|||’ Interacting with Unix

A A A A A A A A A A A A

Getting the Process ID

¢ Synopsis
#include <unistd.h>
pid_t getpid(void);
¢ Example:
#include <stdio.h>
#include <unistd.h>
Int main(){
pid_t n = getpid();
printf("Process id is %d\n", n);

}

Getting and Changing the Current Directory

¢ SYNOPSIS
#include <unistd.h>
char *getcwd(char *buf, size t size);
Int chdir(const char *path);

Example
#include <stdio.h>
#include <unistd.h>
Int main(){
char str[1000];
char*p=getcwd(str,1000);
If(p!=str){
printf("Could not get cwd!");
exit(1);
}
printf("cwd Is %s\n", str);
chdir("/usr/bin");
printf("cwd Is now %s\n",getcwd(str,1000));

Getting the Current System Time (1)

¢ There are a number of library functions
relating to time in C. Their prototypes are
found In <time.h>.

¢ Two data types are the most important for
those functions:

—time_t [* Typically same as long. Itis the
number of seconds since epoch:
00:00:00 UTC, January 1, 1970 *

— struct tm [* See next slide. */

¢ Can go the microsecond or nanosecond
accuracy with other structures and functions.

Getting the Current System Time (2)

& struct tm contains time information broken down:
struct tm{

Int tm_sec; // seconds [0,61]

Int tm_min; // minutes [0,59]

Int tm_hour; // hour [0,23]

iInt tm_mday; // day of month [1,31]

Int tm_mon; // month of year [0,11]

Int tm_vyear; // years since 1900

Int tm_wday; // day of week [0,6] (Sunday = 0)

Int tm_yday; // day of year [0,365]

Int tm_isdst; // daylight savings flag

Getting the Current System Time (3)

¢ Most of the time, you only need the following
two functions, but there are others:

#include <time.h>
time_t time(time_t * time);
struct tm *localtime(const time_t * time);

An Example and a Question

#include <stdio.h>
#include <time.h>
Int main(){

time_tt=time(NULL);

struct tm * p = localtime(&t);

If(p->tm_year >= 102){
printf("Trial version expired\n");
exit(0);

}

return 0; /* Question: why don’t we free(p)? */

}

The Answer

¢ localtime() looks like the following:
struct tm * localtime(const time_t * time){
static struct tm t;
t.tm_year = ;

return & t;

}

¢ Suggestion: Use man localtime or look up a
manual page to find out the exact behavior of a

function.

Calling a Command from a C Program

¢ In a C program, we can invoke a subshell and let it
run a Unix command using the system() function:
#include <stdlib.h>
Int system(const char *);

¢ Example:

#include <stdio.h>

#include <stdlib.h>

Int main() {
Int k:
printf("Files in Directory are: \n");
k = system("ls -I");
printf("%d is returned.\n", k);
return Kk;

Piping to and from Other Programs (1)

¢ A command executed by the system() function uses the
same standard input and output as the calling program.

¢ Sometimes, we want to pipe output from the calling
program to the new command, or pipe input from the
new command to the calling program.

¢ This can be done using the popen() function:
#include <stdio.h>
FILE *popen(const char *command, const char *mode);
Int pclose(FILE *fp);
¢ If mode Is "r", popen() returns a file pointer that can be
used to read the standard output of command.

¢ If mode Is "w", popen() returns a file pointer that can be
used to write to the standard input of command.

& nonen() returns NULL on error.

Piping to and from Other Programs (2)

#include<stdio.h>
Int main() {
FILE *fp;
char buffer[100];
If ((fp = popen(“ls -I", "r")) '= NULL) {
while(fgets(buffer, 100, fp) '= NULL) {
printf("Line from Is:\n");
printf(" %s\n", buffer);

}
pclose(fp);

}

return O;

1

execl (1)

¢ The system() function returns control to the
program it was called from.

— Immediately, If you background the command with
an &.

— When the command completes, otherwise.

¢ Occasionally, you do not want to get the control
back.

— For example, when your program Is a loader
of another program.

¢ execl() Is suitable for such purposes. It loads
the new program and uses it to replace the
current process.

exed (2)

¢ Synopsis
#include <unistd.h>

Int execl(const char *path, const char *argO,
..., const char *argn, char * *NULL*/);

¢ path Is the pathname of the executable file.

¢ arg0 should be the same as path or the
filename.

¢ argl to argn are the actual arguments
¢ The last parameter must be NULL (or 0).

Example

#include <stdio.h>
#include <unistd.h>

Int main() {
printf("Files in Directory are:\n");
execl("/bin/ls", "Is”, "-I", NULL);

printf("This line should not be printed out\n");
return O;

}

¢ All statements after execl() will not be executed.

Multi-process Programming

¢ With a Unix system, you can write programs that
run several processes in parallel.

¢ For example, a web-server can invoke child
processes, each of which responses to the
requests from a different web-browser.

¢ We will not get into the detalil of this (see
CS305a/b). But, we tell you the first step of
multi-process programming, SO you know
where to start.

The fork() Function (1)

¢ Synopsis
#include <unistd.h>
pid_t fork()

¢ The fork() function creates a new process. The
new process (child process) Is an exact copy of
the calling process (parent process).

¢ The only difference between the child and
parent processes Is the return value of fork().
— Child process gets 0O if fork is successful.
— Parent gets process id of child or -1 on errors.

¢ You can do different things depending on
whether It IS a child or a parent process.

The fork() Function (2)

#include <stdio.h>
#include <unistd.h>
Int main(){
Int pid; /* Process identifier */
pid = fork();
if (pid <0){
printf("Cannot fork!"\n"); exit(1);
}elseif (pid==0){
/* Child process */
} else {
[* Parent process */

