
Files

FILE *
u In C, we use a FILE * data type to access files.
u FILE * is defined in /usr/include/stdio.h
u An example:
#include <stdio.h>
int main()
{

FILE *fp;
fp = fopen("tmp.txt", "w");
fprintf(fp,"This is a test\n");
fclose(fp);
return 0;

}

Opening a File (1)
u You must include <stdio.h>
u Prototype Form:

FILE * fopen (const char * filename, const char * mode)

u FILE is a structure type declared in stdio.h.
– You don't need to worry about the details of the structure.

v In fact it may vary from system to system.
– fopen returns a pointer to the FILE structure type.
– You must declare a pointer of type FILE to receive that value

when it is returned.
– Use the returned pointer in all subsequent references to that

file.
– If fopen fails, NULL is returned.

u The argument filename is the name of the file to be
opened.

Opening a File (2)
Values of mode
u Enclose in double quotes or pass as a string variable
u Modes:
r: open the file for reading (NULL if it doesn’t exist)
w: create for writing. destroy old if file exists
a: open for writing. create if not there. start at the end-of-

file
r+: open for update (r/w). create if not there. start at the

beginning.
w+: create for r/w. destroy old if there
a+: open for r/w. create if not there. start at the end-of-file
u In the text book, there are other binary modes with the

letter b. They have no effect in today’s C compilers.

stdin, stdout, and stderr
u Every C program has three files opened for them at

start-up: stdin, stdout, and stderr
u stdin is opened for reading, while stdout and stderr are

opened for writing
u They can be used wherever a FILE * can be used.
u Examples:

– fprintf(stdout, "Hello there!\n");
v This is the same as printf("Hello there!\n");

– fscanf(stdin, "%d", &int_var);
vThis is the same as scanf("%d", &int_var);

– fprintf(stderr, "An error has occurred!\n");
vThis is useful to report errors to standard error - it flushes

output as well, so this is really good for debugging!

The exit () Function
u This is used to leave the program at anytime from

anywhere before the “normal” exit location.
u Syntax:

exit (status);
u Example:

#include <stdlib.h>
……
if((fp=fopen("a.txt","r")) == NULL){

fprintf(stderr, "Cannot open file a.txt!\n");
exit(1);

}

Four Ways to Read and Write Files

uFormatted file I/O

uGet and put a character

uGet and put a line

uBlock read and write

Formatted File I/O
u Formatted File input is done through fscanf:

– int fscanf (FILE * fp, const char * fmt, ...) ;
u Formatted File output is done through fprintf:

– int fprintf(FILE *fp, const char *fmt, …);
{

FILE *fp1, *fp2;
int n;
fp1 = fopen("file1", "r");
fp2 = fopen("file2", "w");
fscanf(fp1, "%d", &n);
fprintf(fp2, "%d", n);
fclose(fp1);
fclose(fp2);

}

Get and Put a Character
#include <stdio.h>
int fgetc(FILE * fp);
int fputc(int c, FILE * fp);
u These two functions read or write a single byte

from or to a file.
u fgetc returns the character that was read,

converted to an integer.
u fputc returns the same value of parameter c if it

succeeds, otherwise, return EOF.

Get and Put a Line
#include <stdio.h>
char *fgets(char *s, int n, FILE * fp);
int fputs(char *s, FILE * fp);
u These two functions read or write a string from

or to a file.
u fgets reads an entire line into s, up to n-1

characters in length (pass the size of the
character array s in as n to be safe!)

u fgets returns the pointer s on success, or NULL
if an error or end-of-file is reached.

u fputs returns the number of characters written if
successful; otherwise, return EOF.

fwrite and fread (1)
u fread and fwrite are binary file reading and writing

functions
– Prototypes are found in stdio.h

u Generic Form:
int fwrite (void *buf, int size, int count, FILE *fp) ;
int fread (void *buf, int size, int count, FILE *fp) ;
vbuf: is a pointer to the region in memory to be written/read

– It can be a pointer to anything (more on this later)
v size: the size in bytes of each individual data item
v count: the number of data items to be written/read

u For example a 100 element array of integers
– fwrite(buf, sizeof(int), 100, fp);

u The fwrite (fread) returns the number of items actually
written (read).

fwrite and fread (2)
u Testing for errors:

if ((frwrite(buf,size,count,fp)) != count)
fprintf(stderr, "Error writing to file.");

u Writing a single double variable x to a file:
fwrite (&x, sizeof(double), 1, fp) ;

– This writes the double x to the file in raw binary format
v i.e., it simply writes the internal machine format of x

u Writing an array text[50] of 50 characters can be done by:
– fwrite (text, sizeof(char), 50, fp) ;

vor
– fwrite (text, sizeof(text), 1, fp); /* text must be a local array

name */

u fread and frwrite are more efficient than fscanf and fprintf

Closing and Flushing Files
uSyntax:

int fclose (FILE * fp) ;
vcloses fp -- returns 0 if it works -1 if it fails

uYou can clear a buffer without closing it
int fflush (FILE * fp) ;
vEssentially this is a force to disk.
vVery useful when debugging.

uWithout fclose or fflush, your updates to a file
may not be written to the file on disk.
(Operating systems like Unix usually use “write
caching” disk access.)

Sequential and Random Access
u In the FILE structure, there is a long type to indicate the

position of your next reading or writing.
u When you read/write, the position move forward.
u You can “rewind” and start reading from the beginning

of the file again:
void rewind (FILE * fp) ;

u To determine where the position indicator is use:
long ftell (FILE * fp) ;
vReturns a long giving the current position in bytes.
vThe first byte of the file is byte 0.
vIf an error occurs, ftell () returns -1.

Random Access
u One additional operation gives slightly better control:

int fseek (FILE * fp, long offset, int origin) ;
– offset is the number of bytes to move the position

indicator
– origin says where to move from

u Three options/constants are defined for origin
– SEEK_SET

vmove the indicator offset bytes from the beginning
– SEEK_CUR

vmove the indicator offset bytes from its current position
– SEEK_END

vmove the indicator offset bytes from the end

Detecting End of File
u Text mode files:

while ((c = fgetc (fp)) != EOF)
– Reads characters until it encounters the EOF
– The problem is that the byte of data read may actually be

indistinguishable from EOF.

u Binary mode files:
int feof (FILE * fp) ;

– Note: the feof function realizes the end of file only after a
reading failed (fread, fscanf, fgetc …)

fseek(fp,0,SEEK_END);
printf("%d\n", feof(fp)); /* zero value */
fgetc(fp); /* fgetc returns -1 */
printf("%d\n",feof(fp)); /* nonzero value */

An Example
#define BUFSIZE 100
int main () {

char buf[BUFSIZE];
if ((fp=fopen("file1", "r"))==NULL) {

fprintf (stderr,"Error opening file.");
exit (1);

}
while (!feof(fp)) {

fgets (buf,BUFSIZE,fp);
printf ("%s",buf);

}
fclose (fp);
return 0;

}

File Management Functions
uErasing a file:

int remove (const char * filename);
vThis is a character string naming the file.
vReturns 0 if deleted; otherwise -1.

uRenaming a file:
int rename (const char * oldname, const char *

newname);
vReturns 0 if successful or -1 if an error occurs.
verror: file oldname does not exist
verror: file newname already exists
verror: try to rename to another disk

Using Temporary Files
u Files that only exist during the execution of the

program.
uGeneric Form:

char *tmpnam (char *s) ;
– Included in stdio.h.
– Creates a valid filename that does not conflict with

any other existing files.

uNote this does not create the file
– Just the NAME!
– You then go and open it and presumably write to it.
– The file created will continue to exist after the

program executes unless you delete it.

An Example
#include <stdio.h>
int main () {

char buffer[25];
tmpnam(buffer);
printf ("Temporary name 1: %s", buffer);
return 0;

}

uOutput
Temporary name 1: /var/tmp/aaaceaywB

