
Algorithms for Computing Triangular Decompositions of
Polynomial Systems

Changbo Chen
ORCCA, University of Western Ontario (UWO)

London, Ontario, Canada
cchen252@csd.uwo.ca

Marc Moreno Maza
ORCCA, University of Western Ontario (UWO)

London, Ontario, Canada
moreno@csd.uwo.ca

ABSTRACT
We propose new algorithms for computing triangular decom-
positions of polynomial systems incrementally. With respect
to previous works, our improvements are based on a weak-
ened notion of a polynomial GCD modulo a regular chain,
which permits to greatly simplify and optimize the sub-
algorithms. Extracting common work from similar expen-
sive computations is also a key feature of our algorithms. In
our experimental results the implementation of our new algo-
rithms, realized with the RegularChains library in Maple,
outperforms solvers with similar specifications by several or-
ders of magnitude on sufficiently difficult problems.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—Algebraic algorithms

General Terms
Algorithms, Experimentation, Theory

Keywords
regular chain, triangular decomposition, incremental algo-
rithm, subresultant, polynomial system, regular GCD

1. INTRODUCTION
The Characteristic Set Method [22] of Wu has freed Ritt’s

decomposition from polynomial factorization, opening the
door to a variety of discoveries in polynomial system solving.
In the past two decades the work of Wu has been extended
to more powerful decomposition algorithms and applied to
different types of polynomial systems or decompositions: dif-
ferential systems [2, 11], difference systems [10], real para-
metric systems [23], primary decomposition [18], cylindrical
algebraic decomposition [5]. Today, triangular decomposi-
tion algorithms provide back-engines for computer algebra
system front-end solvers, such as Maple’s solve command.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’11, June 8–11, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0675-1/11/06 ...$10.00.

Algorithms computing triangular decompositions of poly-
nomial systems can be classified in several ways. One can
first consider the relation between the input system S and
the output triangular systems S1, . . . , Se. From that per-
spective, two types of decomposition are essentially different:
those for which S1, . . . , Se encode all the points of the zero
set S (over the algebraic closure of the coefficient field of S)
and those for which S1, . . . , Se represent only the “generic
zeros” of the irreducible components of S.

One can also classify triangular decomposition algorithms
by the algorithmic principles on which they rely. From this
other angle, two types of algorithms are essentially different:
those which proceed by variable elimination, that is, by re-
ducing the solving of a system in n unknowns to that of a
system in n − 1 unknowns and those which proceed incre-
mentally, that is, by reducing the solving of a system in m
equations to that of a system in m − 1 equations.

The Characteristic Set Method and the algorithm in [21]
belong to the first type in each classification. Kalkbrener’s
algorithm [12], which is an elimination method solving in the
sense of the “generic zeros”, has brought efficient techniques,
based on the concept of a regular chain. Other works [13, 17]
on triangular decomposition algorithms focus on incremental
solving. This principle is quite attractive, since it allows to
control the properties and size of the intermediate computed
objects. It is used in other areas of polynomial system solv-
ing such as the probabilistic algorithm of Lecerf [14] based
on lifting fibers and the numerical method of Sommese, Ver-
schelde, Wample [19] based on diagonal homotopy.

Incremental algorithms for triangular decomposition rely
on a procedure for computing the intersection of an hyper-
surface and the quasi-component of a regular chain. Thus,
the input of this operation can be regarded as well-behaved
geometrical objects. However, known algorithms, namely
the one of Lazard [13] and the one of the second author [17]
are quite involved and difficult to analyze and optimize.

In this paper, we revisit this intersection operation. Let
R = k[x1, . . . , xn] be the ring of multivariate polynomi-
als with coefficients in k and ordered variables x = x1 <
· · · < xn. Given a polynomial p ∈ R and a regular chain
T ⊂ k[x1, . . . , xn], the function call Intersect(p, T, R) returns
regular chains T1, . . . , Te ⊂ k[x1, . . . , xn] such that we have:

V (p) ∩ W (T) ⊆ W (T1) ∪ · · · ∪ W (Te) ⊆ V (p) ∩ W (T).

(See Section 2 for the notion of a regular chain and related
concepts and notations.) We exhibit an algorithm for com-
puting Intersect(p, T, R) which is conceptually simpler and
practically much more efficient than those of [13, 17]. Our
improvements result mainly from two new ideas.

Weakened notion of polynomial GCDs modulo regular

chain. Modern algorithms for triangular decomposition rely
implicitly or explicitly on a notion of GCD for univariate
polynomials over an arbitrary commutative ring. A formal
definition was proposed in [17] (see Definition 1) and applied
to residue class rings of the form A = k[x]/sat(T) where
sat(T) is the saturated ideal of the regular chain T . A mod-
ular algorithm for computing these GCDs appears in [15]:
if sat(T) is known to be radical, the performance (both in
theory and practice) of this algorithm are very satisfactory
whereas if sat(T) is not radical, the complexity of the algo-
rithm increases substantially w.r.t. the radical case. In this
paper, the ring A will be of the form k[x]/

p

sat(T) while our
algorithms will not need to compute a basis nor a character-
istic set of

p

sat(T). For the purpose of polynomial system
solving (when retaining the multiplicities of zeros is not re-
quired) this weaker notion of a polynomial GCD is clearly
sufficient. In addition, this yields a very simple procedure for
computing such GCDs, see Theorem 1. To this end, we rely
on the specialization property of subresultants. The technical
report [4] reviews this property and provides corner cases for
which we could not find a reference in the literature.

Extracting common work from similar computations. Up
to technical details, if T consists of a single polynomial t
whose main variable is the same as p, say v, computing
Intersect(p, T, R) can be achieved by successively computing
(s1) the resultant r of p and t w.r.t. v,
(s2) a regular GCD of p and t modulo the squarefree part

of r.
Observe that Steps (s1) and (s2) reduce essentially to com-
puting the subresultant chain of p and t w.r.t. v. The algo-
rithms of Section 4 extend this simple observation for com-
puting Intersect(p, T, R) with an arbitrary regular chain. In
broad terms, the intermediate polynomials computed during
the “elimination phasis” of Intersect(p, T, R) are recycled for
performing the “extension phasis” at essentially no cost.

The techniques developed for Intersect(p, T, R) are applied
to other key sub-algorithms, such as the regularity test of a
polynomial modulo the saturated of a regular chain, see Sec-
tion 4. The primary application of the operation Intersect is
to obtain triangular decomposition encoding all the points
of the zero set of the input system. However, we also de-
rive from it in Section 6 an algorithm computing triangular
decompositions in the sense of Kalkbrener.

Experimental results. We have implemented the algorithms
presented in this paper within the RegularChains library in
Maple, leading to a new implementation of the Triangularize
command. In Section 7, we report on various benchmarks.
This new version of Triangularize outperforms the previous
ones (based on [17]) by several orders of magnitude on suffi-
ciently difficult problems. Other Maple commands or pack-
ages for solving polynomial systems (the WSolve package,
the Groebner:-Solve command and the Groebner:-Basis

command for a lexicographical term order) are also outper-
formed by the implementation of the algorithms presented
in this paper both in terms of running time and, in the case
of engines based on Gröbner bases, in terms of output size.

2. REGULAR CHAINS
We review hereafter the notion of a regular chain and its

related concepts. Then we state basic properties (Proposi-

tions 1, 2, 3, 4, and Corollaries 1, 2) of regular chains, which
are at the core of the proofs of the algorithms of Section 4.

Throughout this paper, k is a field, K is the algebraic
closure of k and k[x] denotes the ring of polynomials over k,
with ordered variables x = x1 < · · · < xn. Let p ∈ k[x].

Notations for polynomials. If p is not constant, then the
greatest variable appearing in p is called the main variable
of p, denoted by mvar(p). Furthermore, the leading coef-
ficient, the degree, the leading monomial, the leading term
and the reductum of p, regarded as a univariate polynomial
in mvar(p), are called respectively the initial, the main de-
gree, the rank, the head and the tail of p; they are denoted by
init(p), mdeg(p), rank(p), head(p) and tail(p) respectively.
Let q be another polynomial of k[x]. If q is not constant,
then we denote by prem(p, q) and pquo(p, q) the pseudo-
remainder and the pseudo-quotient of p by q as univariate
polynomials in mvar(q). We say that p is less than q and
write p ≺ q if either p ∈ k and q /∈ k or both are non-
constant polynomials such that mvar(p) < mvar(q) holds, or
mvar(p) = mvar(q) and mdeg(p) < mdeg(q) both hold. We
write p ∼ q if neither p ≺ q nor q ≺ p hold.

Notations for polynomial sets. Let F ⊂ k[x]. We denote by
〈F 〉 the ideal generated by F in k[x]. For an ideal I ⊂ k[x],
we denote by dim(I) its dimension. A polynomial is regular
modulo I if it is neither zero, nor a zerodivisor modulo I.
Denote by V (F) the zero set (or algebraic variety) of F in
Kn. Let h ∈ k[x]. The saturated ideal of I w.r.t. h, denoted
by I : h∞, is the ideal {q ∈ k[x] | ∃m ∈ N s.t. hmq ∈ I}.

Triangular set. Let T ⊂ k[x] be a triangular set, that is, a
set of non-constant polynomials with pairwise distinct main
variables. The set of main variables and the set of ranks of
the polynomials in T are denoted by mvar(T) and rank(T),
respectively. A variable in x is called algebraic w.r.t. T
if it belongs to mvar(T), otherwise it is said free w.r.t. T .
For v ∈ mvar(T), denote by Tv the polynomial in T with
main variable v. For v ∈ x, we denote by T<v (resp. T≥v)
the set of polynomials t ∈ T such that mvar(t) < v (resp.
mvar(t) ≥ v) holds. Let hT be the product of the initials
of the polynomials in T . We denote by sat(T) the saturated
ideal of T defined as follows: if T is empty then sat(T) is the
trivial ideal 〈0〉, otherwise it is the ideal 〈T 〉 : h∞

T . The quasi-
component W (T) of T is defined as V (T) \ V (hT). Denote

W (T) = V (sat(T)) as the Zariski closure of W (T). For
F ⊂ k[x], we write Z(F, T) := V (F) ∩ W (T).

Rank of a triangular set. Let S ⊂ k[x] be a triangular set.
We say that T has smaller rank than S and write T ≺ S if
there exists v ∈ mvar(T) such that rank(T<v) = rank(S<v)
holds and: (i) either v /∈ mvar(S); (ii) or v ∈ mvar(S) and
Tv ≺ Sv. We write T ∼ S if rank(T) = rank(S).

Iterated resultant. Let p, q ∈ k[x]. Assume q is noncon-
stant and let v = mvar(q). We define res(p, q, v) as follows: if
the degree deg(p, v) of p in v is null, then res(p, q, v) = p; oth-
erwise res(p, q, v) is the resultant of p and q w.r.t. v. Let T
be a triangular set of k[x]. We define res(p, T) by induction:
if T = ∅, then res(p, T) = p; otherwise let v be greatest vari-
able appearing in T , then res(p, T) = res(res(p, Tv, v), T<v).

Regular chain. A triangular set T ⊂ k[x] is a regular chain
if: (i) either T is empty; (ii) or T \{Tmax} is a regular chain,
where Tmax is the polynomial in T with maximum rank, and
the initial of Tmax is regular w.r.t. sat(T \ {Tmax}). The
empty regular chain is simply denoted by ∅.

Triangular decomposition. Let F ⊂ k[x] be finite. Let

T := {T1, . . . , Te} be a finite set of regular chains of k[x]. We
call T a Kalkbrener triangular decomposition of V (F) if we

have V (F) = ∪e
i=1W (Ti). We call T a Lazard-Wu triangular

decomposition of V (F) if we have V (F) = ∪e
i=1W (Ti).

Proposition 1 ([1]). Let p and T be respectively a poly-
nomial and a regular chain of k[x]. Then, prem(p, T) = 0
holds if and only if p ∈ sat(T) holds.

Proposition 2 ([17]). Let T and T ′ be two regular chains

of k[x] such that
p

sat(T) ⊆
p

sat(T ′) and dim (sat(T)) =
dim (sat(T ′)) hold. Let p ∈ k[x] such that p is regular w.r.t.
sat(T). Then p is also regular w.r.t. sat(T ′).

Proposition 3 ([1]). Let p ∈ k[x] and T ⊂ k[x] be a
regular chain. Let v = mvar(p) and r = prem(p, T≥v) such

that r ∈
p

sat(T<v) holds. Then, we have p ∈
p

sat(T).

Corollary 1. Let T, T ′ be regular chains of k[x1, . . . , xk],
for 1 ≤ k < n. Let p ∈ k[x] with mvar(p) = xk+1 such
that init(p) is regular w.r.t. sat(T) and sat(T ′). We have:
p

sat(T) ⊆
p

sat(T ′) =⇒
p

sat(T ∪ p) ⊆
p

sat(T ′ ∪ p).

Proposition 4 ([3]). Let p ∈ k[x]. Let T ⊂ k[x] be a
regular chain. Then the following statements are equivalent:

(i) the polynomial p is regular w.r.t. sat(T),
(ii) for each prime p associated with sat(T), we have p 6∈ p,

(iii) the iterated resultant res(p, T) is not zero.

Corollary 2. Let p ∈ k[x] and T ⊂ k[x] be a regular
chain. Let v := mvar(p) and r := res(p, T≥v). We have:

(1) the polynomial p is regular w.r.t. sat(T) if and only if
r is regular w.r.t. sat(T<v);

(2) if v /∈ mvar(T) and init(p) is regular w.r.t. sat(T),
then p is regular w.r.t. sat(T).

3. REGULAR GCDS
Definition 1 was introduced in [17] as part of a formal

framework for algorithms manipulating regular chains [8, 13,
6, 12, 24]. In the present paper, the ring A will always be of

the form k[x]/
p

sat(T). Thus, a regular GCD of p, t in A[y]

is also called a regular GCD of p, t modulo
p

sat(T).

Definition 1. Let A be a commutative ring with unity.
Let p, t, g ∈ A[y] with t 6= 0 and g 6= 0. We say that g ∈ A[y]
is a regular GCD of p, t if:
(R1) the leading coefficient of g in y is a regular element;
(R2) g belongs to the ideal generated by p and t in A[y];
(R3) if deg(g, y) > 0, then g pseudo-divides both p and t,

that is, prem(p, g) = prem(t, g) = 0.

Proposition 5. For 1 ≤ k ≤ n, let T ⊂ k[x1, . . . , xk−1]
be a regular chain, possibly empty. Let p, t, g ∈ k[x1, . . . , xk]
with main variable xk. Assume T ∪ {t} is a regular chain

and g is a regular GCD of p, t modulo
p

sat(T). We have:

(i) if mdeg(g) = mdeg(t), then
p

sat(T ∪ t) =
p

sat(T ∪ g)
and W (T ∪ t) ⊆ Z(hg, T ∪ t) ∪ W (T ∪ g) both hold,

(ii) if mdeg(g) < mdeg(t), let q = pquo(t, g), then T ∪ q is
a regular chain and the following two relations hold:

(ii.a)
p

sat(T ∪ t) =
p

sat(T ∪ g) ∩
p

sat(T ∪ q),
(ii.b) W (T ∪ t) ⊆ Z(hg, T ∪ t) ∪ W (T ∪g)∪W (T ∪ q),

(iii) W (T ∪ g) ⊆ V (p),
(iv) Z(p, T ∪ t) ⊆ W (T ∪ g) ∪ Z({p, hg}, T ∪ t).

Proof. We first establish a relation between p, t and g.
By definition of pseudo-division, there exist polynomials q, r
and a nonnegtive integer e0 such that

he0
g t = qg + r and r ∈

p

sat(T) (1)

both hold. Hence, there exists an integer e1 ≥ 0 such that:

(hT)e1(he0
g t − qg)e1 ∈ 〈T 〉 (2)

holds, which implies: t ∈
p

sat(T ∪ g). We first prove (i).
Since mdeg(t) = mdeg(g) holds, we have q ∈ k[x1, . . . , xk−1],
and thus he0

g ht = q hg holds. Since ht and hg are regular
modulo sat(T), the same property holds for q. With (2), we

obtain g ∈
p

sat(T ∪ t). Therefore
p

sat(T ∪ t) =
p

sat(T ∪ g).
The inclusion relation in (i) follows from (1).

We prove (ii). Assume mdeg(t) > mdeg(g). With (1)
and (2), this hypothesis implies that T ∪ q is a regular chain

and t ∈
p

sat(T ∪ q) holds. Since t ∈
p

sat(T ∪ g) also

holds,
p

sat(T ∪ t) is contained in
p

sat(T ∪ g)∩
p

sat(T ∪ q).

Conversely, for any f ∈
p

sat(T ∪ g) ∩
p

sat(T ∪ q), there
exists an integer e2 ≥ 0 and a ∈ k[x] such that (hghq)

e2fe2−

aqg ∈ sat(T) holds. With (1) we deduce that f ∈
p

sat(T ∪ t)
holds and so does (ii.a). With (1), we have (ii.b) holds.

We prove (iii) and (iv). Definition 1 implies: prem(p, g) ∈
p

sat(T). Thus p ∈
p

sat(T ∪ g) holds, that is, W (T ∪ g) ⊆

V (p), which implies (iii). Moreover, since g ∈ 〈p, t,
p

sat(T)〉,
we have Z(p, T ∪ t) ⊆ V (g), so we deduce (iv).

Let p, t be two polynomials of k[x1, . . . , xk], for k ≥ 1.
Let m = deg(p, xk), n = mdeg(t, xk). Assume that m, n ≥ 1.
Let λ = min(m, n). Let T be a regular chain of k[x1, . . . , xk−1].

Let B = k[x1, . . . , xk−1] and A = B/
p

sat(T).
Let S0, . . . , Sλ−1 be the subresulant polynomials [16, 9] of

p and t w.r.t. xk in B[xk]. Let si = coeff(Si, x
i
k) be the

principle subresultant coefficient of Si, for 0 ≤ i ≤ λ − 1.
If m ≥ n, we define Sλ = t, Sλ+1 = p, sλ = init(t) and
sλ+1 = init(p). If m < n, we define Sλ = p, Sλ+1 = t,
sλ = init(p) and sλ+1 = init(t).

The following theorem provides sufficient conditions for Sj

(with 1 ≤ j ≤ λ+1) to be a regular GCD of p and t in A[xk].

Theorem 1. Let j be an integer, with 1 ≤ j ≤ λ + 1,
such that sj is a regular element of A and such that for any
0 ≤ i < j, we have si = 0 in A. Then Sj is a regular GCD
of p and t in A[xk].

Proof. By Definition 1, it suffices to prove that both
prem(p, Sj , xk) = 0 and prem(t, Sj , xk) = 0 hold in A. By
symmetry we only prove the former equality.

Let p be any prime ideal associated with sat(T). De-
fine D = k[x1, . . . , xk−1]/p and let L be the fraction field
of the integral domain D. Let φ be the homomorphism from
B to L. By Theorem 4 in the Appendix of [4], we know
that φ(Sj) is a GCD of φ(p) and φ(t) in L[xk]. Therefore
there exists a polynomial q of L[xk] such that p = qSj in
L[xk], which implies that there exists a nonzero element a
of D and a polynomial q′ of D[xk] such that ap = q′Sj in
D[xk]. Therefore prem(ap, Sj) = 0 in D[xk], which implies
that prem(p, Sj) = 0 in D[xk]. Hence prem(p, Sj) belongs to

p and thus to
p

sat(T). So prem(p, Sj , xk) = 0 in A.

4. THE INCREMENTAL ALGORITHM
In this section, we present an algorithm to compute Lazard-

Wu triangular decompositions in an incremental manner.

We recall the concepts of a process and a regular (delayed)
split, which were introduced as Definitions 9 and 11 in [17].
To serve our purpose, we modify the definitions as below.

Algorithm 1: Intersect(p, T, R)

if prem(p, T) = 0 then return {T}1

if p ∈ k then return { }2

r := p; P := {r}; S := { }3

while mvar(r) ∈ mvar(T) do4

v := mvar(r); src := SubresultantChain(r, T v, v, R)5

S := S ∪ {src}; r := resultant(src)6

if r = 0 then break7

if r ∈ k then return { }8

P := P ∪ {r}9

T := {∅}; T′ := { }; i := 110

while i ≤ n do11

for C ∈ T do12

if xi /∈ mvar(P) and xi /∈ mvar(T) then13

T′ := T′ ∪ CleanChain(C,T, xi+1, R)14

else if xi /∈ mvar(P) then15

T′ := T′ ∪ CleanChain(C ∪ Txi
, T, xi+1, R)16

else if xi /∈ mvar(T) then17

for D ∈ IntersectFree(Pxi
, xi, C, R) do18

T′ := T′ ∪ CleanChain(D,T, xi+1, R)19

else20

for D ∈ IntersectAlgebraic(Pxi
, T, xi, Sxi

, C, R)21

do
T′ := T′

∪ CleanChain(D, T, xi+1, R)22

T := T′; T′ := { }; i := i + 123

return T24

Algorithm 2: RegularGcd(p, q, v, S, T, R)

T := {(T, 1)}1

while T 6= ∅ do2

let (C, i) ∈ T; T := T \ {(C, i)}3

for [f, D] ∈ Regularize(si, C, R) do4

if dim D < dim C then output [0, D]5

else if f = 0 then T := T ∪ {(D, i + 1)}6

else output [Si, D]7

Definition 2. A process of k[x] is a pair (p, T), where
p ∈ k[x] is a polynomial and T ⊂ k[x] is a regular chain.
The process (0, T) is also written as T for short. Given
two processes (p, T) and (p′, T ′), let v and v′ be respectively
the greatest variable appearing in (p, T) and (p′, T ′). We
say (p, T) ≺ (p′, T ′) if: (i) either v < v′; (ii) or v = v′

and dim T < dim T ′; (iii) or v = v′, dim T = dim T ′ and
T ≺ T ′; (iv) or v = v′, dim T = dim T ′, T ∼ T ′ and
p ≺ p′. We write (p, T) ∼ (p′, T ′) if neither (p, T) ≺ (p′, T ′)
nor (p′, T ′) ≺ (p, T) hold. Clearly any sequence of processes
which is strictly decreasing w.r.t. ≺ is finite.

Definition 3. Let Ti, 1 ≤ i ≤ e, be regular chains of
k[x]. Let p ∈ k[x]. We call T1, . . . , Te a regular split of
(p, T) whenever we have

(L1)
p

sat(T) ⊆
p

sat(Ti)

(L2) W (Ti) ⊆ V (p) (or equivalently p ∈
p

sat(Ti))

Algorithm 3: IntersectFree(p, xi, C, R)

for [f, D] ∈ Regularize(init(p), C, R) do1

if f = 0 then output Intersect(tail(p), D, R)2

else3

output D ∪ p4

for E ∈ Intersect(init(p), D, R) do5

output Intersect(tail(p), E, R)6

Algorithm 4: IntersectAlgebraic(p, T, xi, S, C, R)

for [g, D] ∈ RegularGcd(p, Txi
, xi, S, C, R) do1

if dim D < dim C then2

for E ∈ CleanChain(D,T, xi, R) do3

output IntersectAlgebraic(p, T, xi, S, E, R)4

else5

output D ∪ g6

for E ∈ Intersect(init(g), D, R) do7

for F ∈ CleanChain(E,T, xi, R) do8

output IntersectAlgebraic(p, T, xi, S, F, R)9

Algorithm 5: Regularize(p, T, R)

if p ∈ k or T = ∅ then return [p, T]1

v := mvar(p)2

if v /∈ mvar(T) then3

for [f, C] ∈ Regularize(init(p), T, R) do4

if f = 0 then output Regularize(tail(p), C, R)5

else output [p, C]6

else7

src := SubresultantChain(p, Tv, v, R);8

r := resultant(src)
for [f, C] ∈ Regularize(r, T<v, R) do9

if dim C < dim T<v then10

for D ∈ Extend(C, T, v, R) do11

output Regularize(p,D, R)12

else if f 6= 0 then output [p, C ∪ T≥v]13

else14

for [g, D] ∈ RegularGcd(p, Tv, v, src, C, R) do15

if dim D < dim C then16

for E ∈ Extend(D, T, v, R) do17

output Regularize(p,E, R)18

else19

if mdeg(g) = mdeg(Tv) then output20

[0, D ∪ T≥v]; next
output [0, D ∪ g ∪ T>v]21

q := pquo(Tv, g)22

output Regularize(p,D ∪ q ∪ T>v, R)23

for E ∈ Intersect(hg, D, R) do24

for F ∈ Extend(E, T, v, R) do25

output Regularize(p, F, R)26

Algorithm 6: Extend(C, T, xi, R)

if T≥xi
= ∅ then return C;1

let p ∈ T with greatest main variable; T ′ := T \ {p};2

for D ∈ Extend(C, T ′, xi, R) do3

for [f, E] ∈ Regularize(init(p), D) do4

if f 6= 0 then output E ∪ p;5

Algorithm 7: CleanChain(C,T, xi, R)

if xi /∈ mvar(T) or dim C = dim T<xi
then return C1

for [f, D] ∈ Regularize(init(Txi
), C, R) do2

if f 6= 0 then output D3

(L3) V (p) ∩ W (T) ⊆ ∪e
i=1W (Ti)

We write as (p, T) −→ T1, . . . , Te. Observe that the above
three conditions are equivalent to the following relation.

V (p) ∩ W (T) ⊆ W (T1) ∪ · · · ∪ W (Te) ⊆ V (p) ∩ W (T).

Geometrically, this means that we may compute a little more
than V (p)∩W (T); however, W (T1)∪· · ·∪W (Te) is a “sharp”
approximation of the intersection of V (p) and W (T).

Next we list the specifications of our triangular decompo-
sition algorithm and its subroutines. We denote by R the
polynomial ring k[x], where x = x1 < · · · < xn.

Triangularize(F,R)
• Input: F , a finite set of polynomials of R
• Output: A Lazard-Wu triangular decomposition of

V (F).
Intersect(p, T, R)

• Input: p, a polynomial of R; T , a regular chain of R
• Output: a set of regular chains {T1, . . . , Te} such chat

(p, T) −→ T1, . . . , Te.
Regularize(p, T, R)

• Input: p, a polynomial of R; T , a regular chain of R.
• Output: a set of pairs {[p1, T1], . . . , [pe, Te]} such that

for each i, 1 ≤ i ≤ e: (1) Ti is a regular chain; (2)

p = pi mod
p

sat(Ti); (3) if pi = 0, then pi ∈
p

sat(Ti)

otherwise pi is regular modulo
p

sat(Ti); moreover we
have T −→ T1, . . . , Te.

SubresultantChain(p, q, v, R)
• Input: v, a variable of {x1, . . . , xn}; p and q, polyno-

mials of R, whose main variables are both v.
• Output: a list of polynomials (S0, . . . , Sλ), where λ =

min(mdeg(p), mdeg(q)), such that Si is the i-th subre-
sultant of p and q w.r.t. v.

RegularGcd(p, q, v, S, T, R)
• Input: v, a variable of {x1, . . . , xn},

– T , a regular chain of R such that mvar(T) < v,
– p and q, polynomials of R with the same main

Algorithm 8: Triangularize(F,R)

if F = { } then return {∅}1

Choose a polynomial p ∈ F with maximal rank2

for T ∈ Triangularize(F \ {p}, R) do3

output Intersect(p, T, R)4

CleanChain

IntersectAlgebraic

IntersectFree

Regularize

Extend

Intersect

RegularGcd

Figure 1: Flow graph of the Algorithms

variable v such that: init(q) is regular modulo
p

sat(T); res(p, q, v) belongs to
p

sat(T),
– S, the subresultant chain of p and q w.r.t. v.

• Output: a set of pairs {[g1, T1], . . . , [ge, Te]} such that
T −→ T1, . . . , Te and for each Ti: if dim T = dim Ti,
then gi is a regular GCD of p and q modulo

p

sat(Ti);
otherwise gi = 0, which means undefined.

IntersectFree(p, xi, C, R)
• Input: xi, a variable of x; p, a polynomial of R with

main variable xi; C, a regular chain of k[x1, . . . , xi−1].
• Output: a set of regular chains {T1, . . . , Te} such that

(p, C) −→ (T1, . . . , Te).
IntersectAlgebraic(p, T, xi, S, C, R)

• Input: p, a polynomial of R with main variable xi,
– T , a regular chain of R, where xi ∈ mvar(T),
– S, the subresultant chain of p and Txi

w.r.t. xi,
– C, a regular chain of k[x1, . . . , xi−1], such that:

init(Txi
) is regular modulo

p

sat(C); the resultant

of p and Txi
, which is S0, belongs to

p

sat(C).
• Output: a set of regular chains T1, . . . , Te such that

(p, C ∪ Txi
) −→ T1, . . . , Te.

CleanChain(C,T, xi, R)
• Input: T , a regular chain of R; C, a regular chain of

k[x1, . . . , xi−1] such that
p

sat(T<xi
) ⊆

p

sat(C).
• Output: if xi /∈ mvar(T), return C; otherwise return

a set of regular chains {T1, . . . , Te} such that init(Txi
)

is regular modulo each sat(Tj),
p

sat(C) ⊆
p

sat(Tj)
and W (C) \ V (init(Txi

)) ⊆ ∪e
j=1W (Tj).

Extend(C, T, xi, R)
• Input: C, is a regular chain of k[x1, . . . , xi−1]. T , a

regular chain of R such that
p

sat(T<xi
) ⊆

p

sat(C).
• Output: Regular chains T1, . . . , Te of R such that

W (C ∪T≥xi
) ⊆ ∪e

j=1W (Tj) and
p

sat(T) ⊆
p

sat(Tj).
Algorithm SubresultantChain is standard, see [9]. The al-

gorithm Triangularize is a principle algorithm which was first
presented in [17]. We use the following conventions in our
pseudo-code: the keyword return yields a result and ter-
minates the current function call while the keyword output

yields a result and keeps executing the current function call.

5. PROOF OF THE ALGORITHMS

Theorem 2. All the algorithms in Fig. 1 terminate.

Proof. The key observation is that the flow graph of Fig.
1 can be transformed into an equivalent flow graph satisfying
the following properties: (1) the algorithms Intersect and
Regularize only call each other or themselves; (2) all the other

sys Input size Output size
#v #e deg dim GL GS GD TL TK

1 4corps-1parameter-homog 4 3 8 1 - - 21863 - 30738
2 8-3-config-Li 12 7 2 7 67965 - 72698 7538 1384
3 Alonso-Li 7 4 4 3 1270 - 614 2050 374
4 Bezier 5 3 6 2 - - 32054 - 114109
5 Cheaters-homotopy-1 7 3 7 4 26387452 - 17297 - 285
7 childDraw-2 10 10 2 0 938846 - 157765 - -
8 Cinquin-Demongeot-3-3 4 3 4 1 1652062 - 680 2065 895
9 Cinquin-Demongeot-3-4 4 3 5 1 - - 690 - 2322
10 collins-jsc02 5 4 3 1 - - 28720 2770 1290
11 f-744 12 12 3 1 102082 - 83559 4509 4510
12 Haas5 4 2 10 2 - - 28 - 548
14 Lichtblau 3 2 11 1 6600095 - 224647 110332 5243
16 Liu-Lorenz 5 4 2 1 47688 123965 712 2339 938
17 Mehta2 11 8 3 3 - - 1374931 5347 5097
18 Mehta3 13 10 3 3 - - - 25951 25537
19 Mehta4 15 12 3 3 - - - 71675 71239
21 p3p-isosceles 7 3 3 4 56701 - 1453 9253 840
22 p3p 8 3 3 5 160567 - 1768 - 1712
23 Pavelle 8 4 2 4 17990 - 1552 3351 1086
24 Solotareff-4b 5 4 3 1 2903124 - 14810 2438 872
25 Wang93 5 4 3 1 2772 56383 1377 1016 391
26 Xia 6 3 4 3 63083 2711 672 1647 441
27 xy-5-7-2 6 3 3 3 12750 - 599 - 3267

Table 1 The input and output sizes of systems

algorithms only call either Intersect or Regularize. Therefore,
it suffices to show that Intersect and Regularize terminate.

Note that the input of both functions is a process, say
(p, T). One can check that, while executing a call with (p, T)
as input, any subsequent call to either functions Intersect
or Regularize will take a process (p′, T ′) as input such that
(p′, T ′) ≺ (p, T) holds. Since a descending chain of processes
is necessarily finite, both algorithms terminate.

Since all algorithms terminate, and following the flow graph
of Fig. 1, each call to one of our algorithms unfold to a finite
dynamic acyclic graph (DAG) where each vertex is a call to
one of our algorithms. Therefore, proving the correctness of
these algorithms reduces to prove the following two points.

• Base: each algorithm call, which makes no subsequent
calls to another algorithm or to itself, is correct.

• Induction: each algorithm call, which makes subse-
quent calls to another algorithm or to itself, is correct,
as soon as all subsequent calls are themselves correct.

For all algorithms in Fig. 1, proving the base cases is straight-
forward. Hence we focus on the induction steps.

Proposition 6. IntersectFree satisfies its specification.

Proof. We have the following two key observations:
• C −→ D1, . . . , Ds, where Di are the regular chains in

the output of Regularize.
• V (p) ∩ W (D) = W (D, p) ∪ V (init(p), tail(p)) ∩ W (D).

Then it is not hard to conclude that (p, C) −→ T1, . . . , Te.

Proposition 7. IntersectAlgebraic is correct.

Proof. We need to prove: (p, C ∪ Txi
) −→ T1, . . . , Te.

Let us prove (L1) now, that is, for each regular chain Tj

in the output, we have
p

sat(C ∪ Txi
) ⊆

p

sat(Tj). First by

the specifications of the called functions, we have
p

sat(C) ⊆
p

sat(D) ⊆
p

sat(E), thus,
p

sat(C ∪ Txi
) ⊆

p

sat(E ∪ Txi
)

by Corollary 1, since init(Txi
) is regular modulo both sat(C)

and sat(E). Secondly, since g is a regular GCD of p and Txi

modulo
p

sat(D), we have
p

sat(C ∪ Txi
) ⊆

p

sat(D ∪ g)
by Corollaries 1 and Proposition 5.

Next we prove (L2). It suffices to prove that W (D ∪ g) ⊆
V (p) holds. Since g is a regular GCD of p and Txi

modulo
p

sat(D), the conclusion follows from (iii) in Proposition 5.

Finally we prove (L3), that is Z(p, C∪Txi
) ⊆

Se

j=1
W (Tj).

Let D1, . . . , Ds be the regular chains returned from Algo-
rithm RegularGcd. We have C −→ D1, . . . , Ds, which im-
plies Z(p, C ∪ Txi

) ⊆ ∪e
j=1Z(p, Dj ∪ Txi

). Next since g is a

regular GCD of p and Txi
modulo

p

sat(Dj), the conclusion
follows from point (iv) of Proposition 5.

Proposition 8. Intersect satisfies its specification.

Proof. The first while loop can be seen as a projection
process. We claim that it produces a nonempty triangular
set P such that V (p) ∩ W (T) = V (P) ∩ W (T). The claim
holds before staring the while loop. For each iteration, let P ′

be the set of polynomials obtained at the previous iteration.
We then compute a polynomial r, which is the resultant of
a polynomial in P ′ and a polynomial in T . So r ∈ 〈P ′, T 〉.
By induction, we have 〈p, T 〉 = 〈P, T 〉. So the claim holds.

Next, we claim that the elements in T satisfy the following
invariants: at the beginning of the i-th iteration of the second
while loop, we have

(1) each C ∈ T is a regular chain; if Txi
exists, then

init(Txi
) is regular modulo sat(C),

(2) for each C ∈ T, we have
p

sat(T<xi
) ⊆

p

sat(C),

(3) for each C ∈ T, we have W (C) ⊆ V (P<xi
),

(4) V (p) ∩ W (T) ⊆
S

C∈T
Z(P≥xi

, C ∪ T≥xi
).

When i = n+1, we then have
p

sat(T) ⊆
p

sat(C), W (C) ⊆
V (P) ⊆ V (p) for each C ∈ T and V (p)∩W (T) ⊆ ∪C∈TW (C).
So (L1), (L2), (L3) of Definition 3 all hold. This concludes
the correctness of the algorithm.

Now we prove the above claims (1), (2), (3), (4) by in-
duction. The claims clearly hold when i = 1 since C = ∅

and V (p) ∩ W (T) = V (P) ∩ W (T). Now assume that the
loop invariants hold at the beginning of the i-th iteration.
We need to prove that it still holds at the beginning of the
(i + 1)-th iteration. Let C ∈ T be an element picked up at
the beginning of i-th iteration and let L be the set of the
new elements of T′ generated from C.

Then for any C′ ∈ L, claim (1) clearly holds by specifica-
tion of CleanChain. Next we prove (2).

• if xi /∈ mvar(T), then T<xi+1
= T<xi

. By induction

and specifications of called functions, we have
q

sat(T<xi+1
) ⊆

p

sat(C) ⊆
q

sat(C′).

• if xi ∈ mvar(T), by induction we have
p

sat(T<xi
) ⊆

p

sat(C) and init(Txi
) is regular modulo both sat(C)

and sat(T<xi
). By Corollary 1 we have

q

sat(T<xi+1
) ⊆

p

sat(C ∪ Txi
) ⊆

q

sat(C′).

Therefore (2) holds. Next we prove claim (3). By induction

and the specifications of called functions, we have W (C′) ⊆

W (C ∪ Txi
) ⊆ V (P<xi

). Secondly, we have W (C′) ⊆ V (Pxi
).

Therefore W (C′) ⊆ V (P<xi+1
), that is (3) holds. Finally,

since V (Pxi
)∩W (C ∪ Txi

) \ V (init(Txi+1
)) ⊆ ∪C′∈LW (C′),

we have Z(P≥xi
, C ∪T≥xi

) ⊆ ∪C′∈LZ(P≥xi+1
, C′ ∪T≥xi+1

),
which implies that (4) holds. This completes the proof.

Proposition 9. Regularize satisfies its specification.

Proof. If v /∈ mvar(T), the conclusion follows directly
from point (2) of Corollary 2. From now on, assume v ∈
mvar(T). Let L be the set of pairs [p′, T ′] in the output. We
aim to prove the following facts

(1) each T ′ is a regular chain,

(2) if p′ = 0, then p is zero modulo
p

sat(T ′), otherwise p
is regular modulo sat(T),

(3) we have
p

sat(T) ⊆
p

sat(T ′),
(4) we have W (T) ⊆ ∪T ′∈LW (T ′).

Statement (1) is due to Proposition 2. Next we prove (2).
First, when there are recursive calls, the conclusion is obvi-
ous. Let [f, C] be a pair in the output of Regularize(r, T<v, R).
If f 6= 0, the conclusion follows directly from point (1) of
Corollary 2. Otherwise, let [g, D] be a pair in the output of
the algorithm RegularGcd(p, Tv, v, src, C, R). If mdeg(g) =
mdeg(Tv), then by the algorithm of RegularGcd, g = Tv.

Therefore we have prem(p, Tv) ∈
p

sat(C), which implies

that p ∈
p

sat(C ∪ T≥v) by Proposition 3.
Next we prove (3). Whenever Extend is called, (3) holds

immediately. Otherwise, let [f, C] be a pair returned by

Regularize(r, T<v, R). When f 6= 0, since
p

sat(T<v) ⊆
p

sat(C) holds, we conclude
p

sat(T) ⊆
p

sat(C ∪ T≥v) by
Corollary 1. Let [g, D] ∈ RegularGcd(p, Tv, v, src, C, R). Corol-

lary 1 and point (ii) of Proposition 5 imply that
p

sat(T) ⊆
p

sat(D ∪ T≥v),
p

sat(T) ⊆
p

sat(D ∪ g ∪ T>v) together

with
p

sat(T) ⊆
p

sat(D ∪ q ∪ T>v) hold. Hence (3) holds.
Finally by point (ii.b) of Proposition 5, we have W (D ∪

Tv) ⊆ Z(hg, D∪Tv)∪W (D∪g)∪W (D∪q). So (4) holds.

Proposition 10. Extend satisfies its specification.

Proof. It clearly holds when T≥xi
= ∅, which is the

base case. By induction and the specification of Regularize,
we know that

p

sat(T ′) ⊆
p

sat(E). Since init(p) is reg-
ular modulo both sat(T ′) and sat(E), by Corollary 1, we

have
p

sat(T) ⊆
p

sat(E ∪ p). On the other hand, we have
W (C ∪ T ′

≥xi
) ⊆ ∪W (D) and W (D) \ V (hp) ⊆ ∪ W (E).

Therefore W (C ∪ T≥xi
) ⊆ ∪e

j=1W (Tj), where T1, . . . , Te are
the regular chains in the output.

Proposition 11. CleanChain satisfies its specification.

Proof. It follows directly from Proposition 2.

Proposition 12. RegularGcd satisfies its specification.

Proof. Let [gi, Ti], i = 1, . . . , e, be the output. First
from the specification of Regularize, we have T −→ T1, . . . , Te.
When dim Ti = dim T , by Proposition 2 and Theorem 1, gi

is a regular GCD of p and q modulo
p

sat(T).

6. KALKBRENER DECOMPOSITION
In this section, we adapt the Algorithm Triangularize (Al-

gorithm 8), in order to compute efficiently a Kalkbrener tri-
angular decomposition. The basic technique we rely on fol-
lows from Krull’s principle ideal theorem.

Theorem 3. Let F ⊂ k[x] be finite, with cardinality #(F).
Assume F generates a proper ideal of k[x]. Then, for any
minimal prime ideal p associated with 〈F 〉, the height of p is
less than or equal to #(F).

Corollary 3. Let T be a Kalkbrener triangular decom-
position of V (F). Let T be a regular chain of T, the height
of which is greater than #(F). Then T \ {T} is also a Kalk-
brener triangular decomposition of V (F).

Based on this corollary, we prune the decomposition tree
generated during the computation of a Lazard-Wu triangu-
lar decomposition and remove the computation branches in
which the height of every generated regular chain is greater
than the number of polynomials in F .

Next we explain how to implement this tree pruning tech-
nique to the algorithms of Section 4. Inside Triangularize, de-
fine A = #(F) and pass it to every call to Intersect in order
to signal Intersect to output only regular chains with height
no greater than A. Next, in the second while loop of Inter-
sect, for the i-th iteration, we pass the height A−#(T≥xi+1

)
to CleanChain, IntersectFree and IntersectAlgebraic.

In IntersectFree, we pass its input height A to every func-
tion call. Besides, Lines 5 to 6 are executed only if the height
of D is strictly less than A, since otherwise we would obtain
regular chains of height greater than A. In other algorithms,
we apply similar strategies as in Intersect and IntersectFree.

7. EXPERIMENTATION
Part of the algorithms presented in this paper are imple-

mented in Maple14 while all of them are present in the cur-
rent development version of Maple. Tables 1 and 2 report
on our comparison between Triangularize and other Maple
solvers. The notations used in these tables are defined below.

Notation for Triangularize. We denote by TK and TL the
latest implementation of Triangularize for computing, respec-
tively, Kalkbrener and Lazard-Wu decompositions, in the
current version of Maple. Denote by TK14 and TL14 the
corresponding implementation in Maple14. Denote by TK13,
TL13 the implementation based on the algorithm of [17] in
Maple13. Finally, STK and STL are versions of TK and
TL, enforcing all computed regular chains to be squarefree,
by means of the algorithms in the Appendix of [4].

Notation for the other solvers. Denote by GL, GS, GD, re-
spectively the function Groebner:-Basis (plex order), Groebner:-
Solve, Groebner:-Basis (tdeg order) in current beta version of
Maple. Denote by WS the function wsolve of the package
Wsolve [20], which decomposes a variety as a union of quasi-
components of Wu Characteristic Sets.

The tests were launched on a machine with Intel Core 2
Quad CPU (2.40GHz) and 3.0Gb total memory. The time-
out is set as 3600 seconds. The memory usage is limited to

sys Triangularize Triangularize versus other solvers
TK13 TK14 TK TL13 TL14 TL STK STL GL GS WS TL TK

1 - 241.7 36.9 - - - 62.8 - - - - - 36.9
2 8.7 5.3 5.9 29.7 24.1 25.8 6.0 26.6 108.7 - 27.8 25.8 5.9
3 0.3 0.3 0.4 14.0 2.4 2.1 0.4 2.2 3.4 - 7.9 2.1 0.4
4 - - 88.2 - - - - - - - - - 88.2
5 0.4 0.5 0.7 - - - 451.8 - 2609.5 - - - 0.7
7 - - - - - - 1326.8 1437.1 19.3 - - - -
8 3.2 0.7 0.6 - 55.9 7.1 0.7 8.8 63.6 - - 7.1 0.6
9 166.1 5.0 3.1 - - - 3.3 - - - - - 3.1
10 5.8 0.4 0.4 - 1.5 1.5 0.4 1.5 - - 0.8 1.5 0.4
11 - 29.1 12.7 - 27.7 14.8 12.9 15.1 30.8 - - 14.8 12.7
12 452.3 454.1 0.3 - - - 0.3 - - - - - 0.3
14 0.7 0.7 0.3 801.7 226.5 143.5 0.3 531.3 125.9 - - 143.5 0.3
16 0.4 0.4 0.4 4.7 2.6 2.3 0.4 4.4 3.2 2160.1 40.2 2.3 0.4
17 - 2.1 2.2 - 4.5 4.5 2.2 6.2 - - 5.7 4.5 2.2
18 - 15.6 14.4 - 126.2 51.1 14.5 63.1 - - - 51.1 14.4
19 - 871.1 859.4 - 1987.5 1756.3 859.2 1761.8 - - - 1756.3 859.4
21 1.2 0.6 0.3 - 1303.1 352.5 0.3 - 6.2 - 792.8 352.5 0.3
22 168.8 5.5 0.3 - - - 0.3 - 33.6 - - - 0.3
23 0.8 0.9 0.5 - 10.3 7.0 0.4 12.6 1.8 - - 7.0 0.5
24 1.5 0.7 0.8 - 1.9 1.9 0.9 2.0 35.2 - 9.1 1.9 0.8
25 0.5 0.6 0.7 0.6 0.8 0.8 0.8 0.9 0.2 1580.0 0.8 0.8 0.7
26 0.2 0.3 0.4 4.0 1.9 1.9 0.5 2.7 4.7 0.1 12.5 1.9 0.4
27 3.3 0.9 0.6 - - - 0.7 - 0.3 - - - 0.6

Table 2 Timings of Triangularize versus other solvers

60% of total memory. In both Table 1 and 2, the symbol “-”
means either time or memory exceeds the limit we set.

The examples are mainly in positive dimension since other
triangular decomposition algorithms are specialized to di-
mension zero [7]. All examples are in characteristic zero.

In Table 1, we provide characteristics of the input systems
and the sizes of the output obtained by different solvers.
For each polynomial system F ⊂ Q[x], the number of vari-
ables appearing in F , the number of polynomials in F , the
maximum total degree of a polynomial in F , the dimension
of the algebraic variety V (F) are denoted respectively by
#v, #e, deg, dim. For each solver, the size of its output is
measured by the total number of characters in the output.
To be precise, let “dec” and “gb” be respectively the out-
put of the Triangularize and Groebner functions. The Maple
command we use are length(convert(map(Equations, dec, R),
string)) and length(convert(gb, string)). From Table 1, it is
clear that Triangularize produces much smaller output than
commands based on Gröbner basis computations.

TK, TL, GS, WS (and, to some extent, GL) can all be
seen as polynomial system solvers in the sense of that they
provide equidimensional decompositions where components
are represented by triangular sets. Moreover, they are im-
plemented in Maple (with the support of efficient C code in
the case of GS and GL). The specification of TK are close to
those of GS while TL is related to WS, though the triangular
sets returned by WS are not necessarily regular chains.

In Table 2, we provide the timings of different versions of
Triangularize and other solvers. From this table, it is clear
that the implementations of Triangularize, based on the al-
gorithms presented in this paper (that is TK14, TL14, TK,
TL) outperform the previous versions (TK13, TL13), based
on [17], by several orders of magnitude. We observe also that
TK outperforms GS and GL while TL outperforms WS.

8. REFERENCES
[1] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of

triangular sets. J. Symb. Comp., 28(1-2):105–124, 1999.

[2] F. Boulier, D. Lazard, F. Ollivier, and M. Petitot.
Representation for the radical of a finitely generated differential
ideal. In proceedings of ISSAC’95, pages 158–166, 1995.

[3] C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, and
W. Pan. Comprehensive Triangular Decomposition, volume
4770 of LNCS, pages 73–101. Springer Verlag, 2007.

[4] C. Chen and M. Moreno Maza. Algorithms for Computing
Triangular Decompositions of Polynomial System. CoRR, 2011.

[5] C. Chen, M. Moreno Maza, B. Xia, and L. Yang. Computing
cylindrical algebraic decomposition via triangular
decomposition. In ISSAC’09, pages 95–102, 2009.

[6] S.C. Chou and X.S. Gao. Solving parametric algebraic systems.
In Proc. ISSAC’92, pages 335–341, 1992.

[7] X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie.
Lifting techniques for triangular decompositions. In ISSAC’05,
pages 108–115. ACM Press, 2005.

[8] J. Della Dora, C. Dicrescenzo, and D. Duval. About a new
method for computing in algebraic number fields. In Proc.
EUROCAL 85 Vol. 2, pages 289–290. Springer-Verlag, 1985.

[9] L. Ducos. Optimizations of the subresultant algorithm. Journal
of Pure and Applied Algebra, 145:149–163, 2000.

[10] X.-S. Gao, J. Van der Hoeven, Y. Luo, and C. Yuan.
Characteristic set method for differential-difference polynomial
systems. J. Symb. Comput., 44:1137–1163, 2009.

[11] É. Hubert. Factorization free decomposition algorithms in
differential algebra. J. Symb. Comp., 29(4-5):641–662, 2000.

[12] M. Kalkbrener. A generalized euclidean algorithm for
computing triangular representations of algebraic varieties. J.
Symb. Comp., 15:143–167, 1993.

[13] D. Lazard. A new method for solving algebraic systems of
positive dimension. Discr. App. Math, 33:147–160, 1991.

[14] G. Lecerf. Computing the equidimensional decomposition of an
algebraic closed set by means of lifting fibers. J. Complexity,
19(4):564–596, 2003.

[15] X. Li, M. Moreno Maza, and W. Pan. Computations modulo
regular chains. In Proc. ISSAC’09, pages 239–246, New York,
NY, USA, 2009. ACM Press.

[16] B. Mishra. Algorithmic Algebra. Springer-Verlag, 1993.

[17] M. Moreno Maza. On triangular decompositions of algebraic
varieties. Technical Report TR 4/99, NAG Ltd, Oxford, UK,
1999. Presented at the MEGA-2000 Conference, Bath, England.

[18] T. Shimoyama and K. Yokoyama. Localization and primary
decomposition of polynomial ideals. J. Symb. Comput.,
22(3):247–277, 1996.

[19] A.J. Sommese, J. Verschelde, and C. W. Wampler. Solving
polynomial systems equation by equation. In Algorithms in
Algebraic Geometry, pages 133–152. Springer-Verlag, 2008.

[20] D. K. Wang. The Wsolve package.
http://www.mmrc.iss.ac.cn/∼dwang/wsolve.txt.

[21] D. M. Wang. Elimination Methods. Springer, New York, 2000.

[22] W. T. Wu. A zero structure theorem for polynomial equations
solving. MM Research Preprints, 1:2–12, 1987.

[23] L. Yang, X.R. Hou, and B. Xia. A complete algorithm for

automated discovering of a class of inequality-type theorems.
Science in China, Series F, 44(6):33–49, 2001.

[24] L. Yang and J. Zhang. Searching dependency between algebraic
equations: an algorithm applied to automated reasoning.
Technical Report IC/89/263, International Atomic Energy
Agency, Miramare, Trieste, Italy, 1991.

