
Makefiles

Multiple Source Files (1)
u Obviously, large programs are not going to be

contained within single files.
u C provides several techniques to ensure that these

multiple files are managed properly.
– These are not enforced rules but every good C programmer

know how to do this.

u A large program is divided into several modules,
perhaps using abstract data types.

u The header (.h) file contains function prototypes of a
module.

u The (.c) file contains the function definitions of a
module.

u Each module is compiled separately and they are
linked to generate the executable file.

Multiple Source Files (2)
u C programs are generally broken up into two types of

files.
.c files:

v contain source code (function definitions) and global
variable declarations

v these are compiled once and never included
.h files:

v these are the “interface” files which “describe” the .c files
– type and struct declarations
– const and #define constant declarations
– #includes of other header files that must be included
– prototypes for functions

Example - Main Program sample.c
#include <stdio.h>
#include "my_stat.h"
int main()
{

int a, b, c;
puts("Input three numbers:");
scanf("%d %d %d", &a, &b, &c);
printf("The average of %d %d %d is %f.\n",

x,y,z,average(a,b,c));
return 0;

}

Example - Module my_stat
/* my_stat.h */
#define PI 3.1415926
float average(int x, int y, int z);
float sum(int x, int y, int z);

/* my_stat.c */
#include "my_stat.h"
float average(int x, int y, int z)
{

return sum(x,y,z)/3;
}

float sum(int x, int y, int z)
{

return x+y+z;
}

Example - Compile the Sample Program
u You need my_stat.c and my_stat.h to compile the

my_stat module to object code
cc –c my_stat.c

u You need my_stat.h and sample.c to compile sample.c
to object code
cc –c sample.c

u You need my_stat.o and sample.o to generate an
executable file
cc –o sample sample.o my_stat.o

u Therefore, the module my_stat can be reused just with
the my_stat.o and my_stat.h. In fact, this is how the
standard libraries work. (Libraries are just collections
of object code, with headers describing functions and
types used in the libraries.)

The make Utility (1)
u Programs consisting of many modules are nearly

impossible to maintain manually.
u This can be addressed by using the make utility.

Makefile for the sample
sample: sample.o my_stat.o

cc –o sample sample.o my_stat.o
sample.o: sample.c my_stat.h

cc –c sample.c
my_stat.o: my_stat.c my_stat.h

cc –c my_stat.c
clean:

rm sample *.o core

These
indentation
are from a tab
(not
spaces!!!)

Target Dependencies

Commands

The make Utility (2)
u Save the file with name "Makefile" (or "makefile") at the

same directory.
u For every time you want to make your program, type

make
u The make utility will

– Find the Makefile
– Check rules and dependencies to see if an update is

necessary.
– Re-generate the necessary files that need updating.

u For example:
– If only sample.c is newer than sample, then only the following

commands will be executed:
v cc –c sample.c
v cc –o sample sample.o my_stat.o

The make Utility (3)
u To clean all generated files:

make clean

u To re-compile, you can
– Remove all generated files and make again.

vmake clean; make
– Or you can:

vtouch my_stat.h and then make again
vThis changes the time stamp of my_stat.h, so

make thinks it necessary to make all the files.

Using make with Several Directories
uAs the number of .c files for a program

increases, it becomes more difficult to keep
track of all the parts.

uComplex programs may be easier to control if
we have one Makefile for each major module.

uA program will be stored in a directory that has
one subdirectory for each module, and one
directory to store all the .h files.

u The Makefile for the main program will direct the
creation of the executable file.

uMakefiles for each module will direct the
creation of the corresponding .o files.

A Makefile Example (1)

uConsider a C program that uses a Stack ADT, a
Queue ADT and a main module.

uSuppose that the program is in seven files:
StackTypes.h, StackInterface.h, QueueTypes.h,
QueueInterface.h, StackImplementation.c,
QueueImplementation.c, and Main.c

uWe will build the program in a directory called
Assn that has four subdirectories: Stack, Queue,
Main, and Include.

uAll four .h files will be stored in Include.

A Makefile Example (2)
u Stack contains StackImplementation.c and the

following Makefile:

export: StackImplementation.o

StackImplementation.o: StackImplementation.c \
../Include/StackTypes.h \
../Include/StackInterface.h

gcc -I../Include -c StackImplementation.c
substitute a print command of your choice for lpr below
print:

lpr StackImplementation.c
clean:

rm -f *.o

A Makefile Example (3)
u Queue contains QueueImplementation.c and the

following Makefile:

export: QueueImplementation.o

QueueImplementation.o: QueueImplementation.c \
../Include/QueueTypes.h \
../Include/QueueInterface.h

gcc -I../Include -c QueueImplementation.c
substitute a print command of your choice for lpr below
print:

lpr QueueImplementation.c
clean:

rm -f *.o

A Makefile Example (4)

uNote: The -I option (uppercase i) for cc and gcc
specifies a path on which to look to find .h files
that are mentioned in statements of the form
#include "StackTypes.h" in .c files.

u It is possible to specify a list of directories
separated by commas with -I.

uBy using -I, we can avoid having to put copies of
a .h file in the subdirectories for every .c file that
depends on the .h file.

A Makefile Example (5)
u Main contains Main.c and the following Makefile:

export: Main

Main: Main.o StackDir QueueDir
gcc -o Main Main.o ../Stack/StackImplementation.o \

../Queue/QueueImplementation.o
Main.o: Main.c ../Include/*.h

gcc -I../Include -c Main.c
StackDir:

(cd ../Stack; make export)
QueueDir:

(cd ../Queue; make export)

#continued on next page...

A Makefile Example (6)
print:

lpr Main.c
printall:

lpr Main.c
(cd ../Stack; make print)
(cd ../Queue; make print)

clean:
rm -f *.o Main core

cleanall:
rm -f *.o Main core
(cd ../Stack; make clean)
(cd ../Queue; make clean)

A Makefile Example (7)

uNote: When a sequence of Unix commands is
placed inside parentheses (), a new subprocess
is created, and the commands are executed as
part of that subprocess.

u For example, when (cd ../Stack; make export) is
executed, the subprocess switches to the Stack
directory and executes the make command;
when the subprocess terminates, the parent
process resumes in the original directory. No
additional cd command is needed.

Using Macros in Makefiles

uMacros can be used in Makefiles to reduce file
size by providing (shorter) names for long or
repeated sequences of text.

uExample: The definition name = text string
creates a macro called name whose value is
text string.

uSubsequent references to $(name) or ${name}
are replaced by text string when the Makefile is
processed.

uMacros make it easier to change Makefiles
without introducing inconsistencies.

Makefile Example Revisited (1)
u The Makefile for Stack can become:

CC = gcc
HDIR = ../Include
INCPATH = -I$(HDIR)
DEPH = $(HDIR)/StackTypes.h $(HDIR)/StackInterface.h
SOURCE = StackImplementation
export: $(SOURCE).o

$(SOURCE).o: $(SOURCE).c $(DEPH)
$(CC) $(INCPATH) -c $(SOURCE).c

print:
lpr $(SOURCE).c

clean:
rm -f *.o

Makefile Example Revisited (2)
u The Makefile for Queue can become:

CC = gcc
HDIR = ../Include
INCPATH = -I$(HDIR)
DEPH = $(HDIR)/QueueTypes.h $(HDIR)/QueueInterface.h
SOURCE = QueueImplementation

export: $(SOURCE).o

$(SOURCE).o: $(SOURCE).c $(DEPH)
$(CC) $(INCPATH) -c $(SOURCE).c

print:
lpr $(SOURCE).c

clean:
rm -f *.o

Makefile Example Revisited (3)
u The Makefile for Main.c can become:

CC = gcc
HDIR = ../Include
INCPATH = -I$(HDIR)
DEPH = $(HDIR)/QueueTypes.h $(HDIR)/QueueInterface.h
OBJ = ../Stack/StackImplementation.o \

../Queue/QueueImplementation.o

export: Main

Main: Main.o StackDir QueueDir
$(CC) -o Main Main.o $(OBJ)

#continued on next page...

Makefile Example Revisited (4)

Main.o: Main.c $(HDIR)/*.h
$(CC) $(INCPATH) -c Main.c

StackDir:
(cd ../Stack; make export)

QueueDir:
(cd ../Queue; make export)

print:
lpr Main.c

printall:
lpr Main.c
(cd ../Stack; make print)
(cd ../Queue; make print)

continued on next page...

Makefile Example Revisited (5)

clean:
rm -f *.o Main core

cleanall:
rm -f *.o Main core
(cd ../Stack; make clean)
(cd ../Queue; make clean)

A Makefile Exercise

uRewrite the Makefiles for the previous example
so that the command make debug will generate
an executable Maingdb that can be run using
the debugger gdb.

More Advanced Makefiles
u Many newer versions of make, including the one with

Solaris and GNU make program gmake include other
powerful features.
– Control structures such as conditional statements and loops.
– Implicit rules that act as defaults when more explicit rules are

not given in the Makefile.
– Simple function support for transforming text.
– Automatic variables to refer to various elements of a Makefile,

such as targets and dependencies.

u See the following web page for more details on gmake:
http://www.gnu.org/manual/make/html_mono/make.html

