' Expression and Operator

g 470 7 7 7 7 7 7 7 7 7 77

Expressions and Operators

¢ Examples:
3+ 5;
X,
Xx=0;
X=X+1;
printf("%d",x);
¢ Two types:
— Function calls
— The expressions formed by data and operators

¢ An expression in C usually has a value
— except for the function call that returns void.

Arithmetic Operators

Operator Symbol | Action Example
Addition + Adds operands X +y
Subtraction - Subs second from first X -y
Negation - Negates operand -X
Multiplication * Multiplies operands X*y
Division / Divides first by second Xy

(integer quotient)
Modulus % Remainder of divide op X%y

Assignment Operator

¢ X=3
— = IS an operator
— The value of this expression is 3
— = operator has a side effect -- assign 3 to x

¢ The assignment operator =

— The side-effect is to assign the value of the right hand side
(rhs) to the left hand side (Ihs).

— The value is the value of the rhs.
¢ For example:
x=(y=3)+1l, [*ylisassigned 3*/
/* the value of (y=3) is 3 */
[* X Is assigned 4 */

Compound Assignment Operator

¢ Often we use “update” forms of operators
— X=X+1, X=x*2, ...
¢ C offers a short form for this:

— Generic Form
variable op= expr equivalent to variable = variable op expr

Operator Equivalent to:
X*=y X=X*Yy
y-=z+1 y=y-(z+1)
al=b a=alb
X+=y/8 X=X+ (y/8)
y %= 3 y=y %3

— Update forms have value equal to the final value of expr
< l.e., x=3;y=(x+=3); [*xandy both get value 6 */

|ncrement and Decrement

¢ Other operators with side effects are the pre- and post-
iIncrement and decrement operators.
— Increment: ++ ++X, X++
+++X Isthesameas: (x=x+1)
— Has value x4 +1
— Has side-effect of incrementing x
o X+
— Has value x4
— Has side-effect of incrementing x
— Decrement -- --X, X--
< similar to ++

Relational Operators

¢ Relational operators allow you to compare variables.
— They return a 1 value for true and a O for false.

Operator Symbol Example
Equals == X==y NOT x=y
Greater than > X >y

Less than < X<y
Greater/equals >= X>=y

Less than/equals | <= X <=y

Not equal = X!=y

¢ There is no bool type in C. Instead, C uses:
— 0 as false
— Non-zero integer as true

Logical Operators

&% AND
|| OR
o! NOT

l((a>1)&&(a<10))||((a<-1)&&(a>-10))

Operating on Bits (1)

¢ C allows you to operate on the bit representations

of integer variab

es.

— Generally called bit-wise operators.

¢ All iIntegers can

e thought of in binary form.

— For example, suppose ints have 16-bits
+65520,, = 1111 1111 1111 0000, = FFFO4 =

177760,

¢ In C, hexadecimal literals begin with 0x, and octal
literals begin with 0.

»X=65520:
< X=0xfffO:
»x=0177760:;

pase 10
pase 16 (hex)
pase 8 (octal)

Operating on Bits (2)

Bitwise operators

¢ The shift operator:
— X<<n

< Shifts the bits in x n positions to the left, shifting in zeros on
the right.

+I1fx=1111 1111 1111 0000,

X << 1equals 1111 1111 1110 0000,
— X>>n
< Shifts the bits in x n positions right.
— shifts in the sign if it Is a signed integer
—shifts in O if it Is an unsigned integer

+x>>11is0111 1111 1111 1000, (unsigned)
»x>>11is1111 11111111 1000, (signed)

Operating on Bits (3)

¢ Bitwise logical operations
— Work on all integer types
+ & Bitwise AND
x= OXFFFO
y= 0x002F
x&y= 0x0020
«+| Bitwise Inclusive OR
X|y= OXFFFF
<+ Bitwise Exclusive OR
x"y= 0OxFFDF
+~ The complement operator
~ y= OXFFDO
— Complements all of the bits of X

Shift, Multiplication and Division

¢ Multiplication and division Is often slower than
shift.

¢ Multiplying 2 can be replaced by shifting 1 bit to
the left.
n=10
printf(“%d = %d” , n*2, n<<1);
printf(“%d = %d”, n*4, n<<2);

¢ Division by 2 can be replace by shifting 1 bit to
the right.
n=10
printf(*%d = %d” , n/2, n>>1);
printf(“%d = %d”, n/4, n>>2);

Operator Precedence

Operator Precedence level
() 1
~, ++, -, unary - 2
* 1, % 3
+, - 4
<<, >> 5
<, <=, > >= 6
==, I= 7
& 8
A 9
| 10
&& 11
| 12
=, +=, -=, efc. 14

€ \We'll be adding more to this list later on...

An Example

¢ What is the difference between the two lines of output?

#include <stdio.h>
int main ()
{
iInt w=10,x=20,y=30,z=40;
int temp1, temp2;
templ=x*x/++y+2z/Yy,
printf ("temp1= %d;\nw= %d;\nx= %d;\ny= %d;\nz= %d\n",
templ, w,Xx,y,2);
y=30;
temp2 =x*x/ly++ +2z/Yy,
printf ("temp2= %d;\nw= %d;\nx= %d;\ny= %d;\nz= %d\n",
temp2, w,X,y,2);
return O;

Conditional Operator

¢ The conditional operator essentially allows you to embed an “if”

statement into an expression

¢ Generic Form
expl ? exp2 : exp3

¢ Example:
Zz=(X>Yy)?X:Y;

< This Is equivalent to:

if (x>vy)
Z=X;

else
Z=Y,

If expl is true (non-zero)

value is exp2

(exp3 is not evaluated)
If expl is false (0),

value is exp3

(exp2 is not evaluated)

Comma Operator

¢ An expression can be composed of multiple
subexpressions separated by commas.
— Subexpressions are evaluated left to right.

— The entire expression evaluates to the value of the
rightmost subexpression.

¢ Example:
X = (a++, b++);
< a Is incremented
< D IS assigned to x
< D IS Incremented

— Parenthesis are required because the comma operator has
a lower precedence than the assignment operator!

¢ The comma operator is often used in for loops.

Comma Operator and For Loop

¢ Example:

¢ Inti, sum;

& for (i=0,sum=0;i<100;i++){

. sum +=i;

¢}

¢ printf(“1+...+100 = %d”, sum);

