|||’ Compiler Directives

A A A A A A A A A A A A

The C Preprocessor

¢ The C preprocessor (cpp) changes your source code
based on instructions, or preprocessor directives,
embedded in the source code.

¢ The preprocessor creates a “new” version of your
program and it is this new program that actually gets
compiled.

— Normally, you do not see these “new” versions on the hard
disk, as they are deleted after compilation.

— You can force the compiler to keep them to see the results.

¢ Each preprocessor directive appears in the source
code proceeded by a ‘#’ sign.

The #define Directive

¢ Simple substitution Macros
#define textl text2

¢ This tells the compiler to find all occurrences of “textl”
INn the source code and substitute “text2”.

¢ Usually used for constants:
#define MAX 1000
— Generally use upper case letters (by convention).
— Always separate by white space.
— No trailing semi-colon (think about it...)

¢ An example:
— #define PRINT printf

PRINT(“hello, world”);

Function Macros

¢ You can also define more complex macros:
#define max(a,b) ((a)>(b) ? (a) : (b))
printf("%d", 2 * max(3+3, 7)); /*is equivalent to */
printf("%d", 2 * ((3+3) > (7) ? (3+3) : (7));

¢ The parentheses are important! For example:
#define max(a,b) a>b?a:b

printf("%d", 2 * max(3+3, 7)); /*is equivalent to */
printf("%d", 2*3+3>7 ?3+3:7);

Function Macros Should be Used with Care
#define max(x,y) ((x)>(y)?(x):(y))

Int n, 1=4, |=3;

n=max(i++, j); /*Same as n= ((i++)>(])?2(i++):(j)) */
printf("%d,%d,%d", n, I, J);

¢ The output Is:
- 5,6,3

¢ If max was a function, the output would have been:
~ 4,5,3

Conditional Compilation (1)

¢ The pre-processor directives #if, #elif, #else, and
#endif tell the compiler is the enclosed source code
should be compiled

¢ Can create more efficient and more portable code.
— Compiled to match the environment it is compiled for.

& Structure:

#if condition_1
statement_block 1

#elif condition_2
statement_block 2

Any Constant Expression
* NON-zero is true
« compile statement_block 1

 zero is false

 don't compile statement_block .

#elif condition_n
statement_block n

#else
default_statement_block

#endif

Conditional Compilation (2)

¢ For the most part, the only things that can be tested are the
things that can be defined by #define statements.

¢ An example:
#define ENGLAND O
#define FRANCE 1
#define ITALY 0
#if ENGLAND
#include "england.h"
#elif FRANCE
#include "france.h"
#elif ITALY
#include "italy.h"
#else
#include "canada.h"
#endif

Conditional Compilation (3)

¢ Conditional compilation can also be very useful for
Including “debugging code”

— When you are debugging your code you probably print out
some information during the running of your program.

— However, you may not need want these extra print outs when
you release your program. So, you need to go back through
your code and delete them.

¢ Instead, you can use #if #endif to save you time:

#define DEBUG 1

#if DEBUG
printf("Debug reporting at function my_sort()'\n");
#endif

Conditional Compilation (4)

¢ Usually people use a preprocessor function as the
condition of compilation:

defined (NAME)
+Returns true if NAME has been defined; else false

¢ An example:
#define DEBUG

#if defined (DEBUG)
printf("debug report at function my_sort() \n");

#endif

¢ Note: This only depends on if DEBUG has been
defined. But has nothing to do with which value
DEBUG Is defined to.

¢ Can also use the notation #ifdef NAME Instead.

Conditional Compilation (5)

¢ The #undef ... directive makes sure that
defined(...) evaluates to false.

¢ An example:

— Suppose at the first part of a source file, you want
DEBUG to be defined. At the last part of the file,
however, you want DEBUG to be undefined...

¢ A directive can also be set on the Unix
command line at compile time:
cc —DDEBUG myprog.c

+Compiles myprog.c with the symbol DEBUG
defined as If #define DEBUG was In written at
the top of myprog.c.

The #include Directive

¢ We've seen lots of these already.

¢ This directive causes all of the code in the included file
to be inserted at the point in the text where #include
appears.

¢ The included files can contain other #include directive.
— Usually limited to 10 levels of nesting

¢ < > tell the compiler to look in the standard include
directories first.

¢ " " tells the compiler to treat this as a Unix filename.
— Relative to directory containing file if a relative pathname.

— Relative to root with an absolute pathname.

— But most compilers also search for the standard include
directory if it cannot find the file at the specified path.

Inline Functions (1)

¢ Recall the two different ways to compute the maximum
number between two integers:
— #define max(a,b) ((a)>(b)? (a):(b))
— Int max(int a, int b) { return a>b?a:b; }

¢ Function calls need to jump to another part of your
program and jump back when done. This needs to:
— Save current registers.

— Allocate memory on the stack for the local variables in the
function that is called.

— Other overhead

¢ Therefore, the macro approach is often more efficient,
since it does not have function call overhead.

— But, this approach can be dangerous, as we saw earlier.

Inline Functions (2)

¢ Modern C and C++ compilers provide “inline” functions tc
solve the problem:
— Put the inline keyword before the function header.
Inline int max(int a, int b) {
return a>b?a:b;

}

¢ You then use it as a normal function in your source code.
— printf("%d", max(X, y));

¢ When the compiler compiles your program, it will not
compile it as a function. Rather, It just integrates the
necessary code in the line that max() Is called in to avoid
an actual function call.
— The above printf(...) is compiled to be something like:
— printf("%d", x>y?x:y);

Inline Functions (3)

¢ Writing the small but often-used functions as inline
functions can improve the speed of your program.

¢ A small problem in doing so is that you have to include
the inline function definition before you use it in a file.

— For normal functions, only the function prototypes are
needed.

¢ Therefore, inline functions are often defined in header
(.h) files.
— Once you include the header file, you can use
< Inline functions whose definitions are in that header file.
<« Normal functions whose prototypes are in that header file.

¢ Another small problem is that some debuggers get
confused when handling inline functions -- sometimes
It Is best to inline functions after debugging is finished.

