|||' Advanced Pointer Topics

Pointers to Pointers

¢ A pointer variable I1s a variable that takes some
memory address as its value. Therefore, you can
have another pointer pointing to It.

INt X;

Int * px;

INt ** ppx;

PPX = &pPX;

PX = &X; [*1.e. *ppX = &X */

**npx = 10; /* 1.e. *px =10; I.e. x=10; */

ppx = (int **) malloc(sizeof(int *));

**npx = 20; /* Wrong, since *ppx Is uninitialized! *

Arrays of Pointers (1)

¢ If we have an array of structures, each structure can
potentially be very big.

¢ To sort such an array, a lot of memory copying and
movements are necessary, which can be expensive.

¢ For efficiency, we can use array of pointers instead:
struct book{
float price;
char abstract[5000];
I3
struct book book ary[1000];
struct book * pbook_ary[1000];
for(i=0;1<1000;i++)
pbook ary[i] = &book_ary]Ji];

Arrays of Pointers (2)

void my_sort(struct book * pbook_ary[], int size)
{
Inti, J;
struct book *p;
for(i=1;i<size;i1++){
p=pbook_aryli];
for(j=i-1;j>=0;j--)
if(pbook_ary[j]-> price > p -> price)
pbook ary| j+1 |= pbook_ary[| |;
else
break;
pbook_ary[|+1] = p;
}

1

Arrays of Pointers (3)

struct book ** search_range(struct book * pbook_ary] |,
Int size, float low, float high, int *num)

{
Int i, J;
for(i=0;i<size;i++)

If(pbook _ary[i] -> price >= low) break;
for(j=size; |>0;j--)

If(pbook_ary] |] -> price <= high) break;
[*1,1+1, ...,] are the elements in the range */
*num=|—1+1,;
return &pbook_ary[1];

Dynamic Two Dimensional Arrays

Int ** ary;
INnt m, n;
srand(time(NULL));
m = rand() % 5000 +10;
ary = (int **) malloc(m * sizeof(int *));
for() =0; J< m; J++)1
ary[]]= (int *) malloc ((Jj+1) *sizeof(int));
}
ary|3][4] = 6;
((ary +3) + 4) = 6;
ary->[3]->[4] = 6; /* NO! You can not do this */

const Pointers (1)

¢ The const keyword has a different meaning
when applied to pointers.

void test(const int k, const int * m)
{

K++;, [*17%

(m) ++; [* 2%/

m++;, [* 3%

printf("%d,%d", k, *m);
}

¢ The compiler will warn you about the 15t and 2"
increments, but not the 3 .

const Pointers (2)

¢ The reason we use const before
parameters is to indicate that we will not
modify the value of the corresponding
parameter inside the function.

¢ For example: we would not worry about
the format_str is going to be modified by
printf when we look at its prototype:

—Int printf(const char * format_str,);

Pointers to Functions (1)

¢ Since a pointer merely contains an address, it
can point to anything.

¢ A function also has an address -- it must be
loaded in to memory somewhere to be
executed.

¢ S0, we can also point a pointer to a function.
Int (*compare)(int, int);

H_J

1. Compare Is a pointer
2. To a function
3. That returns an int value

Pointers to Functions (2)

typedef struct{
float price;
char title[100];
} book;
Int (*ptr_comp)(const book *, const book *);
[* compare with
Int * ptr_comp(const book *, const book *);
*/
¢ Do not forget to initialize the pointer -- point the
pointer to a real function!

Pointers to Functions (3)

#include <string.h>

INnt compare_price(const
book * p, const book *q)

{

return p->price-g->price;

}

Int compare_title(const
book * p, const book *q)

{

return strcmp(p->title,qg->
title);

}

Int main(){

book a, b;
a.price=19.99;
strcpy(a.title, "unix");
b.price=20.00;
strcpy(b.title, "c");
ptr_comp = compare_price;

printf("%d", ptr_comp(&a,
&b));

ptr_comp = compare _title;

printf("%d", ptr_comp(&a,
&b));

return O;

Example: The gsort() Function (1)

¢ Often, you want to sort something using the quick sort
algorithm. C provides a gsort() function in its standard
library. Here Is the prototype:
SYNOPSIS
#include <stdlib.h>
void gsort(void *base, size t nel, size t width,
Int (*compar)(const void *, const void *));

¢ The base argument points to the element at the base
of the array to sort.

¢ The nel argument is the number of elements Iin the
table. The width argument specifies the size of each
element in bytes.

¢ The compar argument is a pointer to the comparison
function, which is called with two arguments that
point to the elements being compared.

Example: The gsort() Function (2)

¢ An example:
#include <stdlib.h>

Deallocating Dynamic Structures

¢ For every call to malloc used to build a
dynamically allocated structure, there should be
a corresponding call to free.

¢ A table inside malloc and free keeps track of the
starting addresses of all allocated blocks from
the heap, along with their sizes.

¢ \When an address Is passed to free, it Is looked
up in the table, and the correct amount of space
IS deallocated.

¢ You cannot deallocate just part of a string or any
other allocated block!

Example

#include <stdio.h>

Int main(){
char *p = malloc(100);
free(p+1);
printf("Finsished!\n");
return O;

}

