
Thesis projects for CS4490

Marc Moreno Maza

Ontario Research Center for Computer Algebra (ORCCA)
University of Western Ontario, Canada

September 19, 2016



Research themes and team members

Symbolic computation: computing exact solutions of algebraic
problems on computers with applications to sciences and engineering.
High-performance computing: making best use of modern computer
architectures, in particular hardware accelerators (multi-cores GPUs)

Current students

PhD: Parisa Alvandi, Ning Xie, Mahsa Kazemi, Ruijuan Jing,
Xiaohui Chen, Steven Thornton, Robert Moir, Egor Chesakov

MSc: Masoud Ataei, Yiming Guan, Davood Mohajerani

Alumni

Moshin Ali ( ANU , Australia) Jinlong Cai ( Microsoft , USA), Changbo Chen

( Chinese Acad. of Sc. ), Svyatoslav Covanov ( U. Lorraine , France) Akpodigha

Filatei ( Guaranty Turnkey Systems ltd , Nigeria) Oleg Golubitsky

( Google Canada ) Sardar A. Haque ( GeoMechanica , Canada) Zunaid Haque

( IBM Canada ) François Lemaire ( U. Lille 1 , France) Farnam Mansouri

( Microsoft , Canada) Liyun Li ( Banque de Montréal , Canada) Xin Li

( U. Carlos III , Spain) Wei Pan ( Intel Corp. , USA) Sushek Shekar ( Ciena ,

Canada) Paul Vrbik ( U. Newcastle , Australia) Yuzhen Xie

( Critical Outcome Technologies , Canada) Li Zhang ( IBM Canada ) . . .



Solving polynomial systems symbolically

Figure: The RegularChains solver designed in our UWO lab is at the heart of
Maple , which has about 5,000,000 licences world-wide.



Application to mathematical sciences and engineering

Figure: Toyota engineers use our software to design control systems



Project 1: Truncated Fourier Transform

1 The Fast Fourier Transform (FFT) is a kernel in scientific computing

2 It maps a vector of size 2e to another vector of size 2e

3 The Truncated Fourier Transform (TFT) supports arbitrary vectors
but is challenging to implement, in particular on multi/many-cores

FFT with artificial zero points TFT removes unnecessary computations

Objectives

1 Realize an implementation of the TFT and its inverse map

2 A configurable Python script will generate the CilkPlus code within
the BPAS library www.bpaslib.org

www.bpaslib.org


High-performance computing: models of computation

Let K be the maximum number of thread
blocks along an anti-chain of the
thread-block DAG representing the program
P. Then the running time TP of the
program P satisfies:

TP ≤ (N(P)/K+ L(P))C(P),

where C(P) is the maximum running time of

local operations by a thread among all the

thread-blocks, N(P) is the number of

thread-blocks and L(P) is the span of P.

Our UWO lab develops mathematical models to make efficient use of
hardware acceleration technology, such as GPUs and multi-core processors.
This project is supported by IBM Canada.



Project 2: Models of computation for GPUs

1 Several models of computations attempt to estimate the performance
of algorithms (or programs) targeting GPGPUs

2 The MWP-CWP Model analyzes how computations and memory
accesses are interleaved in GPU programs

3 The MCM focuses on memory access patterns and memory traffic in
GPU algorithms

MWP-CWP Model
MCM Model

Objectives

1 Compare those models on well-known kernels of scientific computing

2 Can we unify then?



High-performance computing: parallel program translation

int main(){

int sum_a=0, sum_b=0;

int a[ 5 ] = {0,1,2,3,4};

int b[ 5 ] = {0,1,2,3,4};

#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
{

for(int i=0; i<5; i++)

sum_a += a[ i ];

}

#pragma omp section
{

for(int i=0; i<5; i++)

sum_b += b[ i ];

} } }

}

int main()

{

int sum_a=0, sum_b=0;

int a[ 5 ] = {0,1,2,3,4};

int b[ 5 ] = {0,1,2,3,4};

meta_fork shared(sum_a){
for(int i=0; i<5; i++)

sum_a += a[ i ];

}

meta_fork shared(sum_b){
for(int i=0; i<5; i++)

sum_b += b[ i ];

}

meta_join;
}

void fork_func0(int* sum_a,int* a)

{

for(int i=0; i<5; i++)

(*sum_a) += a[ i ];

}

void fork_func1(int* sum_b,int* b)

{

for(int i=0; i<5; i++)

(*sum_b) += b[ i ];

}

int main()

{

int sum_a=0, sum_b=0;

int a[ 5 ] = {0,1,2,3,4};

int b[ 5 ] = {0,1,2,3,4};

cilk_spawn fork_func0(&sum_a,a);

cilk_spawn fork_func1(&sum_b,b);

cilk_sync;
}

Our lab develops a compilation platform for translating parallel
programs from one language to another; above we translate from
OpenMP to CilkPlus through MetaFork. This project is supported
by IBM Canada.



Project 3: Integrating NPI support into MetaFork

1 Currently, the MetaFork language supports different schemes of
parallelism: fork-join, pipelining, Single-Instruction Multi-Data.

2 CilkPlus, OpenMP, CUDA code can be generated from
MetaFork code by the MetaFork compilation framework

Shared memory
Non-shared memory

Objectives

1 Enhance the MetaFork language and MetaFork compilation
framework to support non-shared memory and generate MPI code.

2 This linguistic extension should be compact while allowing to
generate efficient MPI code.



High-performance computing: automatic parallelization

Serial dense univariate polynomial multiplication

for(i=0; i<=n; i++){

for(j=0; j<=n; j++)

c[i+j] += a[i] * b[j];

}

GPU-like multi-threaded dense univariate polynomial multiplication

meta_for (b=0; b<= 2 n / B; b++) {

for (u=0; u<=min(B-1, 2*n - B * b); u++) {

p = b * B + u;

for (t=max(0,n-p); t<=min(n,2*n-p) ;t++)

c[p] = c[p] + a[t+p-n] * b[n-t];

}

}

We use symbolic computation to automatically translate serial programs to GPU-like programs.This
project is supported by IBM Canada.



Project 4: Dependence analysis for parametric GPU kernels

1 For performance and portability reasons, GPU kernels should depend
on program and machine parameters.

2 Standard software tools for automatic parallelization do not support
parametric GPU kernels. But MetaFork almost does . . .

Input iteration space Iteration space after change of coordinates

Objectives

1 Extend the MetaFork framework with a software component for
doing dependence analysis on parametric code.

2 Note that the MetaFork framework already has the infrastructure
to generate parametric GPU kernels.



Research projects with publicly available software

www.bpaslib.org www.metafork.org

www.cumodp.org www.regularchains.org

www.bpaslib.org
www.metafork.org
www.cumodp.org
www.regularchains.org

