
Expression and Operator

Expressions and Operators
� Examples:

3 + 5;
x;
x=0;
x=x+1;
printf("%d",x);

� Two types:
– Function calls
– The expressions formed by data and operators

� An expression in C usually has a value
– except for the function call that returns void.

Arithmetic Operators

Operator Symbol Action Example

Addition + Adds operands x + y
Subtraction - Subs second from first x - y
Negation - Negates operand -x
Multiplication * Multiplies operands x * y
Division / Divides first by second x / y

(integer quotient)
Modulus % Remainder of divide op x % y

Assignment Operator
� x=3

– = is an operator
– The value of this expression is 3
– = operator has a side effect -- assign 3 to x

� The assignment operator =
– The side-effect is to assign the value of the right hand side

(rhs) to the left hand side (lhs).
– The value is the value of the rhs.

� For example:
x = (y = 3) +1; /* y is assigned 3 */

/* the value of (y=3) is 3 */
/* x is assigned 4 */

Compound Assignment Operator
� Often we use “update” forms of operators

– x=x+1, x=x*2, ...

� C offers a short form for this:
– Generic Form

variable op= expr equivalent to variable = variable op expr

– Update forms have value equal to the final value of expr
� i.e., x=3; y= (x+=3); /* x and y both get value 6 */

Operator Equivalent to:

x *= y x = x * y

y -= z + 1 y = y - (z + 1)

a /= b a = a / b

x += y / 8 x = x + (y / 8)

y %= 3 y = y % 3

Increment and Decrement
� Other operators with side effects are the pre- and post-

increment and decrement operators.
– Increment: ++ ++x, x++

� ++x is the same as : (x = x + 1)
– Has value xold +1
– Has side-effect of incrementing x

� x++
– Has value xold

– Has side-effect of incrementing x
– Decrement -- --x, x--

� similar to ++

Relational Operators
� Relational operators allow you to compare variables.

– They return a 1 value for true and a 0 for false.

Operator Symbol Example

Equals == x == y NOT x = y
Greater than > x > y
Less than < x < y
Greater/equals >= x >= y
Less than/equals <= x <= y
Not equal != x != y

� There is no bool type in C. Instead, C uses:
– 0 as false
– Non-zero integer as true

Logical Operators

� && AND
� || OR
� ! NOT

!((a>1)&&(a<10))||((a<-1)&&(a>-10))

Operating on Bits (1)

� C allows you to operate on the bit representations
of integer variables.
– Generally called bit-wise operators.

� All integers can be thought of in binary form.
– For example, suppose ints have 16-bits

�6552010 = 1111 1111 1111 00002 = FFF016 =
1777608

� In C, hexadecimal literals begin with 0x, and octal
literals begin with 0.

�x=65520; base 10

�x=0xfff0; base 16 (hex)
�x=0177760; base 8 (octal)

Operating on Bits (2)
Bitwise operators

� The shift operator:
– x << n

� Shifts the bits in x n positions to the left, shifting in zeros on
the right.

� If x = 1111 1111 1111 00002

x << 1 equals 1111 1111 1110 00002

– x >> n
� Shifts the bits in x n positions right.

– shifts in the sign if it is a signed integer (arithmetic shift)
– shifts in 0 if it is an unsigned integer

� x >> 1 is 0111 1111 1111 10002 (unsigned)

� x >> 1 is 1111 1111 1111 10002 (signed)

Operating on Bits (3)
� Bitwise logical operations

– Work on all integer types
� & Bitwise AND

x= 0xFFF0
y= 0x002F

x&y= 0x0020
� | Bitwise Inclusive OR

x|y= 0xFFFF
� ^ Bitwise Exclusive OR

x^y= 0xFFDF
� ~ The complement operator

~ y= 0xFFD0
– Complements all of the bits of X

Shift, Multiplication and Division
� Multiplication and division is often slower than

shift.
� Multiplying 2 can be replaced by shifting 1 bit to

the left.
n = 10

printf(“%d = %d” , n*2, n<<1);

printf(“%d = %d”, n*4, n<<2);

……

� Division by 2 can be replace by shifting 1 bit to
the right.

n = 10

printf(“%d = %d” , n/2, n>>1);

printf(“%d = %d”, n/4, n>>2);

Operator Precedence
Operator Precedence level

() 1
~, ++, --, unary - 2
*, /, % 3
+, - 4
<<, >> 5
<, <=, >, >= 6
==, != 7
& 8
^ 9
| 10

&& 11
|| 12
=, +=, -=, etc. 14

�We’ll be adding more to this list later on...

An Example
� What is the difference between the two lines of output?

#include <stdio.h>
int main ()
{

int w=10,x=20,y=30,z=40;
int temp1, temp2;
temp1 = x * x /++y + z / y;
printf ("temp1= %d;\nw= %d;\nx= %d;\ny= %d;\nz= %d\n",

temp1, w,x,y,z);
y=30;
temp2 = x * x /y++ + z / y;
printf ("temp2= %d;\nw= %d;\nx= %d;\ny= %d;\nz= %d\n",

temp2, w,x,y,z);
return 0;

}

Conditional Operator
� The conditional operator essentially allows you to embed an “if”

statement into an expression
� Generic Form

exp1 ? exp2 : exp3 if exp1 is true (non-zero)
value is exp2
(exp3 is not evaluated)

if exp1 is false (0),
value is exp3
(exp2 is not evaluated)

� Example:
z = (x > y) ? x : y;

� This is equivalent to:
if (x > y)

z = x;
else

z = y;

Comma Operator
� An expression can be composed of multiple

subexpressions separated by commas.
– Subexpressions are evaluated left to right.
– The entire expression evaluates to the value of the

rightmost subexpression.

� Example:
x = (a++, b++);
� a is incremented
� b is assigned to x
� b is incremented

– Parenthesis are required because the comma operator has
a lower precedence than the assignment operator!

� The comma operator is often used in for loops.

Comma Operator and For Loop
� Example:
� int i, sum;

� for (i=0,sum=0;i<100;i++){

� sum += i;

� }

� printf(“1+...+100 = %d”, sum);

