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Many authors have contributed to the study of parametric polynomial sys-
tems, and there is a large collection of references, such as [4, 17, 9, 18, 13, 14, 22, 11,
2, 12], to name a few. Various notions have been formulated for investigating the
properties of parametric polynomial systems from different aspects. Border polyno-
mial [21, 22, 20, 1], discriminant variety [11], discriminant ideal [18], discriminant
set [2] are some of those notions. For (parametric) semi-algebraic systems, methods
based on cylindrical algebraic decomposotion (CAD) and its variants [5, 6, 7] are
applicable. However, these methods may compute much more than what is needed
for the purpose of solving.

One central question in the study of parametric polynomial systems is the
dependence of the solutions on the parameter values. There are different ways to
express the fact that the zeros of a parametric system depends continuously on the
parameters in a neighborhood of a given parameter value. The notions of a border
polynomial and a discriminant variety aims at capturing the parameter values at
which this dependence is not continuous.

The main objective of the present work is to study the relations between the
notions of a border polynomial and a discriminant variety. A second intention is to
gather in a single report key results on these objects, including results previously
published in [20, 1]. We stress the fact that most of our results assume that the
input parametric system is triangular, since triangular decomposition methods [19,
10, 8, 16, 3] can help reducing the study of general parametric systems to the
triangular case.

In Section 2, we revisit the notions of a border polynomial and a discriminant
variety in a unified framework. In the context of triangular parametric systems,
we show that the two notions essentially coincide, see Theorem 1.

In Section 3, which is dedicated to parametric algebraic systems, we compare
the minimal discriminant variety of a regular chain and that of its saturated ideal.
This leads us to answer the following question: among all regular chains that have
the same saturated ideal as a given one, what is the best choice to make the border
polynomial set minimal. Most of the results in this part were presented in [20].
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However, the result of Proposition 4 is new and the proof is included. We shall
supply the proofs for all the results in the long version of the present paper.

In Section 4, we consider parametric semi-algebraic systems and study the
notion of an effective boundary introduced in [1]. The purpose is to obtain proper-
ties which can improve the efficiency of triangular decomposition algorithms. The
results of this part are essentially new and their proofs will appear in an extended
version of [1].

1. Preliminaries

In this paper, a parametric polynomial system S is a system of equations, inequa-
tions and/or inequalities given by polynomials in Q[U,X ] where U = u1, u2, . . . , ud

are the parameters and X = x1, x2, . . . , xs are the unknowns. All variables (pa-
rameters and unknowns) hold values from a fixed field K, which is either the field
C of complex numbers or the field R of real numbers. In the former case, we say
that the system is algebraic1 and in the latter case, we say that the system is
semi-algebraic.

We denote by Z(S) the solution set of S, which is a subset of Kd+s. The
canonical projection ΠU on the parameter space is defined as follows:

ΠU : Z(S) ⊂ Ks+d 7→ Kd

ΠU(x1, . . . , xs, u1, . . . , ud) = (u1, . . . , ud)

Let us denote by E (resp. I) the set of the polynomials of S defining re-
spectively its equations (resp. inequations and strict inequalities). The ideal 〈E〉 :
(
∏

h∈I h)∞ is called the ideal associated with S. We say that S is well-determinate
if the set U is an ⊆-maximal algebraic independent variable set modulo the ideal
associated with S. Note that the notion of “ well-determinate” is more general
than the notion of “well-behaved” used in [11], in the sense that it is less restric-
tive for E. Indeed, the polynomial set E is not required to have exactly s elements,
nor to generate a radical ideal in Q(U)[X ].

Example 1. Consider a semi-algebraic system

S = {x(x2 + ay + b) = x(y2 + bx+ a) = 0, x > 0}
with parameters a, b. The ideal generated by the polynomials defining the equations
of S is

〈x〉 ∩ 〈x2 + ay + b, y2 + bx+ a〉.
The polynomial system {x(x2 + ay+ b) = x(y2 + bx+ a) = 0} with parameters a, b
is not well-determinate, since {a, b} is not a maximal algebraic independent set
modulo 〈x〉. However, the ideal associated to S is I := 〈x2 + ay + b, y2 + bx+ a〉,
and {a, b} is a maximal algebraic independent variable set modulo I. Therefore, S
is a well-determinate parametric semi-algebraic system.

1No inequalities are present in that case.
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Throughout this paper, and in order to keep the presentation concise, we
assume that S is well-determinate. This simplification assumption can be relaxed
and the results discussed here can be adapted to more general systems. We leave
this for an extended version of this paper.

We rely on triangular decomposition techniques for studying the parametric
system S. In the algebraic case, we decompose Z(S) into zero sets of finitely
many squarefree triangular algebraic systems (STAS); in the semi-algebraic case,
we decompose Z(S) into zero sets of finitely many squarefree triangular semi-
algebraic systems (STSAS).

We refer to [1] for the standard notions and notations on triangular decom-
position, such as: regular chain, main variable (mvar), main degree (mdeg), initial
(ini), iterated resultant (ires).

An STAS is a pair [T,H 6=] where T is a regular chain of Q[U,X ] and H 6=

is a set of non-constant polynomials of Q[U,X ] such that each of those is regular
modulo sat(T ), the saturated ideal of T , which is 〈T 〉 : ini(T )∞. A point of Kd+s

is a zero of [T,H 6=] if it is a zero of T not cancelling the polynomials of H 6=.
An STSAS is a triple [T,H 6=, P>] such that [T,H 6=] is an STAS and P> is

a set of non-constant polynomials of Q[U,X ] such that each of those is regular
modulo sat(T ). A point of Kd+s is a zero of [T,H 6=, P>] if it is a zero of [T,H 6=]
making each polynomial of P> strictly positive.

2. Border polynomials, discriminant varieties and effective
boundaries

Let α ∈ Kd. As mentioned in the introduction, there are different ways to express
the fact that the zeros of the parametric system S depends continuously on the
parameters in a neighborhood of α in Kd. In this paper, we focus on two of them.
We say that S is Z-continuous at α if there exists a neighborhoodOα of α such that
for any two parameter values α1, α2 ∈ Oα, we have # (Z(S(α1)) = # (Z(S(α2)).
We say that S is ΠU-continuous at α if there exists a neighborhood Oα of α such
that there exists a finite partition {C1, . . . , Ck} of Π−1

U (Oα) ∩ Z(S) such that the

restriction ΠU|Cj
: Cj

ΠU−→Oα is a diffeomorphism, for each j ∈ {1, . . . , k}.
Example 2. Consider the semi-algebra algebraic system

S := {x2 + ay2 − x = ax2 + y2 − y = 0, x 6= y}
with parameter a. When the parameter takes value in the open interval (−1, 13 ),
there are two solutions, which are given by:

x =
a+ 1 +

√
−3a2 − 2a+ 1

2(a2 − 1)
, y =

−a− 1 +
√
−3a2 − 2a+ 1

2(a2 − 1)
,

and

x =
−a− 1 +

√
−3a2 − 2a+ 1

2(a2 − 1)
, y =

a+ 1 +
√
−3a2 − 2a+ 1

2(a2 − 1)
.
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Therefore, the system S is Z-continuous as well as ΠU-continuous at any point in
(−1, 13 ).

It is obvious that ΠU-continuity implies Z-continuity. Moreover, these two
kinds of continuity are equivalent in many cases, e.g. for parametric STASes, as
we shall see in Section 3. Another notion of continuity (or discontinuity) is non-
properness. The canonical projection ΠU is said to be not proper at the point α,
if for any compact set S ⊆ Kd containing α, the set (Π−1

U (S) is not compact. We
denote by O∞ the set of all points where ΠU is not proper.

The notion of a border polynomial is based on the Z-continuity and was
proposed in [21] for computing the real root classification of a parametric semi-
algebraic system. We reformulate the definition here, for both parametric algebraic
systems and parametric semi-algebraic systems.

Definition 1 (Border polynomial). A polynomial b in Q[U ] is called a border poly-
nomial of the parametric polynomial system S if the zero set V (b) of b in Kd

contains all the points at which S is not Z-continuous.

Example 3. Consider a polynomial system S := {x2 + bx − 1} with parameter b.
Regarding S as an algebraic system, it is easy to check that the sytem has two
solutions for b2 + 4 6= 0 and has only one solution for b2 +4 = 0; therefore, b2 +4
is a border polynomial. In fact, it is a minimal border polynomial of S in the sense
that it divides any other border polynomials of S.

Viewing S as a semi-algebraic system, this system always has two real so-
lutions; therefore, 1 is the minimal border polynomial. Indeed, recall that in the
semi-algebraic case, the field K of Definition 1 is R.

The notion of a discriminant variety is based on the ΠU-continuity and was
proposed in [11] for general parametric algebraic systems. We reformulate the def-
inition here, for both parametric algebraic systems and parametric semi-algebraic
systems.

Definition 2 (Discriminant variety). An algebraic set W ( Kd is a discriminant
variety of the parametric polynomial system S if W contains all the points at which
S is not ΠU-continuous.

Example 4 (Example 2 Cont.). Consider again the semi-algebraic system

S := {x2 + ay2 − x = ax2 + y2 − y = 0, x 6= y}
with parameter a. It is not hard to show that when either a < −1 or a > 1

3 holds the

system has no real solutions. So {−1, 13} is a (indeed, the minimal) discriminant

variety of S and (a + 1)(a − 1
3 ) is a (again, the minimal) border polynomial of

S. Now, viewing S as a parametric algebraic system, the minimal discriminant
variety is {−1, 13 , 1}. Note that (a2 − 1)(a − 1

3 ) is the minimal border polynomial
of S.

Remark 1. The following facts can be easily deduced from the above definitions.
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(i) One can form a discriminant variety of S by taking the intersection of all
discriminant varieties, which is the minimal discriminant variety of S.

(ii) If the hypersurface of a polynomial contains the minimal discriminant variety,
then this polynomial is a border polynomial.

(iii) In general, there is no “minimal border polynomial”. This will typically hap-
pen when the minimal discriminant variety of S is not the zero set of a single
polynomial. However, we call a border polynomial quasi-minimal if none of
its proper factors is a border polynomial.

(iv) In the algebraic case, the set of points where the ΠU-continuity of S does not
hold is just the minimal discriminant variety of S; in the semi-algebraic case,
the points at which the ΠU-continuity of S does not hold form a semi-algebraic
set, which is not algebraic in general.

For each type of continuity (namely the Z-continuity and the ΠU-continuity),
there are essentially two steps in solving the parametric system S:
(1) describe the parameter values where the continuity does not hold,
(2) describe the (groups of) regions where the continuity is maintained.
Step (1) is achieved by computing a border polynomial or a discriminant variety,
depending on the continuity notion. It is not hard to show that the computation
of a border polynomial or a discriminant variety of S in both algebraic and semi-
algebraic cases can be reduced to the computation of a discriminant variety in the
algebraic case. For simplicity with Step (2), let us assume that a border polynomial
of S is a polynomial whose hypersurface is also a discriminant variety of S. In the
algebraic case, the complement of an algebraic set in Cd has only one connected
component, thus Step (2) is rather simple. However, in the semi-algebraic case,
there are usually more than one connected components in the complement of an
algebraic set in Rd and the description of those connected components is more
challenging.

The following notion of an effective boundary, was originally defined in [1], is
dedicated to help the description of complement of the hypersurface of a border
polynomial in Rd, see [1] for its usage.

Definition 3 (Effective boundary). Let h be a hypersurface defined by an irreducible
polynomial in Q[U ]. We call h an irreducible effective boundary of the parametric
system S if there exists an open ball O ⊂ Rd satisfying the following properties:

(i) O \ h consists of two connected components O1, O2,
(ii) for i = 1, 2 and any two points α1, α2 ∈ Oi we have #Z(S(α1)) = #Z(S(α2)),
(iii) for any β1 ∈ O1, β2 ∈ O2 we have #Z(S(β1)) 6= #Z(S(β2)).

The union of all irreducible effective boundaries of S is called the effective bound-
ary of S, denoted by EB(S).

Let W be either a discriminant variety of S or the hypersurface of a border
polynomial of S. It is easy to show that EB(S) ⊆ W holds. Therefore, EB(S)
itself is a hypersurface. We define ebf(S) to be the set of the irreducible factors
of the monic polynomial defining EB(S).
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The concepts of border polynomial, discriminant variety and effective bound-
ary are illustrated in the following example.

Example 5. Consider the semi-algebraic system S = {ax2 + bx + 1 = 0} with
parameters a, b. Its minimal border polynomial factors to a(b2 − 4a). One can
verify from Figure 1 that ZR(b

2 − 4a = 0) is an irreducible effective boundary of
S, but ZR(a = 0) is not. Indeed, all (a, b)-values in the blank area will specialize S
to have 2 real solutions while all (a, b)-values in the filled region will specialize S
to have no real solutions.

Figure 1. Effective and non-effective boundary

3. Parametric algebraic systems

In this section, we study the minimal discriminant variety of an STAS, regarded
as a parametric system in the free variables of its regular chain. We show that
for this type of parametric systems the notions of Z-continuity and ΠU-continuity
coincide. Then, we compare the minimal discriminant variety of a regular chain
T and that of its saturated ideal, both regarded as a parametric system in the
free variables of T . Finally, we show that among all regular chains having the
same saturated ideal as T , the canonical regular chain associated with T has a
⊆-minimal border polynomial set.

3.1. The minimal discriminant variety of a parametric STAS

In this subsection, we focus on the characterization of the minimal discriminant
variety of an STAS R = [T,H ], as defined in Section 1. We view an STAS as
a parametric algebraic system with the free variables of T as parameters. The
following notations are related to the triangular structure of an STAS.
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Notation 1 ([20, 1]). We denote by Bsep(T ), Bini(T ), Bie([T,H ]) respectively the
set of the irreducible factors of

∏

t∈T

ires(discrim(t,mvar(t)), T ),
∏

t∈T

ires(ini(t), T ), and
∏

f∈H

ires(f, T ).

The set Bsep(T ) ∪Bini(T ) ∪Bie([T,H ]) is called the border polynomial set of R,
denoted by BPS(R).

Lemma 1 and Theorem 1 imply that the notions of Z-continuity and ΠU-
continuity coincide for STASes. In particular, Theorem 1 shows that the minimal
discriminant variety of R can be characterized by BPS(R). Moreover, Lemma 1
justifies the terminology introduced above. That is, with those notations, the poly-
nomial b =

∏
f∈BPS(R) f is indeed a border polynomial of R.

Lemma 1. Let b =
∏

f∈BPS(R) f ; let N :=
∏

f∈T mdeg(f). Then for each param-

eter value α ∈ Cd:

1. if b(α) 6= 0, then #Z(R(α)) = N holds;
2. if b(α) = 0, then #Z(R(α)) is either infinite or less than N .

Theorem 1 ([20]). Let b =
∏

f∈BPS(R) f . Then V (b) in Cd is the minimal dis-

criminant variety of R.

3.2. The minimal discriminant variety of a saturated ideal

As before, let us denote by U = u1, u2, . . . , ud and X = x1, x2, . . . , xs the set
of free and algebraic variables of our regular chain T . Since sat(T ) is a strongly
equidimensional ideal2 it is natural to view it as a parametric system with U as
parameters and compare its minimal discriminant variety with that of T , also
regarded as a parametric system in U .

In this subsection, we perform this comparison. We shall also show, with
Theorem 2, that among all regular chains having sat(T ) as saturated ideal, the
discriminant variety of the canonical regular chain associated with T is the smallest
under inclusion. We denote by DVT (resp. DVsat(T )) the minimal discriminant
variety of T (resp. sat(T )).

Proposition 1 ([20]). The minimal discriminant variety [sat(T ), Bini(T )6=]
3 equals

to DVT . In particular, we have

DVT = V (
∏

f∈Bini(T )∪Bsep(T )

f) = DVsat(T ) ∪ V (
∏

f∈Bini(T )

f).

The following proposition gives an upper bound on the set theoretic difference
DVT \DVsat(T ).

2More precisely, sat(T ) is an equidimensional ideal of dimensional d such that U a maximal
algebraic independent variable set modulo each associated prime of sat(T ).
3Here, [sat(T ), Bini(T )6=] denotes the parametric algebraic system with equations defined by any

basis of sat(T ) and with inequations defined by Bini(T )6=.
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Proposition 2 ([20]). We have

DVT \DVsat(T ) ⊆ V (
∏

f∈Bini(T )

f) \ O∞(sat(T )).

The next proposition shows that the difference of DVT \DVsat(T ) is actually
dominated by the difference of the non-properness loci of T and that of sat(T ),
respectively denoted by O∞(T ) and O∞(sat(T )).

Proposition 3 ([20]). We have O∞(T ) = V (
∏

f∈Bini(T ) f).

One can find an algorithm for computing the O∞ set of a parametric algebraic
system in [11]; an algorithm for computing the non-properness loci of a general
polynomial map can be found in [15]. With the next proposition, we show a nice
construction of O∞(sat(T )), which can be exploited to design new algorithms to
compute the O∞ set of a parametric polynomial system.

Recall that T squarefree regular chain T with U and X = x1, x2, . . . , xs as
free variables and algebraic variables respectively and let I = sat(T ).

Lemma 2. For each i = 1 · · · s, the ideal I ∩Q[U, xi] is a principal ideal generated
by a polynomial gi ∈ Q[U, xi] whose content w.r.t. xi belongs to Q.

Proof. Let {Pj |j = 1, 2, . . . , e} be the set of the associated primes of I. Then for
each j, the set U is ⊆-maximal algebraic independent variable set modulo Pj . For
each i = 1, 2, . . . , s and j = 1, 2, . . . , e, denote by Qj,i the ideal Pj ∩Q[U, xi].

Clearly, the ideal Qj,i is prime and U is a ⊆-maximal algebraic independent
variable set modulo Qj,i.

Consider two distinct polynomials f, g ∈ Qj,i. Since their resultant lies in
Qj,i and has degree zero in xi, this latter polynomial must be null. Thus the GCD
of h := gcd(f, g) has a positive degree w.r.t. xi. Since Qj,i is prime, either h or
f/h must belong to Qj,i. From there, it is routine (proceeding by contradiction)
to show that Qj,i is a principal ideal. Moreover, the fact that Qj,i is prime, implies
that Qj,i is generated by an irreducible polynomial, say gj,i.

Denote by gi the polynomial
∏e

j=1 gj,i. Note that I ∩ Q[U, xi] =
⋂e

j=1 Qj,i

holds. Therefore, I ∩Q[U, xi] = 〈gi〉. And it is obvious that gi is content free. �

Proposition 4. For each i = 1, . . . , s, let gi be a polynomial generating the principal
ideal sat(T ) ∩Q[U, xi]. Then we have

O∞(sat(T )) = ∪s
i=1 V (ini(gi)).

To some sense, Proposition 4 proposes an algorithmic independent description
of the O∞ set. To prove Proposition 4, we recall a description of the O∞ set by
Gröbner basis in [11].

Lemma 3 (Theorem 2 in [11]). Given a parametric ideal I with parameters U =
u1, u2, . . . , ud and variables X = x1, x2, . . . , xs, let G be a reduced Gröbner basis
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of I w.r.t a product ordering ≺U,X where ≺X is a degree reverse lexicographic
ordering. For i = 1, . . . , s, define

Ξ∞
i = {lc≺X

(g) | g ∈ G, lm≺X
(g) = xm

i for some m ≥ 0}.
Then we have O∞(I) = ∪s

i=1V (Ξ∞
i ).

Proof (Proposition 4). Let I = 〈g1, g2, . . . , gs〉. Let α 6∈ ∪s
i=1 V (ini(gi)) be a

parameter value. Let N be the number of preimages (i.e. Π−1
U (α)∩ V (I)). Let Oα

be a compact neighborhood of α not intersecting ∪s
i=1 V (ini(gi)). Then, if Oα is

sufficiently small, there exists N sets O1, O2, · · · , ON , such that

Π−1
U (Oα) ∩ V (I) = ·∪N

k=1Ok

holds and such that each Ok is diffeomorphic to Oα. Therefore, we have α 6∈
O∞(I), which implies

O∞(I) ⊆ ∪s
i=1 V (ini(gi)).

Using the notations in Lemma 3, consider ≺X= x1 ≺ · · · ≺ xs. It is easy to
deduce that Ξ∞

1 = {ini(g1)} holds. This implies V (ini(g1)) ⊆ O∞(sat(T )). Since
O∞(sat(T )) can be defined independently of the variable ordering on x1, x2, . . . , xs,
we have ∪s

i=1 V (ini(gi)) ⊆ O∞(sat(T )). Since V (sat(T )) ⊆ V (I) holds, we have
O∞(sat(T )) ⊆ O∞(I).

Finally, we have

∪s
i=1 V (ini(gi)) ⊆ O∞(sat(T )) ⊆ O∞(I) ⊆ ∪s

i=1 V (ini(gi)),

which yields the conclusion. �

Since different regular chains may have the same saturated ideal, a natural
question to ask is: which regular chain(s) will be the best choice in the sense
that the set theoretic difference of DVT and DVsat(T ) is minimal. This question is
answered by Proposition 2 and Theorem 2.

For the notion of a canonical regular chain in Theorem 2, one can find a
definition in [20] or [1].

Theorem 2 ([20, 1]). Let T ∗ be another regular chain satisfying sat(T ) = sat(T ∗).
If T ∗ is canonical, then we have Bini(T

∗) ⊆ Bini(T ).

Proposition 5 ([20]). Let T1 and T2 be two regular chains satisfying sat(T1) =
sat(T2). If Bini(T1) ⊆ Bini(T2) holds, then BPS(T1) ⊆ BPS(T2) holds.

4. Parametric semi-algebraic systems

As we mentioned earlier in Section 2, the computation of a discriminant variety of
a semi-algebraic system reduces to that of the discriminant variety of an algebraic
system, which is the way we follow in practice. For this reason, we only exhibit here
several properties of effective boundaries and do not discuss border polynomials
or discriminant varieties in the semi-algebraic case.
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As mentioned in Section 2, effective boundaries were introduced in [1] as a
tool for improving the computation of triangular decomposition of semi-algebraic
systems. These improvements are based on the properties below which essentially
state that effective boundaries behave well under the “transformations” that occur
when computing triangular representations, in particular splitting, see Theorem 4.

Let I be the ideal associated with the parametric system S. Recall that we
assume that S is well-determinate. Let p be an associated prime ideal of I. The
ideal p is called a main prime component of I (or S) if U is a maximal algebraically
independent set modulo p. Theorem 3 extends Corollary 1 which appears in [1].

Theorem 3. Given two parametric semi-algebraic systems S1 and S2 defined by
polynomials in Q[U,X ]. Suppose S1 and S2 have the same set of inequalities and
the same set of main prime components. Then we have EB(R1) = EB(R2).

Next, we shall discuss the effective boundary in the context of triangular
decomposition.

Corollary 1 ([1]). For any two STSASes R1 = [T1, H1>, P>] and R2 = [T2, H2>, P>]
satisfying sat(T1) = sat(T2), we have EB(R1) = EB(R2).

Theorem 4. Consider three STSASes R = [T,H 6=, P>], R1 = [T1, H1 6=, P>] and
R2 = [T2, H2 6=, P>] satisfying sat(T ) = sat(T1) ∩ sat(T2). Assume that ebf(R1) ∩
ebf(R2) = ∅ holds. Then, we have ebf(R) = ebf(R1) ∪ ebf(R2).

Theorem 5. Given a parametric STSAS R = [T,H 6=, P>], we have ebf(R) ⊆
Bsep(T ) ∪Bie([T, P ]).

Let B be the set of the irreducible factors of a border polynomial of a para-
metric STSAS R = [T,H 6=, P>]. The above theorem suggests how to remove from
B polynomials which are not defining irreducible effective boundaries.
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