
DEBUG

gdb (GNU Debugger)
u Debuggers are programs which allow you to execute

your program in a controlled manner, so you can look
inside your program to find a bug.

u gdb is a reasonably sophisticated text based debugger.
It can let you:
– Start your program, specifying anything that might affect

its behavior.
– Make your program stop on specified conditions.
– Examine what has happened, when your program has

stopped.
– Change things in your program, so you can experiment with

correcting the effects of one bug and go on to learn about
another.

u SYNOPSIS
gdb [prog] [core|procID]

gdb

u GDB is invoked with the shell command gdb.
u Once started,it reads commands from the terminal until

you tell it to exit with the GDB command quit.
– The most usual way to start GDB is with one argument or

two, specifying an executable program as the argument:
obelix[4] > gdb program

– You can also start with both an executable program and a
core file specified:

obelix[5] > gdb program core
– You can, instead, specify a process ID as a second

argument, if you want to debug a running process:
obelix[6] > gdb program 1234

would attach GDB to process 1234

Compiling with the –g Option
u To use gdb best, compile your program with:

gcc –g –c my_math.c
gcc –g –c sample.c
gcc –o sample my_math.o sample.o
or:
gcc –o sample -g my_math.c sample.c

u That is, you should make sure that –g option is used to
generate the .o files.
– This option tells the compiler to insert more information about

data types, etc., so the debugger gets a better understanding
of it.

Common Commands for gdb
u Here are some of the most frequently needed GDB

commands:
b(reak) [file:]function Set a breakpoint at function (in file).
r(un) [arglist] Start program (with arglist, if specified).
bt or where Backtrace: display the program stack; especially

useful to find where your program crashed or
dumped core.

print expr Display the value of an expression.
c Continue running your program (after

stopping, e.g. at a breakpoint).
n(ext) Execute next program line (after

stopping); step over any function calls in
the line.

s(tep) Execute next program line (after
stopping); step into any function calls in the line.

help [name] Show information about GDB command name,
or general information about using GDB.

q(uit) Exit from GDB.
l(ist) print the source code

