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ABSTRACT
In this paper we discuss how to generate inequality invari-
ants for continuous dynamical systems involved in hybrid
systems. A hybrid symbolic-numeric algorithm is presented
to compute inequality invariants of the given systems, by
transforming this problem into a parameterized polynomial
optimization problem. A numerical inequality invariant of
the given system can be obtained by applying polynomial
Sum-of-Squares (SOS) relaxation via Semidefinite Program-
ming (SDP). And a method based on Gauss-Newton refine-
ment is deployed to obtain candidates of polynomials with
rational coefficients, and finally we certify that this polyno-
mial exactly satisfies the conditions of invariants, by use of
SOS representation of polynomials with rational coefficients.

Several examples are given to show that our algorithm can
successfully yield inequality invariants with rational coeffi-
cients.

Categories and Subject Descriptors: I.2.1 [Comput-
ing Methodologies]: Symbolic and Algebraic Manipulation
—Algorithms; G.1.2 [Mathematics of Computing]: Numeri-
cal Analysis—Approximation

General Terms: algorithms, verification

Keywords: semidefinite programming, sum-of-squares re-
laxation, program verification, differential invariant

1. INTRODUCTION
Complex physical systems are systems in which the tech-

niques of sensing, control, communication and coordination
are involved and interacted with each other. Among complex
physical systems, many of them are safety critical systems,
such as airplanes, railway, and automotive applications. Due
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to the complexity, ensuring correct functioning of these sys-
tems, e.g., spatial separation, especially collision avoidance,
of aircrafts during the entire flights, is among the most chal-
lenging and most important problems in computer science,
mathematics and engineering.

As a common mathematical model for complex physical
systems, hybrid systems [13, 3] are dynamical systems that
are governed by interacting discrete and continuous dynam-
ics [1, 13, 10]. Continuous dynamics is specified by differ-
ential equations, which is possibly subject to domain re-
strictions or algebraic relations resulting from physical cir-
cumstances or the interaction of continuous dynamics with
discrete control. For discrete transitions, the hybrid sys-
tem changes state instantaneously and possibly discontinu-
ously, for example, the instantaneous change of control vari-
ables like the acceleration (e.g., the changing of a by setting
a := −b with braking force b > 0).

The analysis of hybrid systems is an important problem
that has been studied extensively both by the control the-
ory, and the formal verification community for over a decade.
Among the most important analysis questions for hybrid
systems are those of safety, i.e., deciding whether a given
property ψ holds in all the reachable states, and the dual
problem of reachability, i.e., deciding if a state satisfying
the given property ψ is reachable. Both these problems are
closely related to the problem of generating invariants of hy-
brid systems.

An invariant [31] of a hybrid system is a property that
holds in all the reachable states of the system, or, in other
words, an over-approximation of all the reachable states of
the system. Invariants are useful facts about the dynamics of
a given system and are widely used in numerous approaches
to verify and understand systems. The invariants of hybrid
systems are used to establish temporal properties of systems
such as safety, stability, termination, progress and so on [19,
7, 28, 23].

The problem of generating invariants of an arbitrary form
is known to be computationally hard, intractable even for the
simplest classes. The usual technique for generating invari-
ants is to generate an inductive invariant, i.e., an assertion
that holds at the initial states of the system, and is pre-
served by all discrete and continuous state changes. There
has been a considerable volume of work towards invariant
generation for hybrid systems using techniques from convex
optimization, commutative algebraic and semi-algebraic ge-
ometry [36, 4, 32, 21, 22, 33, 23, 12, 33, 26, 24, 20, 27,
31]. Many of these techniques synthesize invariants of pre-
specified form by computing constraints on the unknown co-
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efficients of a single or fixed number of polynomial inequali-
ties with a bounded degree, that guarantee that any solution
will also be inductive. Carbonell and Tiwari [4] presented a
powerful computational method for automatically generat-
ing polynomial invariants, which does not assume bounded
degree, whereas their method is only applicable to linear
hybrid systems. In [2], Asarin et al. employed a numerical
approach based on conservative approximation to deal with
nonlinear systems. However, as pointed out in [25], numer-
ical errors resulted from numerical computation tended to
cause unsoundness of the verification of hybrid systems. Re-
cently, Platzer et al. proposed a powerful theorem-proving
framework [21, 22, 23, 26, 24, 27] for verifying properties
of hybrid systems through differential logic that extends dy-
namic logics using differential operators and quantifier elim-
ination [6]. However, it is well known that the bottleneck of
quantifier elimination algorithms lies in their high complex-
ity, which is doubly exponential.

In this work, we study how to generate inequality invari-
ants for nonlinear continuous systems given by polynomial
vector fields. In virtue of the efficiency of numerical com-
putation and the error-free property of symbolic computa-
tion, we present a symbolic-numeric hybrid method, based
on Sum-of-Squares (SOS) relaxation via semidefinite pro-
gramming (SDP) and exact SOS representation recovery, to
generate inequality invariants of continuous systems. More
specifically, computing inequality invariants of a continu-
ous system is transformed into solving a semi-algebraic sys-
tem with parameters, while the latter system is constructed
by predetermining the template of the polynomial invariant
with the given degree. It is noticed that SDP is applicable to
polynomial optimization problem by use of Sum-of-Squares
relaxation. Since Matlab packages, such as SOSTOOLS [29]
and Yalmip [18], that deal with SDP problem, are running
in the fixed precision, these algorithms yield only numeri-
cal solutions. However, numerical invariants may not be the
correct invariants of the given continuous system. In [14, 11],
Kaltofen et al. provided a symbolic-numeric hybrid method,
combined with the SDP solvers and rational vector recov-
ery techniques, to verify whether a multivariate polynomial
is positive semidefinite by demonstrating the corresponding
exact SOS representation. In this paper, we also deploy
this symbolic-numeric method to compute inequality-form
invariants of the given continuous systems. The idea is as
follows: (a) From the conditions of invariants, we construct
an SDP system to solve the associated semi-algebraic system
with parameters; (b) an exact invariant is obtained by re-
covering the exact SOS representation from the approximate
SOS representation yielded from the SDP solvers. During
the process of recovery step, we need apply Gauss-Newton it-
eration to refine the approximate SOS representation. More
details can be found in Section 3.

In comparison with other symbolic approaches of invari-
ant generation based on qualifier elimination theory, our ap-
proach is more efficient and practical, because the SDP sys-
tems constructed from the continuous system can be solved
in polynomial time. Furthermore, we apply Gauss-Newton
refinement technique and rational vector recovery to obtain
an exact invariant of the given system. Having the exact rep-
resentation of polynomials as sums of squares with rational
coefficients, the invariant obtained by our approach can be
easily verified to satisfy its constraints exactly. Therefore,
our approach is able to overcome the weakness of numer-

ical approaches on approximate invariant computation, as
claimed in [25], .

The rest of the paper is organized as follows. In Section 2,
we introduce the notions of hybrid systems and invariants.
Section 3 is devoted to illustrating a symbolic-numeric ap-
proach for generating invariants of continuous systems. In
Section 4, we show two examples of inequality invariant gen-
eration. Section 5 concludes the paper.

2. INVARIANTS
To model hybrid systems, we use hybrid automata [13,

33].

Definition 1 (Hybrid Systems). A hybrid system H :
〈V, L, T , Θ,D, ψ, ℓ0〉 consists of the following components:

• V , a set of real-valued system variables. A state is an
interpretation of V , assigning to each x ∈ V a real
value. An assertion is a first-order formula over V .
A state s satisfies an assertion ϕ, written as s |= ϕ,
if ϕ holds on s. We will also write ϕ1 |= ϕ2 for two
assertions ϕ1, ϕ2 to denote that ϕ2 is true at least in
all the states in which ϕ1 is true;

• L, a finite set of locations;

• T , a set of (discrete) transitions. Each transition τ :
〈ℓ1, ℓ2, ρτ 〉 ∈ T consists of a prelocation ℓ1 ∈ L, a post-
location ℓ2 ∈ L, and an assertion ρτ over V ∪ V ′ rep-
resenting the next-state relation, where V ′ denotes the
values of V in the next state;

• Θ, an assertion specifying the initial condition;

• D, a map that maps each location ℓ ∈ L to a differential
rule (also known as a vector field or a flow field) D(ℓ),

of the form ẋi = dxi
dt

= fi(V ) for each xi ∈ V , with
t the time variable. The differential rule at a location
specifies how the system variables evolve in that loca-
tion;

• ψ, a map that maps each location ℓ ∈ L to a loca-
tion condition (location invariant) ψ(ℓ), an assertion
over V ;

• ℓ0 ∈ L, the initial location; we assume that the initial
condition satisfies the location invariant at the initial
location, that is Θ |= ψ(ℓ0).

The following definition of invariants for hybrid systems
comes from [33].

Definition 2 (Invariant). [33, Definition 3] An invariant I
of a hybrid system at a location ℓ is an assertion I such that
for any reachable state 〈ℓ,x〉 of the hybrid system, x |= I.

The problem of generating invariants of arbitrary form is
known to be computationally hard, intractable even for the
simplest classes. The usual technique for generating invari-
ants is to generate inductive invariants, which are defined as
follows.

Definition 3 (Inductive Invariant). An inductive asser-
tion map I of a hybrid system H : 〈V, L, T ,Θ,D, ψ, ℓ0〉 is
a map that associates with each location ℓ ∈ L an asser-
tion I(ℓ) that holds initially and is preserved by all discrete
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transitions and continuous flows of H. More formally an
inductive assertion map satisfies the following requirements:

(i) [Initial] Θ |= I(ℓ0).

(ii) [Discrete Consecution] For each discrete transition
τ : 〈ℓ1, ℓ2, ρτ 〉, starting from a state satisfying I(ℓ1),
and taking τ leads to a state satisfying I(ℓ2). Formally,

I(ℓ1) ∧ ρτ |= I(ℓ2)
′,

where I(ℓ2)
′ represents the assertion I(ℓ2) with the

current state variables x1, . . . , xn replaced by the next
state variables x′1, . . . , x

′
n, respectively.

(iii) [Continuous Consecution] For every location ℓ ∈ L
and states 〈ℓ,x1〉, 〈ℓ,x2〉 such that x2 evolves from x1

according to the differential rule D(ℓ) at ℓ, if x1 |= I(ℓ)
then x2 |= I(ℓ).

Remark 1. Clearly, Definition 3 generalizes the notions of
invariants for both discrete and continuous dynamical sys-
tems. An assertion I is called a discrete (inductive) invari-
ant if I satisfies the conditions (i) and (ii); and I is called a
differential invariant if I satisfies the conditions (i) and (iii).

The usual way to compute invariants of hybrid systems
is to compute discrete invariants and differential invariants
separately. A lot of techniques are available for computing
invariants of discrete loop programs. The reader can refer
to [37, 8, 15, 9, 34, 30, 16, 5] for more details.

In this work, we only concentrate on how to compute dif-
ferential invariants of nonlinear continuous dynamical sys-
tems given by polynomial vector fields, i.e., systems of the
form

ẋ1 = p1(x1, . . . , xn), · · · , ẋn = pn(x1, . . . , xn) (1)

where pi ∈ R[x1, . . . , xn] for 1 ≤ i ≤ n.

[Convention] In what follows, we will adopt the following
notations:

(i) The boldfaced symbols x and p denote the vectors

(x1, . . . , xn) and (p1, . . . , pn),

respectively;

(ii) For a smooth function V (x) : Rn 7→ R, the nota-
tion dV denotes the 1 × n row vector ( ∂V

∂x1
, . . . , ∂V

∂xn
)

of partial derivatives of V with respect to the vari-
ables x1, . . . , xn;

(iii) The expression dV · p represents the inner product of
the vectors dV and p. Actually we have dV · p = dV

dt
.

We will study how to generate inequality-form invariants
of the system ẋ = p, i.e., invariants of the form F ≥ 0
where F is an expression in the system variables x1, . . . , xn

and the initial values x(0). The following lemma will be
needed in latter discussion.

Lemma 1. Let ẋ = p be a nonlinear dynamical system
with initial states Θ and state invariants ψ. For a poly-
nomial V (x) ∈ R[x], define

d0 = min{V (x(0)) : x(0) ∈ Θ},

and set r(x) = dV
dt

= dV · p. If the polynomial r(x) is
positive semidefinite within the state invariants ψ, meaning
that r(x) is positive semidefinite for all x such that ψ hold,
then the formula V (x)− d0 ≥ 0 is a differential invariant of
the dynamical system ẋ = p.

Remark 2. In order to compute the differential invariant
V (x) − d0 ≥ 0 as in Lemma 1, we need compute both the
polynomial V (x) and the constant d0. Actually, once V (x)
is obtained, there are several approaches to obtain the min-
imum d0 of V (x) in Θ. Hereafter, we will omit the discus-
sion of d0, and focus on computing polynomials V (x) such
that r(x) = dV · p is positive semidefinite within the state
invariants ψ. For simplicity, in the sequel, by saying V (x)
is a polynomial invariant we mean that the polynomial in-
equality V (x)−d0 ≥ 0 is an invariant of the given nonlinear
dynamical system, where d0 = min{V (x(0)) : x(0) ∈ Θ}.

3. POLYNOMIAL INEQUALITY INVARIANT
GENERATION

According to Lemma 1 and Remark 2, in order to com-
pute invariants of a nonlinear system ẋ = p with the state
invariants ψ, one may obtain a polynomial V (x) such that
r(x) = dV · p is positive semidefinite within ψ. In general,
we consider the state invariants ψ with the following form:

ψ1 ≥ 0 ∧ · · · ∧ ψk ≥ 0, (2)

where ψ1, · · · , ψk ∈ R[x]. The problem of computing polyno-
mial invariants can be transformed into the following prob-
lem

find V ∈ R[x]

s.t. r = dV · p ≥ 0 if ψ1 ≥ 0 ∧ · · · ∧ ψk ≥ 0. (3)

Our idea of computing V (x), based on SOS relaxation and
rational vector recovery, is as follows.

Step 1: Predetermine a template of polynomial invariants
with the given degree and convert the problem of com-
puting polynomial invariants to the associated (para-
metric) polynomial optimization problem. SOS relax-
ation method is then applied to obtain an approximate
polynomial invariant with floating point coefficients.

Step 2: Apply Gauss-Newton refinement and rational vec-
tor recovery on the approximate polynomial invariant
to get one polynomial with rational coefficients, which
satisfies exactly the conditions of invariants of the given
dynamical system.

Steps 1 and 2 will be explained in more details in Sections 3.1
and 3.2, respectively.

3.1 Sum of Squares Relaxation
To solve the problem (3), let us predetermine a template

of polynomial invariants with the given degree d, that is, we
assume

V (x) =
X

α

cαxα, (4)

where cα ∈ R are parameters, xα = xα1
1 · · ·xαn

n and α ∈ Zn
≥0

with
Pn

i=1 αi ≤ d.
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We first consider a simpler case where there exists no state
invariants. The problem then becomes computing a polyno-
mial V ∈ R[x] such that

r(x) = dV · p ≥ 0, ∀ x ∈ Rn.

It is obvious that a sufficient condition for r(x) to be positive
semidefinite for arbitrary value x ∈ Rn is that there exists
an SOS decomposition of r(x):

r(x) =
X

i

fi
2(x), with fi(x) ∈ R[x], (5)

or, equivalently, there exists a following representation of r(x):

r(x) = m(x)T ·W ·m(x),

whereW is a real symmetric and positive semidefinite matrix
andm(x) is a vector of terms in R[x] with degree ≤ d/2. The
SOS problem (5) can be further converted into the following
SDP program

inf
W

Trace(W )

s. t. r(x) = m(x)T ·W ·m(x)

W � 0,WT = W.

9>=>; (6)

(here Trace(W ) acts as a dummy objective function that is
commonly used in SDP for optimization problem with no
objective functions.)

Now let us consider the case where the state invariants
are given as in (2). Similar to the case with no state in-
variants, we predetermine the template (4) of V (x) with the
given degree d, where the coefficients cα are parameters. One
can certainly apply quantifier elimination methods to solve
the corresponding parametric semi-algebraic system. Some
Maple packages such as DISCOVERER [38] are available to
solve this kind of problems. For the given template, quan-
tifier elimination methods yield the necessary and sufficient
conditions for the existence of invariants with given degree.
However, quantifier elimination methods are of high com-
plexity since they rely on the cylindrical algebraic decom-
position (CAD) algorithm. Instead in this paper, we will
explore the SOS relaxation techniques based on semidefinite
programming to obtain polynomial invariants. These tech-
niques supply a sufficient condition for the existence of V (x).

Theorem 1. Let ẋ = p be a nonlinear dynamical system
with initial states Θ and state invariants

ψ := ψ1 ≥ 0 ∧ · · · ∧ ψk ≥ 0.

Suppose there exists a polynomial V (x) ∈ R[x] such that
r(x) = dV · p can be written as

r(x) =
kX

i=0

σiψi, (7)

where σ0, . . . , σk are SOSs and ψ0 = 1,

then the formula V (x)− d0 ≥ 0 with

d0 = min{V (x(0)) : x(0) ∈ Θ},
is a differential invariant of the dynamical system ẋ = p.

Proof. It is easy to verify that if r(x) has the form (7)
then r(x) ≥ 0 holds for any x ∈ Rn such that ψ holds. The
conclusion then follows from Lemma 1.

A weaker sufficient condition than (7) can be presented
using cross products of ψi’s, as described in the following
corollary:

Corollary 1. Under the assumptions of Theorem 1, if the
polynomial r(x) can be written as

r(x) =
X

µ∈{0,1}k

σµψµ where ψµ = ψµ1
1 · · ·ψµk

k (8)

σµ are all SOSs,

then the formula V (x)− d0 ≥ 0 with

d0 = min{V (x(0)) : x(0) ∈ Θ},
is a different invariant of the given dynamical system.

Given the degree bound 2N of σi(x) with N ∈ Z+, one
can easily construct an SOS program of the form (7), in
which the decision variables are the coefficients of V (x) and
σi(x), for 0 ≤ i ≤ k. Similar to (6), the SOS program (7) is
equivalent to the following SDP problem with a block form:

inf
W [0],...,W [k]

Pk
i=0 Trace(W [i])

s. t. r(x) =
Pk

i=0mi(x)T ·W [i] ·mi(x)ψi

W [i] � 0, (W [i])T = W [i], 0 ≤ i ≤ k.

9>>=>>; (9)

The SOS program corresponding to (8) would be obtained
likewise. Many Matlab packages of SDP solvers, such as
SOSTOOLS [29], YALMIP [18], and SeDuMi [35], are avail-
able to solve efficiently the problems (6) and (9).

3.2 Exact Certificate of Sum of Squares De-
composition

Since the SDP solvers in Matlab is running in fixed preci-
sion, the techniques in Section 3.1 will yield numerical solu-
tions to the associated SDP problems of (5, 7, 8), and there-
fore yield numerical solutions to (5, 7, 8), respectively. For
instance, applying an SDP solver to (9), we obtain a numer-
ical polynomial V ∗(x) with floating point coefficients and

some numerical positive semidefinite matrices W [i], which
satisfy approximately

r∗(x) ≈
kX

i=0

mi(x)T ·W [i] ·m(x)ψi and W [i] v 0, (10)

where r∗(x) = dV ∗(x) · p. However, due to round-off er-
rors, V ∗(x)− d0 ≥ 0 may not necessarily be an invariant of
the given dynamical system because r∗(x) may not be pos-
itive definite within ψ exactly. Therefore in the next step,
from the numerical polynomial V ∗(x) and the numerical pos-

itive semidefinite matrices W [i], we will try to recover a pol-
ynomial V (x) with rational coefficients, which satisfies (7)
exactly.

In [14, 11], the authors proposed a method to certify a
lower bound of global optimum of a polynomial via SOS
representation. In this paper, we will employ this method
to compute invariants of continuous dynamical systems. We
first recall the idea of this method. Given a multivariate pol-
ynomial f ∈ R[x], they first constructed the associated SOS
program and solve the SDP system to obtain an approxi-
mate lower bound r∗ and an approximate positive semidefi-
nite matrix W such that

f(x)− r∗ ≈ m(x)T ·W ·m(x) with W v 0.
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Next, they rounded r∗ to a nearby rational number r and,
for a given tolerance τ , applied Gauss-Newton iteration to
refine W such that

‖f(x)− r −m(x)T ·W ·m(x)‖ ≤ τ and W � 0.

In the end, a positive semidefinite matrix fW with rational
entries would be obtained by orthogonal projection method
or rational vector recovery method such that

f(x)− r = m(x)T ·fW ·m(x), with fW � 0. (11)

Therefore, r is a certified lower bound of the global optimum

of f because r and fW exactly satisfy (11).
In comparison with the problem of the lower bound veri-

fication in [14], finding a polynomial invariant V (x) of non-
linear continuous dynamical systems is a bit different. To
obtain a certified polynomial invariant V (x), we need con-
sider the following two problems:

P.1: Instead of obtaining a single rational number r, we
need find a rational vector v denoting the coefficient
vector of V (x).

P.2: V (x) should exactly satisfy (7) or (8), i.e., not only
the σi’s and σµ’s satisfy the equalities (7) and (8) re-
spectively, but also they have exact SOS representa-
tions simultaneously.

In Section 3.1, a numerical vector v∗ that denotes the
(numerical) coefficient vector of V ∗(x) is obtained by solv-
ing some SDP system. For the given bound of the common
denominator of v∗, we can recover the numerical vector v∗

to a vector v with rational entries by a simultaneous Dio-
phantine approximation algorithm [17]. This solves the first
problem.

Let us focus on the second problem. Here we only con-
sider the case (7), and the case (8) can be handled like-
wise. From (9), we will construct another SDP system given

by one big matrix W = diag(W[0], . . . ,W[k]), and, by use
of SDP solvers, some numerical positive semidefinite matri-
ces W [0], . . . ,W [k] and an approximate form of (9) will be

obtained. The recovery of W [0], . . . ,W [k] into rational pos-
itive semidefinite matrices is split into two steps: we first

recover fW [1], . . . ,fW [k] and then recover fW [0].
Step 1. Given the numerical positive definite matricesW [i],

1 ≤ i ≤ k, we find the nearby rational positive semidefinite

matrices fW [i]. In practice, all W [i] are very simple, and
by setting the small entries of W [i] to be zeros we easily

get the nearby rational positive semidefinite matrices fW [i]

for i = 1, . . . , k.

Step 2. Having v and fW [1], . . . ,fW [k], (9) is converted to

r(x)−Pk
i=1mi(x)T ·fW [i] ·mi(x)ψi

≈ m0(x)T ·W [0] ·m0(x),

W [i] � 0, 1 ≤ i ≤ k, W [0] v 0,

9=; (12)

where r(x) = dV (x) · p with V (x) the polynomial corre-
sponding to the coefficient vector v. Observing in (12), the

matrix W [0], obtained from the computation in Step 1, has

floating point entries, while the fW [i], 1 ≤ i ≤ k, are rational
positive semidefinite matrices. Therefore, the remaining task
of (P.2) is to find a nearby rational positive semidefinite ma-

trix fW [0] such that the equation in (12) holds exactly, which
is exactly the same problem as described in [14]. Therefore,

we can apply Gauss-Newton iteration to refine W [0], and

recover a rational positive definite matrix fW [0] from the re-
fined W [0] by orthogonal projection if W [0] is of full rank, or
by rational vector recovery method otherwise.

Remark 3. In practice, we will do as follows to fulfil the
above task of finding a rational positive semidefinite ma-

trix fW [0] that satisfies (12) exactly. First, using the ratio-
nal polynomial V (x) determined by the coefficient vector v,

and rational positive semidefinite matrices fW [1], . . . ,fW [k],
we will reconstruct an SDP system of the form (12), which
gives us a better initial point for Gauss-Newton iteration.
Then, we will compute numerical solutions for W [0] of (12)
using SDP solvers, and finally apply the method in [14] to

recover fW [0].

The above discussion leads to an algorithm of computing
the certified polynomial inequality invariants of the dynam-
ical system ẋ = p with state invariants ψ. As stated above,
we only present the case where the invariant V (x) satis-
fies (7), and the case of (8) is similar.

3.3 Algorithm

Algorithm Polynomial Inequality Invariant Generation

Input: ◮ ẋ = p: a continuous dynamical system.
◮ d ∈ Z>0: the degree bound of the candidate

polynomial invariant.
◮ D ∈ Z>0: the bound of the common denom-

inator of the coefficient vector of the polyno-
mial invariant.

◮ N ∈ Z≥0: the degree bound deg(σi) ≤ 2N
used to construct the SDP system.

◮ τ ∈ R>0: the given tolerance.
Output: ◮ V (x): a verified polynomial invariant.

1. Compute the candidates of polynomial invariants

(a) Case 1: the state invariant is empty:

(i) Predetermine the template of V (x) with de-
gree d and construct an SDP system of form (6).
• If the SDP system (6) has no feasible so-

lutions,
return ”we can’t find polynomial invari-
ants with degree ≤ d;”

• Otherwise,
obtain a numerical vector v∗ and a nu-
merical positive semidefinite matrix W .

(ii) For the common denominator bound D, com-
pute from v∗ a rational vector v by Diophan-
tine approximation algorithm, and then the
associated rational polynomial V (x).

(b) Case 2: the state invariant is given as

ψ : ψ1 ≥ 0 ∧ . . . ∧ ψk ≥ 0. (13)

(i) Set up the SDP system (9) by predetermin-
ing the template of V (x) with deg(V ) = d
and predetermining the template of σj with
deg(σj) ≤ 2N .
• If the SDP system (9) has no feasible so-

lutions,
return ”we can’t find polynomial invari-
ants with degree ≤ d;”
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• Otherwise,
obtain a numerical vector v and numerical
positive semidefinite matricesW [0] andW [i], 1 ≤
i ≤ k.

(ii) For the common denominator bound D, com-
pute a rational vector v using Diophantine
approximation algorithm and get the asso-
ciate rational polynomial V (x).

(iii) Convert all the W [i], 1 ≤ i ≤ k, into rational

matrices fW [i] that are positive semidefinite.

2. Compute the exact SOS decomposition

(a) Case 1: the state invariant is empty:

(i) Use V (x) to reconstruct an SDP system
of form (6) and get an approximate SOS
decomposition:

r(x) ≈ m(x)T ·W [0] ·m(x) (14)

with r(x) = dV (x) · p.

(ii) Apply Gauss-Newton iteration to refineW [0]

in (14).

Case 2: the state invariant is given as (13)

(i) Reconstruct an SDP system of the form (12)
to get an approximate positive semidefi-
nite matrix W [0] satisfying

r(x)−Pk
i=1mi(x)T ·fW [i] ·mi(x)ψi

≈ m0(x)T ·W [0] ·m0(x)
(15)

with r(x) = dV (x) · p.

(ii) Apply Gauss-Newton iteration to refineW [0]

in (15).

(b) From the refined W [0], compute a rational ma-

trix fW [0] satisfying (15) exactly by orthogonal

projection method if W [0] is of full rank, or by
rational vector recovery if W [0] is singular.

(c) Check whether fW [0] is positive semidefinite.

• If so, return V (x);

• Otherwise,
return ”we can’t find polynomial invariants
with degree ≤ d.”

Remark 4. Our algorithm cannot guarantee a rational so-
lution will always be found since there are some limitations
of the above algorithm such as choosing the degree bound N
and the common denominator bound D. Furthermore, it is
difficult to determine in advance whether there exists differ-
ential invariants with rational coefficients or not. Therefore,
even if our algorithm cannot find differential invariants, it
does not mean that the given dynamical system has no dif-
ferential invariants.

4. EXPERIMENTS
In this section, two examples are given to illustrate our

algorithm for computing polynomial inequality invariants.

Example 1. Consider the nonlinear system

ẋ1 = x1 + x2
2, ẋ2 = x2

1 + x2.

Assume that deg(V ) = 2k + 1 for k = 0, 1, 2, . . .. For
deg(V ) = 1, there exists no feasible solutions of the cor-
responding SDP system. Now set deg(V (x1, x2)) = 3 and
let the coefficients of V (x1, x2) be parameters. By solving
the associated SDP system, we obtain a numerical polyno-
mial V ∗(x1, x2) as follows

V ∗(x1, x2) =0.0778x3
1 + 0.1287x2

1x2 + 0.3406x2
1 + 0.1287x1x

2
2

− 0.06165x1x2 − 1.75× 10−6x1 + 0.0778x3
2

+ 0.3406x2
2 − 1.75× 10−6x2.

Let τ = 10−2, and round the coefficients of V ∗(x1, x2) to be
rational numbers with the common denominator bound 104.
We obtain a rational polynomial

V (x1, x2) =
33

424
x3

1 +
191

1484
x2

1x2 +
1011

2968
x2

1 +
191

1484
x1x

2
2

− 183

2968
x1x2 +

33

424
x3

2 +
1011

2968
x2

2.

Therefore,

r(x1, x2) =
dV

dt
=

99

212
x2

1x
2
2 +

255

1484
x3

1 +
191

742
x1x

3
2 +

396

371
x2

1x2

+
396

371
x1x

2
2 +

1011

1484
x2

1 +
191

1484
x4

2 +
255

1484
x3

2

− 183

1484
x1x2 +

191

1484
x4

1 +
191

742
x3

1x2 +
1011

1084
x2

2.

By running the algorithm in Section 3.3, we find that r(x1, x2)
can be written as an SOS of 4 polynomials with rational co-
efficients. The SOS representation of r(x1, x2) is given in
Appendix. Therefore,

V (x1, x2)− d0 ≥ 0,

with d0 = min{V (x1, x2) : (x1, x2) ∈ Θ}, is an invariant of
the given nonlinear system.

The next example shows how to compute polynomial in-
equality invariants for nonlinear systems with state invari-
ants.

Example 2. Consider the following nonlinear system

ẋ1 = x2 + x1x
2
2, ẋ2 = −x1 + x2

1x2.

Assume that the state invariant is x1 ≥ 0 ∧ x2 ≥ 0. Let
us assume that deg(V ) = 2k, k = 1, 2, . . .. According to
Corollary 1, we construct the associated SDP system as (8),
that is, the polynomial

dV · p− σ1(x1, x2)x1 − σ2(x1, x2)x2 − σ3(x1, x2)x1x2

can be written as an SOS, and σi(x1, x2), i = 1, 2, 3 can also
be written as SOSs.

Suppose the degree bounds of V (x1, x2) and of σi(x1, x2)
are all 2.

Solve the associated SDP system and find numerical solu-
tions:

V ∗(x1, x2) = 0.424x2
1 + 0.424x2

2 + · · ·+ 2.286× 10−13x2,

and

σ∗1(x1, x2) =− 1.171× 10−12x2
1 + · · ·+ 2.121× 10−5x2

2,

σ∗2(x1, x2) =1.426× 10−5x2
1 + · · ·+ 8.87× 10−13x2

2,

σ∗3(x1, x2) =2.917× 10−11x2
1 + · · ·+ 3.367× 10−11x2

2.
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Set τ = 10−2, and round the coefficients of V ∗(x1, x2) as
rational numbers with the common denominator bound 100.
We obtain a rational polynomial

V (x1, x2) =
14

33
x2

1 +
14

33
x2

2,

and

σi(x1, x2) = 0, i = 1, 2, 3.

It is easy to verify that

dV

dt
−σ1(x1, x2)x1−σ2(x1, x2)x2−σ3(x1, x2)x1x2 =

56

33
x2

1x
2
2,

and is thus positive semidefinite. So,

V (x1, x2)− d0 ≥ 0, or equivalently, x2
1 + x2

2 − d0 ≥ 0,

with d0 = min{V (x1, x2) : (x1, x2) ∈ Θ}, is an invariant of
the given nonlinear system with the state invariants x1 ≥ 0
and x2 ≥ 0.

For degree bounds 4 and 6 of the polynomial V (x1, x2),
the associated SDP systems have no feasible solutions.

Now suppose the degree bound of V (x1, x2) is 8. By solv-
ing the associated SDP system, we get numerical solutions

V ∗=0.228x4
1x

4
2+0.006x4

1x
3
2+0.197x4

1x
2
2+· · ·+0.251x4

2+0.829x2
2,

and

σ∗1 =8.80× 10−13 x5
1x2 + 0.741x2

1x
4
2 + · · ·+ 2.27× 10−6x6

2,

σ∗2 =1.80x6
1 + 0.765x4

1x
2
2 + · · · − 2.95× 10−12 x6

2,

σ∗3 =− 1.763× 10−12x6
1 + 0.602x4

1x
2
2 + · · · − 5.15× 10−13 x6

2.

Set τ = 10−2, and round the coefficients of V ∗ as ratio-
nal numbers with the common denominator bound 100. We
obtain the corresponding rational polynomial V (x1, x2) and
σi(x1, x2), i = 1, 2, 3:

V =
17

76
x4

1x
4
2 +

15

76
x4

1x
2
2 +

27

76
x4

1 +
4

19
x3

1x
3
2 − 15

38
x3

1x2

+
15

76
x2

1x
4
2 +

11

19
x2

1x
2
2 +

63

76
x2

1 +
15

38
x1x

3
2 +

1

4
x4

2 +
63

76
x2

2,

σ1 =
14

19
x2

1x
4
2, σ2 =

38

29
x4

1x
2
2, σ3 =

23

38
x4

1x
2
2 +

45

38
x2

1x
4
2.

Now let us verify whether the polynomial

dV

dt
− σ1(x1, x2)x1 − σ2(x1, x2)x2 − σ3(x1, x2)x1x2

is positive semidefinite. By running the algorithm in Sec-
tion 3.3, we find that the above polynomial can be written as
an SOS of 8 polynomials, and its SOS representation is listed
in Appendix. With the state invariants x1 ≥ 0∧x2 ≥ 0, it is
obvious that dV

dt
is always positive semidefinite. Therefore,

V (x1, x2)− d0 ≥ 0

with d0 = min{V (x1, x2) : (x1, x2) ∈ Θ}, is an invariant of
the given nonlinear system with the state invariants x1 ≥ 0
and x2 ≥ 0.

5. CONCLUSION
In this paper, we present a symbolic-numeric approach to

compute inequality invariants of nonlinear continuous sys-
tems in hybrid systems. Employing SOS relaxation and ra-
tional vector recovery techniques, it can be guaranteed that

an exact invariant, rather than a numerical one, can be ob-
tained efficiently and practically. This approach avoids both
the high complexity of symbolic invariant generation meth-
ods based on quantifier elimination, and the weakness of ap-
plying numerical approaches to verify correctness of hybrid
systems.
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Appendix
A solution to Example 1,

r =
1484

1011
f2
1 +

285776

193095
f2
2 +

11143727

1016838
f2
3 +

1508987592

30774371
f2
4

where
f1 = 1011

1484
x2 − 183

2968
x1 + 255

2968
x2

2 + 1209
2968

x1x2 + 375
2968

x2
1,

f2 = 193095
285776

x1 + 268305
2000432

x2
2 + 126945

285776
x1x2 + 194745

2000432
x2

1,

f3 = 1016838
11143727

x2
2 − 4931

454846
x1x2 − 1792057

22287454
x2

1

f4 = 30774371
1508987592

x1x2 − 30774371
1508987592

x2
1.

�

A solution to Example 2,

r =
38

15
f2
1 +

190

147
f2
2 +

2793

1010
f2
3 +

1919

4172
f2
4 +

4756080

7066109
f2
5

+
1074048568

1371482325
f2
6 +

104232656700

92227612763
f2
7 +

28037194279952

24255149844713
f2
8 ,

where
f1 = 15

38
x2

2 + 3
38
x1x2 + 3

38
x2

1 − 2
19
x2

1x2 + 15
38
x1x

3
2 + 4

19
x2

1x
2
2

− 3
38
x3

1x2 − 3
38
x3

1x
2
2,

f2 = 147
190

x1x2 + 11
95
x2

1 + 2
19
x1x

2
2 − 8

95
x2

1x2 − 3
190

x2
1x

2
2

− 11
95
x3

1x2 + 1
38
x2

1x
3
2 + 21

380
x3

1x
2
2,

f3 = 1010
2793

x2
1 + 250

2793
x1x

2
2 + 94

2793
x2

1x2 + 563
1862

x2
1x

2
2

− 1010
2793

x3
1x2 − 11

2793
x2

1x
3
2 + 1

133
x3

1x
2
2,

f4 = 4172
1919

x1x
2
2− 89

3838
x2

1x2− 1087
3838

x2
1x

2
2− 17

404
x2

1x
3
2− 119

1919
x3

1x
2
2,

f5 = 7066109
4756080

x2
1x2 − 1391293

4756080
x2

1x
2
2 − 175701

3170720
x2

1x
3
2

− 12287
113240

x3
1x

2
2,

f6 = 1371482325
1074048568

x2
1x

2
2 + 23684501

268512142
x2

1x
3
2 − 4029727

537024284
x3

1x
2
2,

f7 = 92227612763
104232656700

x2
1x

3
2 − 110608051

208465313400
x3

1x
2
2,

f8 = 24255149844713
28037194279952

x3
1x

2
2.

�

111


