
Exercises for lab 5 of CS2101a

Instructor: Marc Moreno Maza, TA: Xiaohui chen

November 28, 2012

In this lab session, you will write a multithreaded program in Cilk++ for
performing matrix multiplication. First, you will parallelize a program that
performs matrix multiplication using the naive iterative method based on three
nested loops. Then, you will write a serial program to perform matrix multipli-
cation by divide-and-conquer and parallelize it by inserting Cilk++ keywords.
For simplicity, all matrices are in row-major layout.

1 Exercise 0

The directory qsort of our Cilk++ examples contains a program for the quick-
sort algorithm, together with a Makefile to compile it. You can learn about
the quicksort algorithm from the page:

http://en.wikipedia.org/wiki/Quicksort

Now you know all popular sorting algorithms!
Open the file Cilk-Programmers-Guide.pdf which you can download from:

http://www.clear.rice.edu/comp422/resources/Intel Cilk++ Programmers Guide.pdf

1. Read pages 12 to 15. Repeat the command lines of the Section BUILD,

EXECUTE AND TEST.

2. Make sure you understand how to measure the work and the span of your
program using cilkview. You will find the necessary information in the
user guide.

3. Analyze the work and the span of your program. To this end, you can
conduct complexity analysis and/or use cilview.

2 Exercise 1

The following C program implements the naive iterative method for multiplying
(square) matrices. The matrices are dense and random with int coefficients,
for simplicity.

1

#include <stdio.h>

#include <stdlib.h>

/* mm_loop_serial is the naive iterative method */

void mm_loop_serial(int* C, int* A, int* B, int n)

{

/* DO NOT MODIFY THIS CODE. THIS IS USED TO VERIFY THAT YOUR

* CODE IS PRODUCING THE RIGHT ANSWER. */

int i,j,k;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

for (k=0; k<n; k++)

C[i*n+j] += A[i*n+k] * B[k*n+j];

}

/* mm_loop_parallel is the parallel implementation of mm_loop_serial */

void mm_loop_parallel(int* C, int* A, int* B, int n)

{

/* MODIFY THIS CODE TO MAKE IT PARALLEL */

int i,j,k;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

for (k=0; k<n; k++)

C[i*n+j] += A[i*n+k] * B[k*n+j];

}

/* random_matrix creates a random n-by-n matrix */

void random_matrix(int* A, int n)

{

int i,j;

for(i=0;i<n;i++) {

for(j=0;j<n;j++) {

A[i*n + j] = rand()%n;

}

}

}

/* Print an n-by-n matrix */

void print_matrix(int* a, int n)

{

int i,j;

for(i=0;i<n;i++) {

for(j=0; j<n; j++) {

printf("%d ", a[n*i+j]);

if (j == n-1) printf("\n");

2

}

}

printf("\n");

}

int main() {

int n, s;

int* a;

int* b;

int* c;

int* d;

printf("n = ");

scanf("%d", &n);

printf("\n");

s = n * n;

if (s < 1000000000) {

printf("s = %d\n", s);

a = (int *) malloc(s * sizeof(int));

random_matrix(a,n);

b = (int *) malloc(s * sizeof(int));

random_matrix(b,n);

if (n < 10) print_matrix(a,n);

if (n < 10) print_matrix(b,n);

c = (int *) malloc(s * sizeof(int));

mm_loop_serial(c,a,b,n);

if (n < 10) print_matrix(c,n);

d = (int *) malloc(s * sizeof(int));

mm_loop_parallel(d,a,b,n);

if (n < 10) print_matrix(d,n);

free(a);

free(b);

free(c);

free(d);

}

return 0;

}

1. Modify the above program such that you can compile with the cilk++

compiler using a Makefile.

2. Parallelize the function mm loop parallel using the cilkfor construct.
Compile and test your program.

3. Once your parallelized mm loop parallel function. works properly, com-

3

ment out the call to the mm loop serial function. Measure the running
times for n = 29, n = 210 and n = 211. Compare with the running times
obtained with the function mm loop serial.

3 Exercise 2

We propose to improve the performances of the previous matrix multiplication
program by integrating a divide-and-conquer strategy.

Assume that the input matrices are square matrices A and B of order n
where n is a multiple of 2. Then we decompose each of A, B and C into 4
blocks of equal format:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
,

where each of Aij , Bij , Cij is a square matrix of order n/2. Then we have

C11 = A11B11 + A12B21

C12 = A11B12 + A12B22

C21 = A21B11 + A22B21

C22 = A21B12 + A22B22

Observe that

• one can first compute the four products A11B11, A11B12, A21B11, A21B12

in parallel and store them respectively in C11, C12, C21, C22.

• one can secondly compute the four products A12B21, A12B22, A22B21,
A22B22 in parallel and add them respectively to C11, C12, C21, C22.

Modify the program of Exercise 1 so as to add a function implementation
the above observation, that we will refer to divide-and-conquer matrix multipli-
cation. For the computations of the products A11B11, A11B12, A21B11, A21B12,
A12B21, A12B22, A22B21, A22B22 consider successively and compare experimen-
tally the following approaches:

1. these 8 products are computed by mm loop serial

2. these 8 products are computed by mm loop parallel

3. these 8 products are computed by the divide-and-conquer matrix multi-
plication until n reaches a value which is small enough (say 64 or 16) and
then by mm loop serial.

4

