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ABSTRACT
Our observations show that the sets of real (respectively
complex) roots of the derivatives of some classical families of
random polynomials admit a rich variety of patterns look-
ing like discretized curves. To bring out the shapes of the
suggested curves, we introduce an original use of fractional
derivatives. Then we present several conjectures and out-
line a strategy to explain the presented phenomena. This
strategy is based on asymptotic geometric properties of the
corresponding complex critical points sets.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms

General Terms
Experimentation, Theory

Keywords
random polynomials; random matrices; fractional deriva-
tives; critical points; patterns; roots of real univariate poly-
nomial; stem

1. INTRODUCTION
Computer algebra systems are powerful tools for perform-

ing experiments and simulations in Mathematics. They serve
to illustrate known properties, already rigorously proved, or
conjectures; to find examples, to show that a bound is sharp,
to estimate some values or behaviors. Once in a blue moon,
experiments reveal unexpected patterns or phenomena. Af-
ter the surprise, the repetition of experiments and variations
to test robustness, comes the time to share the observations
and the quest for explanations.
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This paper relates my experiments, relying on the com-
puter algebra system Maple, on the root sets of univariate
polynomials of medium degrees, and of their iterated deriva-
tives. Generations of mathematicians studied these basic ob-
jects, so it seemed unlikely that simple graphics should un-
cover any surprising feature. The originality of the presented
approach was to choose random polynomials, compute roots
of a great number of derivatives and consider averaged ob-
jects and phenomena. I started observing the real roots and
then looked at the complex ones, as they are more amenable
to algebraic interpretations.

Random matrices are matrix-valued random variables, their
study have stimulated a great deal of interest in the last
decades, since many important properties of disordered phys-
ical systems can be represented mathematically using eigen-
vectors and eigenvalues of matrices with elements drawn
randomly from statistical distributions. Their characteris-
tic polynomials form a special class of random polynomials.
See [15], or for a first insight the Random matrix entry
in Wikipedia. Random polynomials is a classical field of
interest in Mathematics and Statistics; several families of
random polynomials have been described in great detail, see
[9]. The number and distribution of real and complex roots
of random polynomial present regular structures (see section
2 below) which are statistical consequences of the properties
of their coefficients distributions. This is also the case for
eigenvalues of random matrices, see [6].

For a fixed degree n, we consider several bases gi(x) of
polynomials of degree at most n. We form the polynomial
f :=

Pn
i=0 aigi(x), the set of coefficients ai being instances of

n+1 independent normal centered standard distributions. In
our experiments, we also consider characteristic polynomials
of matrices whose entries are independent normal centered
standard distributions.

A critical point of a polynomial f(x) is a root of its deriva-
tive f ′(x). Since random polynomials are almost surely
generic, they admit only critical points that are not also
roots of f ; in the sequel we will only be interested by these
critical points. By Rolle theorem, between two roots of f
there is at least one root of f ′ while in the complex plane,
by Gauss-Lucas theorem, the critical points of f are con-
tained in the convex hull of the roots of f . There are several
improved versions of this theorem, see the excellent book
[17] which contains many results and enlightening historical
notes.

Our general project is to concentrate on some families of
random polynomials and present new conjectures, on the set
of their critical points, suggested by experiments, observa-
tions and numerical evidence. It extends our previous works
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[12], [8], [10], [11]. Our conjectures, hopefully transformed
into theorems, could then act as an oracle and indicate the
estimated number and locations of the roots of a random
polynomial and of its derivatives. This information could
be used to derive better average complexity bounds for root
isolation algorithms.

The paper is organized as follows. In section 2, differ-
ent families of random polynomials are introduced; some of
their properties will be recalled and illustrated. Section 3
is devoted to our experiments on the sets of real roots of
these polynomials and their derivatives; we organize them
in a Variation diagram. Then we point out intriguing pat-
terns and present a conjecture to try to express formally a
part of the observed phenomena. Section 4 introduces our
definition of a polynomial bivariate factor P of the fractional
derivatives of a polynomial f , P induces a continuation be-
tween the roots sets of f and xf ′. With this tool, we define
an algebraic spline curve we call the “stem” of the poly-
nomial f ; it is of particular interest for random polynomi-
als. In addition, section 4 describes experimental results on
the stems, points out another intriguing phenomenon and
presents a conjecture which leads to analyze the influence of
the complex roots of f . Section 5 concentrates on the rel-
ative locations of the complex roots of f and f ′. For some
random polynomials, an interesting pairing is observed and
its consequences explored. Finally we conclude discussing
a tentative analysis and synthesis of our observations based
on the symmetries of the limit distribution of the complex
roots of f .

2. RANDOM POLYNOMIALS
The study of random polynomials is a classical and very

active subject in Mathematics and Statistics It is at the core
of extensive recent research and has also many applications
in Physics and Economics; two books [3] and [9] are dedi-
cated to it. Already in 1943, Mark Kac [14] gave an explicit
formula for the expectation of the number of roots of a poly-
nomial in a class that now bears his name (see below). The
subject is naturally related to the study of eigenvalues of
random matrices with its applications in Physics, see [6].

For a fixed degree n, we consider several bases gi(x) of
polynomial of degree at most n, then we form the polynomial

f :=
nX

i=0

aigi(x).

The coefficients ai being instances of n+1 independent stan-
dard normal distributions N(0, 1). We are concerned with
averaged asymptotic behaviors when n tends to infinity, but
in our experiments we chose most n between 32 and 128, so
the reader can easily repeat and test them. We also con-
sidered characteristic polynomials of matrices with various
shapes whose entries are independent standard normal dis-
tributions.

Let’s start with the following methodological point. In
statistics, averaged properties are generally observed through
a series of realizations forming a sample. However in our set-
ting, some families of large degree random polynomials, the
uniformity of a distribution of roots, a symmetry or an in-
triguing regular shape shows up in almost each experiment.
A single large object is enough to represent the features of
most objects of the whole ensemble, in other words a sig-
nificant sample contains only one element. This convenient

behavior can be related to a property of some disordered sys-
tems called “self-averaging”. However, our situation is more
complicated, since we did not fix in advance any feature of
the observed shapes; they are extracted from the pictures.

We now list some classes of random polynomials, we spec-
ify their names and the corresponding bases gi(x) (cf. the
above formula).

• Kac polynomials: the basis is gi(x) = xi.

• SO(2)-polynomials: gi(x) =
q`

n
i

´
xi.

• Weyl-polynomials: gi(x) =
q

1
i!

xi.

Then, the following less commonly studied families; in this
paper we give them the following names (NC stands for nor-
mal combination):

• NC-Bernstein : gi(x) =
`

n
i

´
(1 + x)i(1− x)n−i.

• NC-Chebyshev: the basis is made by the Chebyshev
polynomials of degree i, for i between 0 and n.

Then the characteristic polynomials of several classes of ran-
dom matrices

• matrices whose entries are instances of independent
standard normal distribution,

• symmetric matrices whose entries are instances of in-
dependent standard normal distribution,

• random unitary matrices obtained by taking the eigen-
vectors of a matrice of the previous class.

Sparse analog of these classes and other distributions of their
coefficients (or entries) are also very interesting; but the
listed classes are already rich enough to express our obser-
vations and conjectures.

Number of real roots and distribution of complex
roots, cf. [3] and [9]

• The asymptotic number of real roots of a Kac poly-
nomial is about 2

π
ln n, the distribution of the complex

roots tends to a uniform distribution on the unit circle.

• The asymptotic number of real roots of a SO(2)- poly-
nomial is about

√
n, the distribution of the complex

roots tends to a uniform distribution on the Riemann
sphere.

• The asymptotic number of real roots of a Weyl poly-
nomial is about 2

π

√
n, the distribution of the complex

roots tends to a uniform distribution on the disc cen-
tered at the origin and of radius

√
n.

• The asymptotic number of real roots of the character-
istic polynomials of a general random matrix is aboutq

2
π

√
n, the distribution of the complex roots tends

to a uniform distribution on the disc centered at the
origin and of radius

√
n. Figure 1 shows them for a

matrix of size 128.
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Figure 1: Complex eigenvalues of a random matrix

Figure 2: Complex roots of a NC Chebyshev

In Figure 1 we notice that the limit distribution is almost
uniform in angles around the origin, (rotational symmetric)
this property is completed by an axial symmetry over the
real axis due to complex conjugation. It is also true for the
three first distributions. This observation can be quanti-
fied: [18] computed for Kac polynomials the density func-
tion hn(x, y) of the number of complex roots near a complex
point x + iy, completing Kac’s computation of the density
function of the number of real roots near a real point x.

For the two other classes, NC-Bernstein and NC-Chebyshev,
the limit distribution has only a central symmetry.

• The asymptotic number of real roots of a polynomial
in NC-Bernstein is about

√
2n, [8].

• Figures 2 shows, for a NC-Chebyshev polynomial of
degree 128, the distribution of the complex roots, they
concentrate along a segment of the real axis and two
ovals around −1 and 1.

3. VARIATION DIAGRAM (VD)
We consider a polynomial f(x) with real coefficients of de-

gree n and its i-th derivative F [i] = f (i)(x) for i = 0..n− 1.
The sets of real roots of the n polynomials F [i], appears
in what, in French high schools is called “tableau de varia-
tions”. In the 19-th century, the number of sign variations
were used by Budan and by Fourier to estimate the number
of roots of f in an interval, see [17], chapter 10. In the 20-th

century, R. Thom relied on the signs of f (i) to distinguish
and label the different real roots of f , see [4].

Figure 3: VD of a Kac polynomial of degree 64

Figure 4: (Truncated) VD of a SO(2) polynomial

We chose to organize all these roots with a 2D diagram,
that we call Variation diagram (VD), the (n − i)-th row
contains the real roots of the (i)-th derivative of f :

V D := ∪i {fsolve(F [i], x)} × {n− i}
Note that the second coordinate indicates the degree of the
polynomial F [i]. As the iterated derivatives of a generic
polynomial do not have multiple roots, they change sign at
each root.

Example:

f := (x−5).(x2−x+4) ; f ′ = 3(x−1).(x−3) ; f ′′ = 6(x−2).

These polynomials have respectively 1, 2, 1 real roots:

V D = {[5, 3], [1, 2], [3, 2], [2, 1]}.
Our first experiments with Kac polynomials found that

their VD admit unexpected structured patterns. The roots
of the successive derivatives present almost dotted curves
and alignments. To our best knowledge, this phenomenon
has not been explored before.

We made more experiments with different instances of Kac
polynomials and got very similar patterns, then we repeated
the experiments with the different bases defined in the pre-
vious section. See Figures 3 to 6.

As illustrated by these pictures and many more, for the
cited families of random polynomial the observed feature
(almost alignments along lines or ovals) seems robust. In
particular following our observation we conjecture:

Conjecture 1. When n tends to infinity, for Kac, SO(2)
or Weyl random polynomials; if the the root with largest,
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Figure 5: VD of a Weyl polynomial of degree 64

Figure 6: (Truncated) VD of a CN Bernstein

resp. smallest, real part is real then the largest, resp. small-
est, real root of all (but the last) derivatives of f tend to be
almost surely aligned.

Question 1. When n tends to infinity, for Kac, SO(2)
or Weyl random polynomials; compute the probability that
the root with largest real part is real.

In order to strengthen these observations, we looked for a
method to connect the points in coherence with our visual
intuition. A natural strategy is to view the integer orders of
derivation as discretized steps; hence to look for generalized
derivatives with continuous orders.

4. FRACTIONAL DERIVATIVES
The attempt to introduce and compute with derivatives

or antiderivatives of non-integer orders goes back to the 17-
th century. In their book [16] dedicated to this subject, the
authors relate that an integral equation, the tautochrone,
was solved by Abel in 1823 using a semi derivative attached
to the integral

R x

0

√
x− tf(t)dt. In 1832 Liouville expanded

functions in series of exponentials and defined q-th deriva-
tives of such a series by operating term-by-term for q a real
number. Riemann proposed another approach via a definite
integral. The cited book provides in its introduction a nice
presentation of the historical progression of the concept from
1695 to 1975 through a hundred citations.

An important property is that two such fractional deriva-
tions commute. However for non-integer orders of derivation,
the fractional derivative at a point x of a function f does not
only depend on the graph of f very near x; fractional deriva-
tions do not commute with the translations on the variable
x. The traditional adjective “fractional“, corresponding to

the order of derivation, is misleading since it need not be
rational.

Let us emphasize that nowadays in Mathematics, frac-
tional derivatives are mostly used for the study of PDEs
in Functional analysis. They are presented via Fourier or
Laplace transforms. Fractional derivatives are seldom en-
countered in Polynomial algebra.

4.1 A new polynomial
In order to interpolate the previous dotted curves, we con-

sider a polynomial factor of the fractional derivatives of the
polynomial f . We rely on Peacock’s rule (1833) for mono-
mials:

Diffa(xn, x) :=
n!

(n− a)!
xn−a; for a > 0, n integer.

we noticed the following simple but key fact, to our better
knowledge it was not mentioned before.

Lemma 1. Let f(x) be a polynomial of degree n, then

xaΓ(−a)Diffa(f)

is a polynomial in x and a rational fraction in a with de-
nominator (n− a)(n− a− 1)...(−a).

To interpolate the non vanishing roots of the successive deriva-
tives of a polynomial f , only fractional derivatives with 0 <
a < 1 are needed. Moreover if we consider separately the
positive and the negative roots, then we can skip the factor
fractional powers of x. So we set the following definition and
notation.

Definition 1. Let f =
P

aix
i be a degree n polynomial.

We call (monic) polynomial factor of a fractional derivative

of order a of f ,the polynomial xa (n−a)!
n!

Diffa(f, x)). It is
a polynomial of total degree n in x and a, which may be
written:

Pa(f) := anxn +

n−1X
i=0

(

nY
j=i+1

1− a

j
)aix

i.

4.2 Stem

Definition 2. We call Stem of a polynomial f of degree
n, the union of the real curves formed by the roots of all the
monic polynomial factors of the derivatives f (i) of f , for i
from 0 to n − 1 and 0 ≤ a < 1. A stem is a C0 spline of
algebraic curves.

See Figures 7 to 9.
Here is a simple example to illustrate the regularity of the

join between two successive curves forming the stem of f :

f = (x− 1)(x− 3) = x2 − 4x + 3 ; f ′ = 2(x− 2).

Hence,

Pa(f) = x2 − 2x(2− a) + 3(2− a)(1− a)/2,

Pb(f
′/2) = x− 2(1− b).

This shows that when a tends to 1, and b tends to zero, there
is (only) a C0 continuity between the adjacent pieces.

In a joint work with D. Bembe [2], we consider another
curve associated to f which is regular but does not have
the same shape: the real algebraic curve in the plane (x, a)
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Figure 7: Stem of the previous SO(2) polynomial

(deg=128)

Figure 8: Stem of a NC Chebyshev of degree 64

defined by the bivariate polynomial of degree n that we de-
noted above by Pa(f). We study the relation between this
curve and the so-called virtual roots of f introduced in [13]
and [5].

4.3 From discrete to continuous
I made several experiments, and noticed that the patterns

exhibited by the stems of most of our random polynomials
presented common features:

• Long quasi lines joining the external real roots of f to
the axis (x = 0),

• Curves (of smaller size) joining the inner real roots to
the axis (x = 0),

• Closed curves, often shaped like an ear, starting and
ending at (x = 0).

• Since the coefficients of Pa(f) are random numbers, the
corresponding curves are almost surely smooth, there-
fore the ”ears“ do not touch.

• Stems of a same family of random polynomials share
more similarities.

Remark: In our pictures, the line x = 0 is a singular-
ity and an axis of almost symmetry of the patterns. This
is coherent with the considered random polynomials with
centered distribution of coefficients. Our choice of fractional
derivatives respects this symmetry.

Figure 9: Stem attached to a random matrix

Figure 10: Graphs of f , xf ′ for a Kac polynomial

4.4 Similarity of graphs
The graph of a (random) polynomial bears interesting fea-

tures. Algebraically and visually its shape is related to the
roots of f and its derivatives through extrema, inflection
points, and generalized inflections. We compared the graphs
of f and f ′ or xf ′, for our random polynomials, expecting
that randomness acts as a filter: details are blurred and sim-
ilarities are magnified.

We made several experiments with Maple for polynomials
f of medium degrees. For a Kac polynomials of degree 64,
we rescaled f , and xf ′, restricted the graphs to x ∈ [−2, 2]
and y ∈ [−1, 1]. As illustrated in Figure 10 we found that,
very often, the graph of xf ′ is similar to the graph of f but
shrunk towards the origin. This is coherent with the pattern
exhibited by the variation diagram of f . The problem is how
to quantify the observed transformation.

4.5 Rolle theorem
Generically, there are an odd number of roots of f ′ be-

tween two successive positive roots x1 and x2 of f . We aim
to analyze the pairing between the roots established by the
stem of f , the previous figures suggest that for our random
polynomials, almost surely the stem connects the root x2 of
f to one of the roots of f ′. Stems of random polynomials
may have points with horizontal tangents, but we observed
that at these points the graph is convex. In other words, we
propose this property as a conjecture.

Conjecture 2. For the chosen families of random poly-
nomials, almost surely the stem between the roots of f and
xf ′ does not connect two roots of f .

Another interesting task would be to quantify the ratio de-
fined by the consecutive roots of f and f ′. Such estimates
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Figure 11: detail of a Stem

Figure 12: a “good” homotopy between f and xf ′

were given obtained by P. Andrews [1] for hyperbolic poly-
nomials.

Figures 11 and 12 show the detail of a “good” (with re-
spect to the conjecture) example of the stem of a polynomial
of degree 6, and the corresponding deformation between the
graphs of f and xf ′, formed by the fractional derivatives. In
contrast, Figures 13 and 14 show the corresponding pictures
for an example which does not correspond to the situation
encountered with our random polynomials. More precisely,
in the “bad” example the continuation between the inner
roots of f and xf ′ does not remain on the real line but
passes through the complex plane, this is pictured by the
dotted curve. So, an explanation of the connection between
real roots of f and f ′ might be found exploring what hap-
pens in the complex plane.

5. COMPLEX CRITICAL POINTS
There is an important bibliography on the location of the

critical points of a polynomial with respect to the location
of its roots, going back to Gauss with Gauss-Lucas theorem.
Several recent works concentrate on the following conjecture
of Sendov, which has been proved for small degrees and in
several special cases. Their main tools rely either on the
implicit function theorem or on extremal polynomials, or on
refinements of Gauss-Lucas theorem. See the book [17].

Sendov Conjecture: Let f be a polynomial having all
its roots in the disk D. If z is a root of f , then the disk
z + D contains a root of f ′.

I did not found mention in these researches, developed in
analysis and approximation theory, of the case of polynomi-

Figure 13: detail of a “bad” Stem

Figure 14: a “bad” homotopy between f and xf ′

als with random coefficients.

5.1 Observations
I made experiments with the first classes (see section 2)

of random polynomials, they exhibit interesting behaviors:
- for almost each root of f smaller disks z + ǫD, with

ǫ << 1, contain a critical point; in such a way that they
describe a bijection between the roots of f and the roots of
xf ′,

- one can restrict these disks to small sectors, which indi-
cates a direction towards the real axis or towards the origin.

Figures 15 to 17 illustrate the relation between roots and
critical points for an SO(2) random polynomial of degree
32. Fractional derivatives are used to construct (as for real
roots) an homotopy between the zero sets of f and xf ′. The
color chart is: the roots of f are blue, the roots of f ′ are red
and the roots of the fractional derivatives are green. Figure
17 shows the “top” part of a complex analog of the variation
diagram, notice the regular alignments towards the origin (it
is slightly perturbed near the real axis).

5.2 Electrostatic attraction
The interpretation of the position of each critical point of f

as an equilibrium of a logarithmic potential, where the roots
of f are viewed as positively charged particles (or rods), goes
back to F. Gauss. As reported in [17], the following equality
to zero provides a quick proof of Gauss-Lucas theorem.

Denote by xj the complex roots of the polynomial f as-
sumed distinct from each other and distinct from z, another
complex number. Then by logarithmic derivation and con-
jugation we deduce:

f ′(z) = 0 ⇒
X z − xj

|z − xj |2 = 0.
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Figure 15: Roots of f and f ′

Figure 16: Pairing via fractional derivatives

Figure 17: Truncated SO(2) complex VD

Figure 18: Higher derivatives, CN Chebyshev

The vector in the complex plane
−z+xj

|z−xj |2 is viewed as a

force applied to z directed towards xj proportional to the
reciprocal of the distance. Summing these forces, the point
z (viewed as an electron) is attracted by the roots system of
f (viewed as positively charged particles). When the limit
distribution of the roots of f is uniform in angles (also called
rotational symmetric, i.e. only depends on the radius), the
resulting electrostatic force on a point z inherits a limit sym-
metry, and tends to be directed towards the origin.

Let us denote by L1 the real line joining the origin to a
root xk and by L2 the real line orthogonal to L1 through
the origin. The number and distribution of roots below and
above L1 (respectively L2) are asymptotically ”almost” bal-
anced. So, with a good probability, an equilibrium zk can
be found “near” L1 with the vector xkzk oriented towards
the origin. One can expect as well that the further xk is far
from the origin, the smaller the vector xkzk should be. This
is what we observed in our experiments as illustrated with
Figures 15 and 16.

The previous balanced count of forces is perturbed when
we approach the real axis, because there is another axial
symmetry due to complex conjugation, and a positive prob-
ability of real roots. This breaks the rotational symmetry,
consequently the resulting electrostatic force is now also di-
rected towards the real axis. The attraction toward the real
axis is magnified when we consider the set of roots of a NC
Chebyshev polynomial (see Figure 2), since it contains many
real points and at the limit when n tends to infinity “only”
a central symmetry. In this case, we observe that through
successive pairing and after a rather small number of deriva-
tions, most complex roots of f give rise to a real root of a
higher derivative of f . This process is illustrated in Figure
18 with a CN Chebyshev polynomial of degree 50, The col-
ors (red, green, black, blue, orange, brown) correspond to
the derivation orders (0,1,2,3,4,5).

Conjecture 3. For f a Kac, SO(2), Weyl random poly-
nomial, the presented continuation process realizes a bijec-
tion such that each critical point zk of f is attached to a
root xk. Moreover in the limit distribution of (xk, zk) when
n tends to infinity, almost surely the vectors xkzk point to-
wards the origin.

For the other random cases with only a limit central symme-
try, we also conjecture a pairing but the limit orientation of
the xkzk will be dependant on the point xk. Our intuition is
as follows. Consider all the roots of f except xk, the result-
ing electrostatic force will be regular in a small disc around
xk, the average of these forces in the disc is a good candidate
for the direction we want to find, then zk will be positioned
on the corresponding line to realize the equilibrium.
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6. TENTATIVE EXPLANATIONS
Let us summarize. In section 3 we described intriguing

alignments of points and dotted curves, observed on the col-
lection of all roots of a real polynomial f and its derivatives,
organized in a 2D diagram (VD).

Trying to explain the curved parts of this phenomena, we
presented in section 4 an original use of fractional deriva-
tives. It allows an interpolation of the discrete set into a 2D
curve which we called the stem. This construction gave rise
to experiments, to other intriguing observations and to two
questions: Why does the C0 interpolation look so regular ?
Is there any relation between the distribution of the com-
plex roots of f and its stem ? These question lead us to new
observations on the location of critical points of our random
polynomials and again to new questions and conjectures.

A possible direction of research to mathematically answer
some of these questions is to rely on the interpretation of a
critical point as an equilibrium position under electrostatic
forces. Indeed this viewpoint allows the use of the density
functions of complex and real roots of a random polynomial
f . Such density functions have been studied by several au-
thors for classical families of random polynomials, e.g. for
Kac polynomials we already cited [18].

As a first approach, one can consider a Mean Field ap-
proximation (where we replace the sum of the attractions of
each individual root by their limit expectation) to establish
as follows a pairing between a root of f and a root of xf ′.
One can estimate an equilibrium zk near a fixed root xk,
relying on the density functions to average the attraction
corresponding to the other roots of f . If the root xk is real,
complex conjugation obliges its image zk to be real. Notice
that the continuation curve between xk and zk, defined by
the homotopy, needs not be real, we only conjectured this
property with a good probability for some random polyno-
mials.

This process will allow for random polynomials at each
derivation step to “get down” towards the real axis and at
least for rotational symmetric limit distribution of complex
roots, towards the origin. Note that in order to prove that
the continuation defined via fractional derivatives follows the
same dynamic, we need to develop a generalized attraction
interpretation. When a pair of conjugate complex roots of a
fractional derivative reach the real axis they form a double
root: in the stem of f , this event corresponds to a summit
of an ear shaped curve.

We are still far from a rigorous presentation of our inter-
pretation and all its consequences. Improvements of Gauss-
Lucas, images of uniform distributions laws, might eventu-
ally explain the features exhibited by the variation diagrams,
but that is a long way.

As a conclusion, I experimented, introduced new tools,
presented pictures, observed phenomena. I sketched a possi-
ble strategy, which opens several problems and an exploratory
research project.
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