
Exercises for lab 4 of CS2101a

Instructor: Marc Moreno Maza

October 2, 2012

1 Exercise 1

What does the following program do?

#include <stdio.h>

#include <stdlib.h>

/* Transpose naively an n-by-n matrix */

void transpose_matrix(int* a, int n)

{

int i,j, tmp;

for(i=0;i<n;i++) {

for(j=i+1; j<n; j++) {

tmp = a[i*n + j];

a[i*n + j] = a[j*n + i];

a[j*n + i] = tmp;

}

}

}

/* Print an n-by-n matrix */

void print_matrix(int* a, int n)

{

int i,j;

for(i=0;i<n;i++) {

for(j=0; j<n; j++) {

printf("%d ", a[n*i+j]);

if (j == n-1) printf("\n");

}

}

printf("\n");

}

/* Create a random n-by-n matrix */

1

void random_matrix(int* a, int n)

{

int i,j;

for(i=0;i<n;i++) {

for(j=0;j<n;j++) {

a[i*n + j] = rand()%n;

}

}

}

int main() {

int n, s;

int* a;

printf("n = ");

scanf("%d", &n);

printf("\n");

s = n * n;

if (s < 1000000000) {

printf("s = %d\n", s);

a = (int *) malloc(s * sizeof(int));

random_matrix(a,n);

if (n < 10) print_matrix(a,n);

transpose_matrix(a,n);

if (n < 10) print_matrix(a,n);

}

free(a);

return 0;

}

Using the UNIX time command, measure the running time of this program
when n = 2k for k = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14.

2 Exercise 2

We investigate another approach for computing the transpose tA of a square
matrix A. This approach is based on a divide and conquer scheme. In the
formula below, we assume that n is a power of 2 and that A1,1, A1,2, A2,1, A2,2

denote square blocks of order n/2.

tA =


(

tA1,1
tA2,1

tA1,2
tA2,2

)
if A =

(
A1,1 A1,2

A2,1 A2,2

)
A if n = 1

(1)

Write a C program that successively

2

• reads a positive integer value n from the user,

• generate an n × n matrix a with random entries of type int with values
in the range 0 · · ·n− 1.

• transpose the matrix in place using this divide-and-conquer approach.

Using the UNIX time command, measure the running time of this program
when n = 2k for k = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14.

3 Exercise 3

A drawback of the approach of Exercise 2 is the overhead due to the recursive
calls. One way to reduce this negative impact is to modify the above formula
as follows

tA =

 naive Transpose A if n ≤ B else(
tA1,1

tA2,1
tA1,2

tA2,2

)
if A =

(
A1,1 A1,2
tA2,1 A2,2

)
(2)

where

• B is a base-case, which is typically a power of 2 in the range 16 · · · 256,

• naive Transpose refers to the algorithm of Exercise 1.

1. Modify the program of Exercise 2 so as to use a base-case.

2. Determine what is the best base-case for your machine.

3. Using the UNIX time command, measure the running time of this program
when n = 2k for k = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14.

4. In principle, this new program should perform better than the one of
Exercise 1. Explain why.

4 Exercise 4

Another way to implement the approach of Exercise 3 is to use a blocking
strategy. Let b be a positive integer dividing n.

1. We decompose the matrix A into b× b-blocks. B1,1 · · · B1,n/b

...
...

...
Bn/b,1 · · · Bn/b,n/b

 (3)

2. For each i = 1 · · ·n/b transpose the block Bi,i in place.

3

3. For each i = 1 · · ·n/b for each j = i + 1 · · ·n/b exchange and transpose
the blocks Bi,j and Bj,i.

1. Modify the program of Exercise 1 so as to implement this blocking strategy.

2. Determine what is the best base-case b for your machine.

3. Using the UNIX time command, measure the running time of this program
when n = 2k for k = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14.

4. In principle, this new program should perform better than the one of
Exercise 1. Explain why.

4

