|||’ Shell Environments

A A A A A A A A A A A A




The Shell Environment

¢ Shell environment
— Consists of a set of variables with values.

— These values are important information for
the shell and the programs run from the shell.

+Example: PATH determines where the
shell looks for the file corresponding to your
command.

+Example: SHELL indicates what kind of
shell you are using.

— You can define new variables and change the
values of the variables.



Shell Variables (1)

# Shell variables are used by putting a $ in
front of their names

—e.g. echo SHOME
¢ Many are defined in .cshrc and .login

& Two kinds of shell variables:
— Environment variables

« avallable in the current shell and the
programs invoked from the shell

— Regular shell variables

« not available in programs invoked from
this
shell



Shell Variables (2)

¢ Setting regular variables:
— set varname=varvalue
¢ Example:
obelix[1] > set myvar=“unix is easy”
obelix[2] > echo myvar
myvar
obelix[3] > echo $myvar
unix is easy
¢ Clearing out regular variables:

obelix[4] > unset myvar
obelix[5] > echo $myvar

mMwn/ar: 1indafinad vvariahla




Shell Variables (3)

¢ Setting environment variables:
obelix[1] > setenv MYENVVAR "env var"
obelix|2] > unsetenv MYENVVAR
+No “=“ sign here!
¢ Example:
obelix[3] > setenv MYENVVAR "Unix Is easy"
obelix[4] > set myregvar = "Windows Is easy"

4
obelix[5] > tcsh \
. 21: Here we enter

obelix[1] > echo $SMYENVVAR
A new shell...

Unix Is easy
obelix[2] > echo $myregvar
myregvar: undefined variable



Shell Variables (4)

¢ In sh, ksh, bash, regular variables are
defined in the following way:

% varname=varvalue

¢ In sh, ksh, bash, environment variables are
called “exported variables” and are defined
In the following way:
% MYENVVAR="env var"

% export MYENVVAR



Shell Vairables (5)

¢ Common shell variables:

— SHELL: the name of the shell being used
— PATH: where to find executables to execute
— MANPATH: where man looks for man pages

— LD LIBRARY PATH: where libraries for executables

are found at run time

— USER: the user name of the user logged in

— HOME: the user’'s home directory

— TERM: the kind of terminal the user Is using
DISPLAY:: where X program windows are shown
HOST: the name of the host logged on to
REMOTEHOST: the name of the host logged in

from



More on Unix Quoting

¢ Single Quotes ...’

«+Stop variable expansion (SHOME, etc.)
obelix[16] > echo “Welcome $SHOME”"
Welcome /gaul/s1/student/1999/csnow
obelix[17] > echo ‘Welcome $HOME’
Welcome SHOME

¢ Back Quotes ...
+Replace the quotes with the results of the
execution of the command.
+E.Q.
obelix[18] > set prompt = hostname’




The Search Path

» How does Unix find commands to execute?

— If you specify a pathname, the shell looks into that path
for the executable.

— If you specify a filename, (without / in the name), the
shell looks for it in the search path.

— There Is a variable PATH or path
obelix[1] > echo $PATH
/gaul/s1/student/1999/csnow/bin:/bin:/usr/local/bin:.

» The shell does not look for executables in your
current directory unless:
— You specify it explicitly, e.g. ./a.out
— . Is specified in the path variable




Selecting Different Versions of a Command

¢ There may be multiple versions of the
same command In your search path.

obelix[1] > whereis ps
ps: /usr/bin/ps /usr/ucb/ps
¢ The shell searches in each directory of the

$PATH in left to right order and executes
the first version.

obelix[2]> which ps
fusr/bin/ps
obelix[3]> /usr/ucb/ps




Shell Startup

» When csh and tcsh are executed, they run
certain configuration files:

—.login  run once when you log In
« Contains one-time things like terminal setup.
—.cshrc run each time another [t]jcsh process runs
+ Sets lots of variables, like PATH.

» Other shells such as sh use a different file, like
Jprofile to do similar things.

» Only modify the lines that you fully understand

» To reset your shell files, in case of an

“accident”, execute the command script:
hisr/local/hin/reget lonin env



The allas Command

» alias format:
— alias alias-name real-command
<«allas-name I1s one word
<«real-command can have spaces in it

» Any reference to alias-name invokes real-command.

» Examples:
—allas rm rm —i
— alias cp cp —i
— allas mv mv —i
— alias Is /usr/bin/ls —CF
<« This shows us the /, *, @ after file names using Is.

» Put aliases in your .cshrc file to set them up
whenever you log in to the system!




Command History (1)

& obelix[9] > history

1 10:57 emacs

2 10:57 Is -| .cshrc
10:57 cp .cshrc .cshrc2
10:57 emacs .cshrc
11:01 ps
13:46 pwd
13:46 cd ..
13:46 pine
13:46 history

© 00 N O O b W



Command History (2)

¢ You can rerun a command line in the history
— Il reruns last shell command
— Istr rerun the latest command beginning with str

—In  (where n is a number) rerun command number n
In the history list

¢ tcsh allows you to use arrow keys to wander the
history list easlly.
¢ The length of the history list is determined by the
variable history, likely set in your .cshrc file.
set history = 40

¢ The variable savehist determines how much histor
to save In the file named In histfile for your next
session; these are also likely set in your .cshrc file.



Command and Filename Completion

¢ In tcsh and bash, you can let the shell
complete a long command name by:

— Typing a prefix of the command.

— Hitting the TAB key.

— The shell will fill in the rest for you, Iif possible.
¢ tcsh and bash also complete file names:

— Type first part of file name.
— Hit the TAB key.
— The shell will complete the rest, If possible.

¢ Difference:

— First word: command completion.
— Other words: file name comnletinn




