
Advanced Pointer Topics

Pointers to Pointers
uA pointer variable is a variable that takes some

memory address as its value. Therefore, you can
have another pointer pointing to it.
int x;
int * px;
int ** ppx;
ppx = &px;
px = &x; /* i.e. *ppx = &x */
**ppx = 10; /* i.e. *px =10; i.e. x=10; */
ppx = (int **) malloc(sizeof(int *));
**ppx = 20; /* Wrong, since *ppx is uninitialized! */

Arrays of Pointers (1)
u If we have an array of structures, each structure can

potentially be very big.
u To sort such an array, a lot of memory copying and

movements are necessary, which can be expensive.
u For efficiency, we can use array of pointers instead:
struct book{

float price;
char abstract[5000];

};
struct book book_ary[1000];
struct book * pbook_ary[1000];
……
for(i=0;i<1000;i++)

pbook_ary[i] = &book_ary[i];

Arrays of Pointers (2)
void my_sort(struct book * pbook_ary[], int size)
{

int i, j;
struct book *p;
for(i=1;i<size;i++){

p=pbook_ary[i];
for(j=i-1;j>=0;j--)
if(pbook_ary[j] -> price > p -> price)

pbook_ary[j+1]= pbook_ary[j];
else

break;
pbook_ary[j+1] = p;

}
}

Arrays of Pointers (3)
struct book ** search_range(struct book * pbook_ary[],

int size, float low, float high, int *num)
{

int i, j;
for(i=0;i<size;i++)

if(pbook_ary[i] -> price >= low) break;
for(j=size; j>0;j--)

if(pbook_ary[j] -> price <= high) break;
/* i , i+1, …, j are the elements in the range */
*num = j – i + 1;
return &pbook_ary[i];

}

Dynamic Two Dimensional Arrays
int ** ary;
int m, n;
srand(time(NULL));
m = rand() % 5000 +10;
ary = (int **) malloc(m * sizeof(int *));
for(j =0; j< m; j++){

ary[j]= (int *) malloc ((j+1) *sizeof(int));
}
ary[3][4] = 6;
*(*(ary + 3) + 4) = 6;
ary->[3]->[4] = 6; /* NO! You can not do this */

const Pointers (1)
u The const keyword has a different meaning

when applied to pointers.
void test(const int k, const int * m)
{

k ++; /* 1 */
(*m) ++; /* 2 */
m ++; /* 3 */
printf("%d,%d", k, *m);

}

u The compiler will warn you about the 1st and 2nd

increments, but not the 3rd .

const Pointers (2)

uThe reason we use const before
parameters is to indicate that we will not
modify the value of the corresponding
parameter inside the function.

uFor example: we would not worry about
the format_str is going to be modified by
printf when we look at its prototype:
– int printf(const char * format_str, ……);

Pointers to Functions (1)
uSince a pointer merely contains an address, it

can point to anything.
uA function also has an address -- it must be

loaded in to memory somewhere to be
executed.

uSo, we can also point a pointer to a function.
int (*compare)(int, int);

1. Compare is a pointer
2. To a function
3. That returns an int value

1

2

3

Pointers to Functions (2)
typedef struct{

float price;
char title[100];

} book;
int (*ptr_comp)(const book *, const book *);
/* compare with

int * ptr_comp(const book *, const book *);
*/

uDo not forget to initialize the pointer -- point the
pointer to a real function!

Pointers to Functions (3)
#include <string.h>
int compare_price(const

book * p, const book *q)
{

return p->price-q->price;
}
int compare_title(const

book * p, const book *q)
{

return strcmp(p->title,q->
title);

}

int main(){
book a, b;
a.price=19.99;
strcpy(a.title, "unix");
b.price=20.00;
strcpy(b.title, "c");
ptr_comp = compare_price;
printf("%d", ptr_comp(&a,
&b));
ptr_comp = compare_title;
printf("%d", ptr_comp(&a,
&b));
return 0;

}

Example: The qsort() Function (1)
u Often, you want to sort something using the quick sort

algorithm. C provides a qsort() function in its standard
library. Here is the prototype:

SYNOPSIS
#include <stdlib.h>
void qsort(void *base, size_t nel, size_t width,

int (*compar)(const void *, const void *));
u The base argument points to the element at the base

of the array to sort.
u The nel argument is the number of elements in the

table. The width argument specifies the size of each
element in bytes.

u The compar argument is a pointer to the comparison
function, which is called with two arguments that
point to the elements being compared.

Example: The qsort() Function (2)
u An example:
#include <stdlib.h>
……
{

book my_books[1000];
……
qsort(my_books, 1000, sizeof(book), compare_price);
……
qsort(my_books, 1000, sizeof(book), compare_title);
……

}

Deallocating Dynamic Structures
u For every call to malloc used to build a

dynamically allocated structure, there should be
a corresponding call to free.

uA table inside malloc and free keeps track of the
starting addresses of all allocated blocks from
the heap, along with their sizes.

uWhen an address is passed to free, it is looked
up in the table, and the correct amount of space
is deallocated.

uYou cannot deallocate just part of a string or any
other allocated block!

Example
#include <stdio.h>

int main(){
char *p = malloc(100);
free(p+1);
printf("Finsished!\n");
return 0;

}

