
Interacting with Unix



Getting the Process ID

uSynopsis
#include <unistd.h>
pid_t getpid(void);

uExample:
#include <stdio.h>
#include <unistd.h>
int main(){

pid_t  n = getpid();
printf("Process id is %d\n", n);

}



Getting and Changing the Current Directory

uSYNOPSIS
#include <unistd.h>
char *getcwd(char *buf, size_t size); 
int chdir(const char *path);



Example
#include <stdio.h>
#include <unistd.h>
int main(){

char str[1000];
char*p=getcwd(str,1000);
if(p!=str){

printf("Could not get cwd!");
exit(1);

}
printf("cwd is %s\n", str);
chdir("/usr/bin");
printf("cwd is now %s\n",getcwd(str,1000));

}



Getting the Current System Time (1)
uThere are a number of library functions 

relating to time in C.  Their prototypes are 
found in <time.h>.

uTwo data types are the most important for 
those functions:
– time_t           /* Typically same as long.  It is the

number of seconds since epoch:
00:00:00 UTC, January 1, 1970 */

– struct tm       /* See next slide. */

uCan go the microsecond or nanosecond 
accuracy with other structures and functions.



Getting the Current System Time (2)
u struct tm contains time information broken down:
struct tm{

int tm_sec; // seconds [0,61]
int tm_min; // minutes [0,59]
int tm_hour; // hour [0,23]
int tm_mday; // day of month [1,31]
int tm_mon; // month of year [0,11]
int tm_year; // years since 1900
int tm_wday; // day of week [0,6] (Sunday = 0) 
int tm_yday; // day of year [0,365] 
int tm_isdst; // daylight savings flag

}



Getting the Current System Time (3)
uMost of the time, you only need the following 

two functions, but there are others:

#include <time.h>
time_t time(time_t * time);
struct tm *localtime(const time_t * time);



An Example and a Question
#include <stdio.h>
#include <time.h>
int main(){

time_t t = time(NULL);
struct tm * p = localtime(&t);
if( p->tm_year >= 102 ){

printf("Trial version expired!\n");
exit(0);

}
return 0;  /* Question: why don’t we free(p)? */

}



The Answer

u localtime() looks like the following:
struct tm * localtime(const time_t * time){

static struct tm t;
t.tm_year = ……;
……
return & t;

}
u Suggestion: Use man localtime or look up a 

manual page to find out the exact behavior of a 
function.  



Calling a Command from a C Program
u In a C program, we can invoke a subshell and let it 

run a Unix command using the system() function:
#include <stdlib.h>
int system(const char *);

u Example:
#include <stdio.h>
#include <stdlib.h>
int main() { 

int k;
printf("Files in Directory are: \n"); 
k = system("ls -l");
printf("%d is returned.\n", k);
return k;

}



Piping to and from Other Programs (1)
u A command executed by the system() function uses the 

same standard input and output as the calling program.
u Sometimes, we want to pipe output from the calling 

program to the new command, or pipe input from the 
new command to the calling program.

u This can be done using the popen() function:
#include <stdio.h>
FILE *popen(const char *command, const char *mode);
int pclose(FILE *fp);

u If mode is "r", popen() returns a file pointer that can be 
used to read the standard output of command.

u If mode is "w", popen() returns a file pointer that can be 
used to write to the standard input of command.

u popen() returns NULL on error.



Piping to and from Other Programs (2)
#include<stdio.h>
int main() {

FILE *fp;
char buffer[100];
if ((fp = popen("ls -l", "r")) != NULL) {
while(fgets(buffer, 100, fp) != NULL) {

printf("Line from ls:\n");
printf("  %s\n", buffer);

}
pclose(fp);

}
return 0;

}



execl (1)
u The system() function returns control to the 

program it was called from.
– Immediately, if you background the command with 

an &.
– When the command completes, otherwise.

uOccasionally, you do not want to get the control 
back.
– For example, when your program is a loader 

of another program.
u execl() is suitable for such purposes.  It loads 

the new program and uses it to replace the 
current process.



execl (2)

uSynopsis
#include <unistd.h>
int execl(const char *path, const  char  *arg0,  

...,  const char *argn, char * /*NULL*/);

upath is the pathname of the executable file.
uarg0 should be the same as path or the 

filename.
uarg1 to argn are the actual arguments
uThe last parameter must be NULL (or 0).



Example
#include <stdio.h>
#include <unistd.h>
int main() { 

printf("Files in Directory are:\n"); 
execl("/bin/ls", "ls”, "-l", NULL);
printf("This line should not be printed out!\n");
return 0;

} 
uAll statements after execl() will not be executed.



Multi-process Programming
uWith a Unix system, you can write programs that 

run several processes in parallel.

u For example, a web-server can invoke child 
processes, each of which responses to the 
requests from a different web-browser.

uWe will not get into the detail of this (see 
CS305a/b).  But, we tell you the first step of 
multi-process programming,  so you know 
where to start.



The fork() Function (1)
uSynopsis

#include <unistd.h>
pid_t fork()

u The fork() function creates a new  process.  The 
new process (child process) is an exact copy of 
the calling process (parent process).

u The only difference between the child and 
parent processes is the return value of fork().
– Child process gets 0 if fork is successful.
– Parent gets process id of child or -1 on errors.

uYou can do different things depending on 
whether it is a child or a parent process.



The fork() Function (2)
#include <stdio.h>
#include <unistd.h>
int main(){

int pid; /* Process identifier */ 
pid = fork(); 
if ( pid < 0 ) {

printf("Cannot fork!!\n"); exit(1); 
} else if ( pid == 0 ) { 

/* Child process */ ...... 
} else { 

/* Parent process */ .... 
}

}


