 31 ;

// Debuging f l a g s
//#de f i n e DEBUG 0

#end i f // _TAYLOR_SHIFT_CONF_H_

File calling these procedures : testGPU.cu

This code calls the procedure taylor_shift included in the �le taylor_shift.cu :

#inc lude " t ay l o r_sh i f t . h"
#inc lude " tay lor_shi f t_cpu . h"
#inc lude " tay lo r_sh i f t_con f . h"
#inc lude " tay l o r_sh i f t_ke rne l . h"

i n t main (i n t argc , char * argv [])
{

// temporal data
f l o a t tota l_time ;
cudaEvent_t s ta r t , stop ; /* I n i t i a l and f i n a l time */

// TIME

49

cudaEventCreate(& s t a r t) ;
cudaEventCreate(&stop) ;
cudaEventRecord (s ta r t , 0) ;

// d e c l a r a t i on o f v a r i a b l e s
i n t n , e , p ;
double pinv ;
char name_file [1 0 0] ;

error_message (argc) ;
p = a t o i (argv [2]) ;
pinv = (double) 1/p ;
n = s i z e_ f i l e (argv [1]) ;
e = (i n t) log2 ((double) n) ;

s p r i n t f (name_file , "Pol%d . shiftGPU_%d . dat \0" , e , p) ;

taylor_shift_GPU (n , e , argv [1] , p , pinv) ;

// TIME
cudaEventRecord (stop , 0) ;
cudaEventSynchronize (stop) ;
cudaEventElapsedTime(&total_time , s t a r t , stop) ;
cudaEventDestroy (stop) ;
tota l_time /= 1000 . 0 ;
p r i n t f ("%d %.6 f " , e , tota l_time) ;

r e turn 0 ;
}

10.2 Horner's method C++ code

#inc lude <s t d l i b . h>
#inc lude <s td i o . h>
#inc lude <s t r i n g . h>
#inc lude <time . h>
#inc lude <math . h>
#inc lude <uni s td . h>
#inc lude <iostream>
#inc lude <fstream>
us ing namespace std ;

/* Important to no t i c e :

n : number o f c o e f f i c i e n t s o f the polynomial cons ide r ed
n−1 : degree o f the polynomial cons ide r ed
p : prime number , i t must be g r e a t e r than n

*/

// e r r o r message i f the re i s a l ack o f arguments to make the program
void error_message (i n t m)
{

50

i f (m < 3)
{

p r i n t f ("********** ERROR, not enough arguments ! **********\n\
The program works with the f o l l ow i ng parameters : \ n\n ") ;

p r i n t f ("1 s t parameter : f i l e conta in ing c o e f f i c i e n t s o f the \
polynomial you want to con s id e r . \ n ") ;

p r i n t f ("2nd parameter : prime number p . \ n ") ;

e x i t (1) ;
}

}

// func t i on modulo (f a s t e r than us ing %p)
i n t double_mul_mod(i n t a , i n t b , i n t p , double pinv)
{

i n t q = (i n t) ((((double) a) * ((double) b)) * pinv) ;
i n t r e s = a * b − q * p ;

re turn (r e s < 0) ? (− r e s) : r e s ;
}

// c r e a t e s an array o f the sequence o f the f a c t o r i a l s u n t i l n
// modulo p (! s i z e o f the array = n+1)
void c r e a t e_ f a c t o r i a l (i n t *Facto r i a l , i n t n , i n t p , double pinv)
{

i n t k ;
Fa c t o r i a l [0] = 1 ;
Fa c t o r i a l [1] = 1 ;
f o r (k=2; k<n+1; k++)

Fac t o r i a l [k] = double_mul_mod(k , Fa c t o r i a l [k−1] , p , pinv) ;
}

// c r e a t e s an array o f the Newton ' s Binomials u n t i l n
// modulo p (! s i z e o f the array = n+1)
void create_binomial_CPU (in t *Binomial , i n t *Facto r i a l , \

i n t * Inverse_p , i n t n , i n t p , double pinv)
{

i n t k , l ;
i n t temp ;
f o r (k=0; k<n+1; k++) // we c r ea t e toge the r two par t s o f the array Binomial
{

l = n−k ;
i f (k>l) // and f i n a l l y t h i s loop has j u s t n/2 s t ep s
break ;

temp = double_mul_mod(Fa c t o r i a l [k] , Fa c t o r i a l [l] , p , pinv) ;
Binomial [k] = double_mul_mod(Fa c t o r i a l [n] , Inverse_p [temp] , p , pinv) ;
Binomial [l] = Binomial [k] ;

}
}

// s to ck s a f i l e in an array
void stock_f i l e_in_array (char * f i l ename , i n t n , i n t * & a)
{

51

i f s t r e am data_f i l e ;
i n t i ;
da ta_f i l e . open (f i l ename) ;

i f (! da ta_f i l e . is_open ())
{

p r i n t f ("\n Error whi l e read ing the f i l e %s . P lease check \
i f i t e x i s t s ! \ n" , f i l ename) ;

e x i t (1) ;
}

a = (i n t *) mal loc (n* s i z e o f (i n t)) ;

f o r (i =0; i<n ; i++)
da ta_f i l e >> a [i] ;

da ta_f i l e . c l o s e () ;
}

// s t o cke s the array o f Newton ' s c o e f f i c i e n t s in a f i l e
void stock_array_in_f i l e (const char *name_file , i n t *T, i n t s i z e)
{

i n t i ;
FILE* f i l e = NULL;

f i l e = fopen (name_file , "w+");
i f (f i l e == NULL)
{

p r i n t f (" e r r o r when opening the f i l e ! \ n ") ;
e x i t (1) ;

}

// wr i t t i n g the f i l e
f p r i n t f (f i l e , "%d" , T [0]) ;
f o r (i =1; i<s i z e ; i++)

f p r i n t f (f i l e , "\n%d" , T[i]) ;
f c l o s e (f i l e) ;

}

// computes the number o f l i n e s o f a f i l e
i n t s i z e_ f i l e (char * f i l ename)
{

i n t s i z e = 0 ;
i f s t r e am in (f i l ename) ;
std : : s t r i n g l i n e ;

whi l e (std : : g e t l i n e (in , l i n e))
s i z e++;

in . c l o s e () ;

r e turn s i z e ;
}

52

// d i sp l ay o f an array
void disp lay_array (i n t *T, i n t s i z e)
{

i n t k ;
p r i n t f (" [") ;
f o r (k=0; k<s i z e ; k++)

p r i n t f ("%d " , T[k]) ;
p r i n t f ("] \n ") ;

}

// c r ea t e an array o f the i nv e r s e numbers in Z/pZ
void inverse_p (i n t *T, i n t p , double pinv)
{

i n t i , j ;
T [0] = 0 ;
T[1] = 1 ;
f o r (i =2; i<p ; i++)

f o r (j =2; j<p ; j++)
i f (double_mul_mod(i , j , p , pinv) == 1)
{
T[i] = j ;
T[j] = i ;
break ;

}
}

// c r ea t e the array o f the c o e f f i c i e n t s o f (x+1)^k f o r s e v e r a l k
void deve lop_xsh i f t (i n t *T, i n t e , i n t *Facto r i a l , i n t * Inverse_p , \

i n t p , double pinv , i n t n)
{

i n t i , j ;
i n t *bin ;
i n t power2_i = 2 ;
T[0] = 1 ; // f o r (x+1)^0
T[1] = 1 ; // f o r (x+1)^1
T[n] = 1 ;

f o r (i =2; i<e+1; i++) // f o r (x+1)^ i with i in (2 , e)
{

bin = (i n t *) mal loc ((power2_i+1)* s i z e o f (i n t)) ;
create_binomial_CPU (bin , Fac to r i a l , Inverse_p , power2_i , p , pinv) ;
f o r (j =0; j<power2_i ; j++)
T[power2_i+j] = bin [j] ;

f r e e (bin) ;
power2_i *= 2 ;

}
}

// c r ea t e the product o f two ar rays r ep r e s en t i ng polynomia l s
void conv_prod (i n t * res , i n t *T1 , i n t *T2 , i n t m, i n t p)
{

i n t i , j , k ;

53

f o r (i =0; i<m; i++)
f o r (j =0; j<m; j++)
{

k = (i+j) % m;
r e s [k] = (r e s [k] + T1 [i]*T2 [j]) % p ;

}
}

// add i t i on o f two ar rays
void add_arrays (i n t * res , i n t *T1 , i n t *T2 , i n t s i z e , i n t p)
{

i n t i ;
f o r (i =0; i<s i z e ; i++)

r e s [i] = (T1 [i] + T2 [i]) % p ;
}

// c r e a t e s Polynomia l_shi f t (x) = Polynomial (x+1)
void create_polynomial_shift_CPU (in t *Polynomial , i n t *T, \

i n t *Monomial_shift , i n t n , i n t p , double pinv , i n t local_n)
{

i n t i , j ;
i n t *Temp1 , *Temp2 , *Temp3 , * r e s ;

i f (local_n != 1)
{

create_polynomial_shift_CPU (Polynomial , T, Monomial_shift , n , p , \
pinv , local_n /2) ;

i f (local_n != n)
{

Temp1 = (i n t *) c a l l o c (2* local_n , s i z e o f (i n t)) ;
Temp2 = (i n t *) c a l l o c (2* local_n , s i z e o f (i n t)) ;
Temp3 = (i n t *) c a l l o c (2* local_n , s i z e o f (i n t)) ;
r e s = (i n t *) mal loc (2* local_n * s i z e o f (i n t)) ;

memcpy(Temp3 , Monomial_shift + local_n , (local_n+1) * s i z e o f (i n t)) ;

f o r (j =0; j<n ; j+=2*local_n)
{

memcpy(Temp1 , T + j , local_n * s i z e o f (i n t)) ;
memcpy(Temp2 , T + local_n + j , local_n * s i z e o f (i n t)) ;
f o r (i =0; i <2* local_n ; i++)

r e s [i] = 0 ;
conv_prod (res , Temp3 , Temp2 , 2* local_n , p) ;
add_arrays (res , res , Temp1 , 2* local_n , p) ;
memcpy(T + j , res , 2* local_n * s i z e o f (i n t)) ;

}

f r e e (Temp1) ;
f r e e (Temp2) ;
f r e e (Temp3) ;
f r e e (r e s) ;

}

54

}

e l s e
{

f o r (i =0; i<n ; i+=2)
{
T[i] = Polynomial [i] + Polynomial [i +1] ;
T[i +1] = Polynomial [i +1] ;

}
}

}

i n t add_mod(i n t a , i n t b , i n t p) {
i n t r = a + b ;
r −= p ;
r += (r >> 31) & p ;
re turn r ;

}

// Horner ' s method to compute g (x) = f (x+1) (equ iva l en t to Shaw &
// Traub ' s method f o r a=1)
void horner_shift_CPU (in t *Polynomial , i n t *Polynomial_shi ft , i n t n , i n t p)
{

i n t i ;
i n t *temp ;

temp = (in t *) c a l l o c (n , s i z e o f (i n t)) ;
Polynomia l_shi f t [0] = Polynomial [n−1] ;

f o r (i =1; i<n ; i++)
{

memcpy(temp+1, Polynomial_shi ft , i * s i z e o f (i n t)) ;
add_arrays (Polynomial_shi ft , Polynomial_shi ft , temp , n , p) ;
Polynomia l_shi f t [0] = add_mod(Polynomia l_shi f t [0] , Polynomial [n−1− i] , p) ;

}

f r e e (temp) ;
}

// MAIN
in t main (i n t argc , char * argv [])
{

// TIME
cudaEvent_t s ta r t , stop ; /* I n i t i a l and f i n a l time */
cudaEventCreate(& s t a r t) ;
cudaEventCreate(&stop) ;
cudaEventRecord (s ta r t , 0) ;

i n t n , p , e ;
i n t *Polynomial , *Polynomia l_shi f t2 ;
f l o a t cpu_time ; /* Total time o f the cpu in seconds */

// beg inning parameters

55

error_message (argc) ;
p = a t o i (argv [2]) ;
n = s i z e_ f i l e (argv [1]) ;
e = (i n t) log2 ((double) n) ;
s tock_f i l e_in_array (argv [1] , n , Polynomial) ;

Polynomia l_shi f t2 = (i n t *) c a l l o c (n , s i z e o f (i n t)) ;
horner_shift_CPU (Polynomial , Polynomial_shi ft2 , n , p) ;

// save in f i l e s the po lynomia l_sh i f t
char name_file [1 0 0] ;
s p r i n t f (name_file , "Pol%d . shiftCPU_%d . dat \0" , e , p) ;
s tock_array_in_f i l e (name_file , Polynomial_shi ft2 , n) ;

f r e e (Polynomial) ;
f r e e (Polynomia l_shi f t2) ;

// TIME
cudaEventRecord (stop , 0) ;
cudaEventSynchronize (stop) ;
cudaEventElapsedTime(&cpu_time , s ta r t , stop) ;
cudaEventDestroy (stop) ;
p r i n t f ("%.6 f " , cpu_time) ;

r e turn 0 ;
}

10.3 Divide and Conquer C++ code

#inc lude <s t d l i b . h>
#inc lude <s td i o . h>
#inc lude <s t r i n g . h>
#inc lude <time . h>
#inc lude <math . h>
#inc lude <uni s td . h>
#inc lude <iostream>
#inc lude <fstream>
us ing namespace std ;

typede f i n t s f i x n ;
const i n t BASE_1 = 31 ;

/* Important to no t i c e :

n : number o f c o e f f i c i e n t s o f the polynomial cons ide r ed
n−1 : degree o f the polynomial cons ide r ed
p : prime number , i t must be g r e a t e r than n

*/

s f i x n add_mod(s f i x n a , s f i x n b , s f i x n p) {
s f i x n r = a + b ;
r −= p ;
r += (r >> BASE_1) & p ;

56

re turn r ;
}

s f i x n mul_mod(s f i x n a , s f i x n b , s f i x n n , double ninv) {

s f i x n q = (s f i x n) ((((double) a) * ((double) b)) * ninv) ;
s f i x n r e s = a * b − q * n ;
r e s += (r e s >> BASE_1) & n ;
r e s −= n ;
r e s += (r e s >> BASE_1) & n ;
re turn r e s ;

}

void egcd (s f i x n x , s f i x n y , s f i x n *ao , s f i x n *bo , s f i x n *vo) {
s f i x n t , A, B, C, D, u , v , q ;

u = y ; v = x ;
A = 1 ; B = 0 ;
C = 0 ; D = 1 ;

do {
q = u / v ;
t = u ;
u = v ;
v = t − q * v ;
t = A;
A = B;
B = t − q * B;
t = C;
C = D;
D = t − q * D;

} whi l e (v != 0) ;

*ao = A;
*bo = C;
*vo = u ;

}

s f i x n inv_mod(s f i x n n , s f i x n p) {
s f i x n a , b , v ;
egcd (n , p , &a , &b , &v) ;
i f (b < 0) b += p ;
re turn b % p ;

}

s f i x n quo_mod(s f i x n a , s f i x n b , s f i x n n , double ninv) {
return mul_mod(a , inv_mod(b , n) , n , ninv) ;

}

// e r r o r message i f the re i s a l ack o f arguments to make the program
void error_message (i n t m)
{

i f (m < 3)

57

{
p r i n t f ("********** ERROR, not enough arguments ! **********\n\

The program works with the f o l l ow i ng parameters : \ n\n ") ;
p r i n t f ("1 s t parameter : f i l e conta in ing c o e f f i c i e n t s o f the \

polynomial you want to con s id e r . \ n ") ;
p r i n t f ("2nd parameter : prime number p . \ n ") ;

e x i t (1) ;
}

}

// func t i on modulo (f a s t e r than us ing %p)
i n t double_mul_mod(i n t a , i n t b , i n t p , double pinv)
{

i n t q = (i n t) ((((double) a) * ((double) b)) * pinv) ;
i n t r e s = a * b − q * p ;

re turn (r e s < 0) ? (− r e s) : r e s ;
}

// c r e a t e s an array o f the sequence o f the f a c t o r i a l s u n t i l n
// modulo p (! s i z e o f the array = n+1)
void c r e a t e_ f a c t o r i a l (i n t *Facto r i a l , i n t n , i n t p , double pinv)
{

i n t k ;
Fa c t o r i a l [0] = 1 ;
Fa c t o r i a l [1] = 1 ;
f o r (k=2; k<n+1; k++)

Fac t o r i a l [k] = double_mul_mod(k , Fa c t o r i a l [k−1] , p , pinv) ;
}

// c r e a t e s an array o f the Newton ' s Binomials u n t i l n
// modulo p (! s i z e o f the array = n+1)
void create_binomial_CPU (in t *Binomial , i n t *Facto r i a l , \

i n t n , i n t p , double pinv)
{

i n t k , l ;
i n t temp ;
f o r (k=0; k<n+1; k++) // we c r ea t e toge the r two par t s o f the array Binomial
{

l = n−k ;
i f (k>l) // and f i n a l l y t h i s loop has j u s t n/2 s t ep s
break ;

temp = mul_mod(Fa c t o r i a l [k] , Fa c t o r i a l [l] , p , pinv) ;
Binomial [k] = quo_mod(Fa c t o r i a l [n] , temp , p , pinv) ;
Binomial [l] = Binomial [k] ;

}
}

// s to ck s a f i l e in an array
void stock_f i l e_in_array (char * f i l ename , i n t n , i n t * & a)
{

i f s t r e am data_f i l e ;

58

i n t i ;
da ta_f i l e . open (f i l ename) ;

i f (! da ta_f i l e . is_open ())
{

p r i n t f ("\n Error whi l e read ing the f i l e %s . P lease \
check i f i t e x i s t s ! \ n" , f i l ename) ;

e x i t (1) ;
}

a = (i n t *) mal loc (n* s i z e o f (i n t)) ;

f o r (i =0; i<n ; i++)
da ta_f i l e >> a [i] ;

da ta_f i l e . c l o s e () ;
}

// s t o cke s the array o f Newton ' s c o e f f i c i e n t s in a f i l e
void stock_array_in_f i l e (const char *name_file , i n t *T, i n t s i z e)
{

i n t i ;
FILE* f i l e = NULL;

f i l e = fopen (name_file , "w+");
i f (f i l e == NULL)
{

p r i n t f (" e r r o r when opening the f i l e ! \ n ") ;
e x i t (1) ;

}

// wr i t t i n g the f i l e
f p r i n t f (f i l e , "%d" , T [0]) ;
f o r (i =1; i<s i z e ; i++)

f p r i n t f (f i l e , "\n%d" , T[i]) ;
f c l o s e (f i l e) ;

}

// computes the number o f l i n e s o f a f i l e
i n t s i z e_ f i l e (char * f i l ename)
{

i n t s i z e = 0 ;
i f s t r e am in (f i l ename) ;
std : : s t r i n g l i n e ;

whi l e (std : : g e t l i n e (in , l i n e))
s i z e++;

in . c l o s e () ;

r e turn s i z e ;
}

// d i sp l ay o f an array

59

void disp lay_array (i n t *T, i n t s i z e)
{

i n t k ;
p r i n t f (" [") ;
f o r (k=0; k<s i z e ; k++)

p r i n t f ("%d " , T[k]) ;
p r i n t f ("] \n ") ;

}

// c r ea t e an array o f the i nv e r s e numbers in Z/pZ
void inverse_p (i n t *T, i n t p , double pinv)
{

i n t i , j ;
T [0] = 0 ;
T[1] = 1 ;
f o r (i =2; i<p ; i++)

f o r (j =2; j<p ; j++)
i f (mul_mod(i , j , p , pinv) == 1)
{
T[i] = j ;
T[j] = i ;
break ;

}
}

// c r ea t e the array o f the c o e f f i c i e n t s o f (x+1)^k f o r s e v e r a l k
void deve lop_xsh i f t (i n t *T, i n t e , i n t *Facto r i a l , i n t p , double pinv , i n t n)
{

i n t i , j ;
i n t *bin ;
i n t power2_i = 2 ;
T[0] = 1 ; // f o r (x+1)^0
T[1] = 1 ; // f o r (x+1)^1
T[n] = 1 ;

f o r (i =2; i<e+1; i++) // f o r (x+1)^ i with i in (2 , e)
{

bin = (i n t *) mal loc ((power2_i+1)* s i z e o f (i n t)) ;
create_binomial_CPU (bin , Fac to r i a l , power2_i , p , pinv) ;
f o r (j =0; j<power2_i ; j++)
T[power2_i+j] = bin [j] ;

f r e e (bin) ;
power2_i *= 2 ;

}
}

// c r ea t e the product o f two ar rays r ep r e s en t i ng polynomia l s
void conv_prod (i n t * res , i n t *T1 , i n t *T2 , i n t m, i n t p , double pinv)
{

i n t i , j , k , temp ;

f o r (i =0; i<m; i++)
f o r (j =0; j<m; j++)

60

{
k = add_mod(i , j ,m) ;
temp = mul_mod(T1 [i] , T2 [j] , p , pinv) ;
r e s [k] = add_mod(r e s [k] , temp , p) ;

}
}

// add i t i on o f two ar rays
void add_arrays (i n t * res , i n t *T1 , i n t *T2 , i n t s i z e , i n t p)
{

i n t i ;
f o r (i =0; i<s i z e ; i++)

r e s [i] = add_mod(T1 [i] , T2 [i] , p) ;
}

// c r e a t e s Polynomia l_shi f t (x) = Polynomial (x+1)
void create_polynomial_shift_CPU (in t *Polynomial , i n t *T, \

i n t *Monomial_shift , i n t n , i n t p , double pinv , i n t local_n)
{

i n t i , j ;
i n t *Temp1 , *Temp2 , *Temp3 , * r e s ;

i f (local_n != 1)
{

create_polynomial_shift_CPU (Polynomial , T, Monomial_shift , n , \
p , pinv , local_n /2) ;

i f (local_n != n)
{

Temp1 = (i n t *) c a l l o c (2* local_n , s i z e o f (i n t)) ;
Temp2 = (i n t *) c a l l o c (2* local_n , s i z e o f (i n t)) ;
Temp3 = (i n t *) c a l l o c (2* local_n , s i z e o f (i n t)) ;
r e s = (i n t *) mal loc (2* local_n * s i z e o f (i n t)) ;

memcpy(Temp3 , Monomial_shift + local_n , (local_n+1) * s i z e o f (i n t)) ;

f o r (j =0; j<n ; j+=2*local_n)
{

memcpy(Temp1 , T + j , local_n * s i z e o f (i n t)) ;
memcpy(Temp2 , T + local_n + j , local_n * s i z e o f (i n t)) ;
f o r (i =0; i <2* local_n ; i++)

r e s [i] = 0 ;
conv_prod (res , Temp3 , Temp2 , 2* local_n , p , pinv) ;
add_arrays (res , res , Temp1 , 2* local_n , p) ;
memcpy(T + j , res , 2* local_n * s i z e o f (i n t)) ;

}

f r e e (Temp1) ;
f r e e (Temp2) ;
f r e e (Temp3) ;
f r e e (r e s) ;

}
}

61

e l s e // (local_n == 1)
{

f o r (i =0; i<n ; i+=2)
{
T[i] = add_mod(Polynomial [i] , Polynomial [i +1] , p) ;
T[i +1] = Polynomial [i +1] ;

}
}

}

// MAIN
in t main (i n t argc , char * argv [])
{

f l o a t cpu_time ; /* Total time o f the cpu in seconds */
// TIME
cudaEvent_t s ta r t , stop ; /* I n i t i a l and f i n a l time */
cudaEventCreate(& s t a r t) ;
cudaEventCreate(&stop) ;
cudaEventRecord (s ta r t , 0) ;

i n t n , p , e ;
i n t *Facto r i a l , *Binomial ;
i n t *Polynomial , *Polynomia l_shi f t1 ;
i n t *Monomial_shift ;
double pinv ;

// beg inning parameters
error_message (argc) ;
p = a t o i (argv [2]) ;
pinv = (double) 1/p ;
n = s i z e_ f i l e (argv [1]) ;
e = (i n t) log2 ((double) n) ;
s tock_f i l e_in_array (argv [1] , n , Polynomial) ;

// a l l o c a t i o n o f memory
Fac t o r i a l = (i n t *) mal loc ((n+1)* s i z e o f (i n t)) ;
Binomial = (i n t *) mal loc ((n+1)* s i z e o f (i n t)) ;
Monomial_shift = (i n t *) mal loc ((n+1)* s i z e o f (i n t)) ;
Polynomia l_shi f t1 = (i n t *) c a l l o c (n , s i z e o f (i n t)) ;

// i n s t r u c t i o n s
c r e a t e_ f a c t o r i a l (Fac to r i a l , n , p , pinv) ;
create_binomial_CPU (Binomial , Fac to r i a l , n , p , pinv) ;
deve lop_xsh i f t (Monomial_shift , e , Fac to r i a l , p , pinv , n) ;
create_polynomial_shift_CPU (Polynomial , Polynomial_shi ft1 , \

Monomial_shift , n , p , pinv , n) ;

// save in f i l e s the po lynomia l_sh i f t
char name_file [1 0 0] ;
s p r i n t f (name_file , "Pol%d . shiftCPU_%d . dat \0" , e , p) ;
s tock_array_in_f i l e (name_file , Polynomial_shi ft1 , n) ;

62

// f r e e memory
f r e e (Fa c t o r i a l) ;
f r e e (Binomial) ;
f r e e (Polynomial) ;
f r e e (Polynomia l_shi f t1) ;
f r e e (Monomial_shift) ;

// TIME
cudaEventRecord (stop , 0) ;
cudaEventSynchronize (stop) ;
cudaEventElapsedTime(&cpu_time , s ta r t , stop) ;
cudaEventDestroy (stop) ;
cpu_time /= 1000 . 0 ;

p r i n t f ("%.6 f " , cpu_time) ;

r e turn 0 ;
}

10.4 Maple code

The procedure we describe in this part makes the Taylor shift by one of a polynomial pp of variable x
in input modulo prime which is a prime number. We can create a random polynomial pp with the maple
instruction randpoly, for example :
pp := randpoly(x, degree = 210 − 1, terms = 210) :

Then we can run the following procedure with pp and a prime number we choose (958922753 as for
the other examples). Here is the procedure :

xplus1 := proc (pp , x , prime)

l o c a l p , L , d , i , j , res , st , cputime :
s t := time () :
p := c o l l e c t (pp , x) :
d := degree (p , x) :
L := Array (1 . . d+1):

f o r i from d to 0 by −1 do
L [d+1− i] := c o e f f (p , x , i) :

od :

f o r i from 1 to d do
f o r j from 2 to d−i+2 do
L [j] := (L [j −1] + L [j]) mod prime :

od :
od :

r e s := 0 :
f o r i from 1 to d+1 do

r e s := (r e s + L [i]* x^(d+1− i)) mod prime :
od :

cputime := time () − s t ;
return cputime :

63

re turn r e s ;
end :

64

References

[1] Changbo Chen, Marc Moreno Maza, and Yuzhen Xie. Cache complexity and multicore implementation
for univariate real root isolation. Journal of Physics : Conferences Series, 2010.

[2] Pavel Emeliyanenko. Advanced Parallel Processing Technologies : 8th International Symposium, Ef-
�cient Multiplication of Polynomials on Graphics Hardware. Max-Planck-Institut für Informatik,
Saarbrücken, Germany, 2009.

[3] Pavel Emeliyanenko. High-performance polynomial gcd computations on graphics processors. pages
134�149, 2010.

[4] Joachim Von Zur Gathen and Jürgen Gerhard. Fast algorithms for Taylor shifts and certain di�erence
equations. Universität-GH Paderborn D-33095 Paderborn, Germany, 1997.

[5] Joachim Von Zur Gathen and Jürgen Gerhard. Modern Computer Algebra 2nd edition. Universität-
GH Paderborn D-33095 Paderborn, Germany, 2003.

[6] A.B.M. Zunaid Haque. Multi-threaded real root isolation on multi-core architectures. PhD thesis,
University of Western Ontario, London, Ontario, Canada, 2012.

[7] Marc Moreno Maza. Foundations of computer algebra : Fast polynomial multiplication. 2008.

[8] Wei Pan. Algorithmic Contributions to the Theory of Regular Chains. PhD thesis, University of
Western Ontario, London, Ontario, Canada, 2011.

[9] J. Schönheim. Conversion of Modular Numbers to their Mixed Radix representation by a Matrix
Formula. Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel, 1967.

65

	Internship context
	University of Western Ontario of London (UWO)
	Departments of Computer Science and Applied Mathematics
	My supervisor, professor Marc Moreno Maza
	Maple
	Purpose of my internship

	Key points for the research of real roots of a univariate polynomial
	Descartes' rule of signs
	Horner's method
	Example
	Vincent Collins Akritas Algorithm
	Modular arithmetic
	Chinese Remainder Theorem

	Taylor shift
	Divide & Conquer method (D & C)
	Compute the (x+1)2is

	First steps : Polynomials of size 2 to 512
	The beginning
	The following steps
	The plain multiplication & the right shift
	Partial additions
	The arrays

	Fast Fourier Transform (FFT)
	Discrete Fourier Transform
	Convolution of polynomials
	The Fast Fourier Transform

	Polynomials of high degrees (> 512)
	The array for FFT operations
	Multiplication using FFT

	Future works
	Reflection remarks and improvements
	Prime numbers to consider
	Combining several computations of the Taylor_shift procedure

	Benchmarks
	Conclusion
	Appendix
	Divide and Conquer Cuda code
	Horner's method C++ code
	Divide and Conquer C++ code
	Maple code

