
Introduction to
C Programming

A Brief History
� Created by Dennis Ritchie at AT&T Labs in 1972

� Originally created to design and support the Unix
operating system.

� There are only 27 keywords in the original version of C.
– for, goto, if, else ……

� Easy to build a compiler for C.
– Many people have written C compilers
– C compilers are available for virtually every platform

� In 1983 the American National Standards Institute (ANSI)
formed a committee to establish a standard definition.
– Called ANSI Standard C.
– As opposed to K&R C (referring to the general “standards” that

appeared in the first edition of Brian Kernighan and Ritchie’s
influential book: The C Programming Language)

Why use C?
� C is intended as a language for programmers

– BASIC was for nonprogrammers to program and solve simple
problems.

– C was created, influenced, and field-tested by working
programmers.

� C is powerful and efficient
– You can nearly achieve the efficiency of assembly code.
– System calls and pointers allow you do most of the things that

you can do with an assembly language.

� C is a structured language
– Code can be written and read much easier.

� C is standardized
– Your ANSI C program should work with any ANSI C compiler.

The C Development Cycle

Edit
Program

Source
Code

Compile

Object
Code

Link Object
Code Executable

Library
Files

“Hello World”

� Everyone writes this program first

#include <stdio.h>

int main ()

{

printf ("Hello, World!\n");

return 0;

}

Compilation (1)
� Compilation translates your source code (in the file

hello.c) into object code (machine dependent
instructions for the particular machine you are on).
– Note the difference with Java:

� The javac compiler creates Java byte code from your
Java program.

� The byte code is then executed by a Java virtual
machine, so it’s machine independent.

� Linking the object code will generate an executable file.

� There are many compilers for C under Unix
– SUN provides the Workshop C Compiler, which you run with

the cc command
– There is also the freeware GNU compiler gcc

Compilation (2)

� To compile a program:
� Compile the program to object code.

obelix[2] > cc –c hello.c

� Link the object code to executable file.
obelix[3] > cc hello.o –o hello

� You can do the two steps together by running:
obelix[4] > cc hello.c –o hello

� To run your program:
obelix[5] > ./hello

Hello World!
If you leave off the
-o, executable goes into
the file a.out

Compilation (3)
� Error messages are a little different than you may be

used to but they can be quite descriptive.

� Suppose you forgot the semi-colon after the printf

obelix[3] > cc hello.c –o hello

"hello.c", line 5: syntax error before or at: return
cc: acomp failed for hello.c

� Notice that the compiler flags and informs you about
the error at the first inappropriate token.
– In this case, the return statement.

� Always try to fix problems starting with the first error
the compiler gives you - the others may disappear too!

Example 1
#include <stdio.h>

int main ()

{

int radius, area;

printf ("Enter radius (i.e. 10) : ");

scanf ("%d", &radius);

area = 3.14159 * radius * radius;

printf ("\nArea = %d\n\n", area);

return 0;

}

Example 2
#include <stdio.h>

int main ()

{

int i, j;

for (i = 0; i < 10; i++)

{

printf ("\n");

for (j = 0; j < i+1; j++)

printf ("A");

}

printf("\n");

return 0;

}

Example 3
/* Program to calculate the product of

two numbers */

#include <stdio.h>

int product(int x, int y);

int main ()

{

int a,b,c;

/* Input the first number */

printf ("Enter a number between 1
and 100: ");

scanf ("%d", &a);

/* Input the second number */

printf ("Enter another number
between 1 and 100: ");

scanf ("%d", &b);

/* Calculate and display the product */

c = product (a, b);

printf ("%d times %d = %d \n", a, b, c);

return 0;

}

/* Functions returns the product of its
two arguments */

int product (int x, int y)

{

return (x*y);

}

