
Files and Directories

Files and Directories (1)
� What is a file?

– a container for ordered data
– persistent (stays around) and accessible by name

� Unix files
– regular Unix files are pretty simple

�essentially a sequence of bytes
�can access these bytes in order

– Unix files are identified by a name in a directory
�this name is actually used to resolve the hard disk

name/number, the cylinder number, the track
number, the sector, the block number

–you see none of this
�it allows the file to be accessed

Files and Directories (2)

� Unix files come in other flavors as well, such
as
– Directories

�a file containing pointers to other files
�equivalent of a “folder” on a Mac or Windows

– Links
�a pointer to another file
�used like the file it points to
�similar to “shortcuts” in Windows, but better

– Devices
�access a device (like a soundcard, or mouse,

or ...) like it is a file

Directories (1)

� Current Working Directory
– the directory you are looking at right now
– the shell remembers this for you

� To determine the Current Working Directory, use
the command pwd (Print Working Directory)

Use: obelix[18] > pwd
Result: print the current working directory

Directories (2)

� Moving about the filesystem
– Use the “cd” (Change Directory) command to move

between directories and change the current directory
Use: obelix[19] > cd 211
Result: Makes cs211 the current working directory

� Listing the contents of a directory
– Use the “ls” (LiSt directory) command to list the

contents of a directory
obelix[20] > ls
tmp/ a.out* smit.script cs211@

Executable

Link

Directories

Directories (3)
� The upside-down tree

– the Unix filesystem is organized like an upside-down tree

�at the top of the filesystem is the root
– write this as a lone slash: /
– this is NOT a backslash (opposite of MS-DOS)!

�For example, you can change to the root directory:

obelix[21] > cd /

obelix[22] > ls
TT_DB/ dev/ home/ mnt/ sbin/ xfn/

bin@ devices/ kernel/ net/ tmp/
cdrom/ etc/ lib@ opt/ usr/

core export/ local/ platform/ var/
courses@gaul/ lost+found/ proc/ vol/

Directories (4)

Directories (5)
� Some standard directories and files in a typical Unix

system
– / the root
– /bin BINaries (executables)
– /dev DEVices (peripherals)
– /devices where the DEVICES really live
– /etc startup and control files
– /lib LIBraries (really in /usr)
– /opt OPTional software packages
– /proc access to PROCesses
– /sbin Standalone BINaries
– /tmp place for TeMPorary files
– /gaul/ where home directories are mounted

s0...s9: different places for users

Directories (6)

– /usr USeR stuff

– /usr/bin BINaries again

– /usr/include include files for compilers

– /usr/lib LIBraries of functions etc.

– /usr/local local stuff
– /usr/local/bin local BINaries

– /usr/local/lib local LIBraries

– /usr/openwin X11 stuff

– /usr/sbin sysadmin stuff

– /usr/tmp place for more TeMPorary files

– /usr/ucb UCB binaries
– /var VARiable stuff

– /var/mail the mail spool

Pathnames (1)
� A typical Unix file system spans many disks

– As a user you don’t know or need to know which physical disk things are
on

� in fact, you don’t even know which machine they are attached to: disks
can be “remote” (eg: your home directory is stored on a disk attached
to a server in the machine room)

� Look at the df command to see different disks and space used
– Inside each directory may be more directories

� The Absolute Path
– to identify where a file is, string the directories together

� separating names with slashes:
� e.g. /gaul/s1/student/1999/csnow

� this is the absolute path for my home directory
� lists everything from the root down to the directory you want to specify

Pathnames (2)

� When you first log in, you are in your HOME
directory
– To see what this is:

obelix[1] > pwd
/gaul/s1/student/1999/csnow

– Your home directory is also stored in the
environment variable HOME
obelix[2] > echo My home is $HOME
My home is /gaul/s1/student/1999/csnow

– You can “Go Home” by typing
obelix[3] > cd $HOME

Pathnames (3)
� Some shorthand

– In some shells (including tcsh, csh, and bash), $HOME can be
abbreviated as ~ (tilde)

– Example: obelix[26] > cd ~/bin
� change to the bin directory under your home directory (equivalent to

$HOME/bin)

� this is where you usually store your own commands or “executables”

– To quickly go home:

obelix[27]% cd

with no parameters, cd changes to your home directory

– ~user refers to the home directory of user
� For me, ~csnow is the same as ~

� ~doug refers to Doug Vancise’s home directory
(/gaul/s1/usr/faculty/doug)

Pathnames (4)
� Relative pathnames

– You can also specify pathnames relative to the current
working directory
�This is called a relative pathname

– For example
obelix[28] > pwd
/gaul/s1/student/1999/csnow
obelix[29] > ls
tmp/ a.out* smit.script cs211@
obelix[30] > cd tmp
obelix[31] > pwd
/gaul/s1/student/1999/csnow/tmp

�Note: You don’t need to know absolute pathnames
� For most commands which require a file name, you can specify a

pathname (relative or absolute)

Pathnames (5)
� Every directory contains two “special” directories: .

and ..
. : another name for the current directory

– e.g. cp cs211/foo .

.. : another name for the immediate parent
directory of the current directory

– use this to cd to your parent:
obelix[32] > pwd
/gaul/s1/student/1999/csnow

obelix[33] > cd ..
obelix[34] > pwd

/gaul/s1/student/1999
obelix[35] > cd ../..
obelix[36] > pwd
/gaul/s1

Pathnames (6)
� You can locate a file or directory by this way:

– look at the first character of the pathname

� / start from the root
� . start from the current directory

� .. start from the parent directory

�~ start from a home directory

�else start from the current directory

– going down to the subdirectories in the pathname, until
you complete the whole pathname.

– if you start in ~csnow, the following are equivalent:

� /gaul/s1/student/1999/csnow/cs211/readme.txt

�~/cs211/readme.txt

�cs211/readme.txt

Working with Directories (1)
� Create a directory with the mkdir command

mkdir newdirname
� newdirname can be given with pathname

obelix[37] > pwd
/gaul/s1/student/1999/csnow/cs211
obelix[38] > ls
readme.txt
obelix[39] > mkdir mydir1
obelix[40] > ls
readme.txt mydir1/
obelix[41] > mkdir mydir1/mydir2
obelix[42] > ls mydir1
mydir2/
obelix[43] > cd mydir1/mydir2

Note: we can specify
a directory with ls

Working with Directories (2)
� Remove a directory with the rmdir command

rmdir dirname

– dirname is the directory to remove and can be specified
using a pathname

– if the directory exists and is empty it will be removed

� Examples:
obelix[44] > cd ~/cs211; ls
readme.txt mydir1/
obelix[45] > ls mydir1
mydir2/
obelix[46] > rmdir mydir1/mydir2

obelix[47] > ls mydir1

obelix[48] > rmdir mydir1

Assuming mydir1/mydir2
is still empty

mydir1 is now empty,
so this will work fine

Working with Directories (3)
� Move a file from one directory to another

obelix[1] > pwd

/gaul/s1/student/1999/csnow/cs211
obelix[2] > ls

readme.txt mydir1/

obelix[3] > ls mydir1

hello.txt

obelix[4] > mv mydir1/hello.txt .

obelix[5] > ls mydir1
obelix[6] > ls

readme.txt hello.txt mydir1/

� You can also move a directory the same way - it is just
a special file, after all.

A dot is here.

Working with Directories (4)
� Copy a file from one directory to another

obelix[1] > ls
readme.txt mydir1/
obelix[2] > cp readme.txt mydir1
obelix[3] > ls mydir1
readme.txt

� Copying a directory
obelix[4] > cp mydir1 mydir2
cp: mydir1: is a directory
obelix[5] > cp -r mydir1 mydir2
obelix[6] > ls mydir2
readme.txt

Cannot use just cp
to copy a directory

Must do a recursive copy
(cp -r) to copy a directory

Working with Directories (5)
� Some shells (csh and tcsh) provide pushd and

popd directory commands
� pushd changes directories, but remembers the

previous one by pushing it on to a stack
� popd changes directories back to the last

directory placed on the stack by pushd
obelix[1] > pwd
/gaul/s1/student/1999/csnow
obelix[2] > pushd cs211
~/cs211 ~
obelix[3] > pwd
/gaul/s1/student/1999/csnow/cs211
obelix[4] > popd
~
obelix[5] > pwd
/gaul/s1/student/1999/csnow

Current directory stack:
~ was where we were

Current directory stack:
now empty

Current
directory

Working with Directories (6)

� What if you need to locate a file, or set of files,
in a large directory structure?
– Using cd and ls would be very tedious!

� The command find is used to search through
directories to locate files.
– Wildcards can be used, if the exact file name is

unknown, or to find multiple files at once.
– Can also find files based on size, owner, creation

time, type, permissions, and so on.

– Can also automatically execute commands on
each file found.

� Do a “man find” for details and examples!

More Files and Directories (1)
� What files do I already have?

– Startup files for csh and tcsh (.login, .cshrc)
– Contain commands run after you type your password, but

before you get a prompt
– Assume you’ve not used your account before

obelix[1] > ls
obelix[2] >

– Why can’t I see any files?
�Files beginning with a ‘dot’ are usually control files in

Unix and not generally displayed
– Use the –a option to see all files

obelix[3] > ls -a
./ ../ .cshrc .login
obelix[4] >

More Files and Directories (2)
� OK, let us study some new commands, and

variations of some familiar ones
obelix[51] > ls -a
./ ../ .cshrc .login
obelix[52] > cp .cshrc my_new_file
obelix[53] > ls -a
./ ../ .cshrc .login my_new_file
obelix[54] > cp -i .login my_new_file
cp: overwrite my_new_file (yes/no)? y
obelix[55] > head –7 my_new_file
#
WGUI is twm or mwm
#

if (!($?HOSTTYPE)) then
set HOSTTYPE = `uname -m`

endif

list all files including those
beginning a with .

The –i option says to
ask when this overwrites
existing files.

head displays the top
lines of a file

More Files and Directories (3)
obelix[56] > tail -8 my_new_file

breaksw

#

default:

echo "** .login: Unknown Host Type **"
breaksw

endsw

obelix[57] > rm -i my_new_file

rm: remove my_new_file (yes/no)? y

obelix[58] > ls –a
./ ../ .cshrc .login

tail displays the
last lines of a file

-i also verifies on
the rm command

Unix Filenames (1)
� Almost any character is valid in a file name

– all the punctuation and digits
– the one exception is the / (slash) character
– the following are not encouraged

� ? * [] “ ” ’ () & : ; !
– the following are not encouraged as the first

character
� - ~

– control characters are also allowed, but are not
encouraged

� UPPER and lower case letters are different
– A.txt and a.txt are different files

Unix Filenames (2)

� No enforced extensions
– The following are all legal Unix file names

�a

�a.

� .a
�…

�a.b.c

� Remember files beginning with dot are hidden
– ls cannot see them, use ls -a

� . and .. are reserved for current and parent
directories

Unix Filenames (3)
� Even though Unix doesn't enforce extensions,

– “.” and an extension are still used for clarity

� .jpg for JPEG images
� .tex for LaTeX files

� .sh for shell scripts

� .txt for text files

� .mp3 for MP3’s

– some applications may enforce their own extensions

�Compilers look for these extensions by default

– .c means a C program file

– .C or .cpp or .cc for C++ program files
– .h for C or C++ header files

– .o means an object file

Unix Filenames (4)

� Executable files usually have no extensions
– cannot execute file a.exe by just typing a
– telling executable files from data files can be

difficult
� “file” command

Use: file filename
Result: print the type of the file
Example: obelix[1] > file ~/.cshrc

.cshrc: executable c-shell script
� Filenames and pathnames have limits on lengths

– 1024 characters typically
– these are pretty long (much better than MS-DOS

days and the 8.3 filenames)

Fixing Filename Mistakes
� It is very easy to get the wrong stuff into filenames

– Say you accidentally typed

obelix[3] > cp myfile -i
– What if you type

obelix[4] > rm -i

�The shell thinks -i is an option, not a file

�Getting rid of these files can be painful

� There is an easy way to fix this...
– You simply type

obelix[5] > rm -- -i

– Many commands use “--” to say there are no more options

Creates a file
with name -i

Filename Wildcarding (1)
� Wildcarding is the use of “special” characters to represent

or match a sequence of other characters
– a short sequence of characters can match a long one

– a sequence may also match a large number of sequences

� Often use wildcard characters to match filenames
– filename substitution – generally known as “globbing ”

� Wildcard characters
* matches a sequence of zero or more characters

– Example: a*.c* matches abc.c, abra.cpp,

? matches any single character

– Example: a?.c matches ab.c, ax.c, but not abc.c

[...] matches any one character between the braces

– Example: b[aei]t matches bat, bet, or bit, not baet

Filename Wildcarding (2)
� Wildcard sequences can be combined

obelix[6] > mv a*.[ch] cfiles/
�mv all files beginning with a and ending with .c or .h into

the directory cfiles
obelix[7] > ls [abc]*.?

� list files whose name begins with a, b, or c and ends
with . (dot) followed by a single character

� Wildcards do not cross "/" boundaries
– Example: csnow*c does not match csnow/codec

� Wildcards are expanded by the shell, and not by the
program
– Programmers of commands do not worry about searching

the directory tree for matching file names
– The program just sees the list of files matched

Filename Wildcarding (3)
� Matching the dot

– A dot (.) at
� the beginning of a filename, or

� immediately following a /

must be matched explicitly.
– Similar to the character /
– Example:

obelix[8] > cat .c*

� As mentioned earlier, [....] matches any one of the
characters enclosed
– Within “[...]”, a pair of characters separated by “-”

matches any character lexically between the two

� Example:
obelix[9] > ls [a-z]*

cat all files whose names
begin with .c

lists all files beginning
with a character between
ASCII ‘a’ and ASCII ‘z’

Filename Wildcarding (4)
� More advanced examples:

– What does the following do?
obelix[10] > ls /bin/*[-_]*

– What about this?
obelix[11] > ls *

– What about this?
obelix[12] > mv *.bat *.bit
Answer: this one is complicated…

Unix Quoting (1)
� Double Quotes: "...."

– Putting text in double quotes "..." stops interpretation of some
shell special characters (whitespace mostly)

– Examples:

obelix[12] > echo Here are some words

Here are some words

obelix[13] > echo "Here are some words"

Here are some words
obelix[14] > mkdir "A directory name with spaces! "

obelix[15] > ls A*

A directory name with spaces!/

Unix Quoting (2)

� Single Quotes '...'
– Stops interpretation of even more specials

�Stop variable expansion ($HOME, etc.)

�Backquotes `...` (execute a command and
return result ...we’ll get to this later)

�Note difference: single quote ('), backquote (`
)

�Examples:
obelix[16] > echo "Welcome $HOME"
Welcome /gaul/s1/student/1999/csnow
obelix[17] > echo ‘Welcome $HOME’

Welcome $HOME

Unix Quoting (3)
� Backslash \

– ‘quotes’ the next character
– Lets one escape all of the shell special characters

obelix[18] > mkdir Dir\ name\ with\ spaces**
obelix[19] > ls Dir\ *
Dir name with spaces**/

– Use backslash to escape a newline character
obelix[20]% echo "This is a long line and\
we want to continue on the next“
This is a long line and we want to continue on the next

– Use backslash to escape other shell special chars
�Like quote characters

obelix[21] > echo \"Bartlett\'s Familiar Quotations\"
"Bartlett's Familiar Quotations"

Unix Quoting (4)

� Control-V
– Quotes the next character, even if it is a control

character
– Lets one get weird stuff into the command line
– Very similar to backslash but generally for ASCII

characters which do not show up on the screen
– Example: the backspace character

obelix[22] > echo "abc^H^H^Hcde"
cde

– Precisely how it works is dependant on the shell
you use, and the type of terminal you are using

typing Control-v Control-h
enters a "quoted" Control-h
to the shell
• written ^H

Control-h is backspace
on most terminals

Hard and Symbolic Links (1)
� When a file is created, there is one link to it.
� Additional links can be added to a file using the

command ln. These are called hard links.
� Each hard link acts like a pointer to the file and

are indistinguishable from the original.
obelix[1] > ls
readme.txt
obelix[2] > ln readme.txt unix_is_easy
obelix[3] > ls
readme.txt unix_is_easy

� There is only one copy of the file contents on
the hard disk, but now two distinct names!

Hard and Symbolic Links (2)
� A symbolic link is an indirect pointer to another

file or directory.
� It is a directory entry containing the pathname of

the pointed to file.
obelix[1] > cd
obelix[2] > ln -s /usr/local/bin bin
obelix[3] > ls -l
lrwxrwxrwx bin -> /usr/local/bin
……
obelix[4] > cd bin
obelix[5] > pwd
/usr/local/bin

Hard and Symbolic Links (3)
� Two hard links have the same authority to a file

– Removing any of them will NOT remove the
contents of the file

– Removing all of the hard links will remove the
contents of the file from the hard disk.

� A symbolic link is just an entry to the real name
– Removing the symbolic link does not affect the file
– Removing the original name will remove the

contents of the file
� Only super users can create hard links for

directories
� Hard links must point to files in the same Unix

filesystem

FTP (1)

�FTP File Transfer Protocol
obelix[1] > ftp gaul.csd.uwo.ca
Connected to gaul.csd.uwo.ca
220 gaul.csd.uwo.ca FTP server ready.
Name : csnow
331 password required for csnow
Password:
230 user csnow logged in.
ftp> get remotefile localfile
………
ftp> quit
221 Goodbye
obelix[2] >

FTP (2)
� Basic FTP commands

– ls list the remote directory (dir is more verbose)
– cd change the remote directory
– get remotefile [localfile] download remotefile
– put localfile [remotefile] upload localfile
– bye quit
– ? list all the available commands
– ? command print the information about a command
– mget file_name_with_wildcards get multiple files
– mput file_name_with_wildcards put multiple files
– prompt toggles prompting with mget and mput
– bin transfer binary files (8 bits per char)

