
Shell Environments

The Shell Environment

uShell environment
– Consists of a set of variables with values.
– These values are important information for

the shell and the programs run from the shell.
vExample: PATH determines where the

shell looks for the file corresponding to your
command.
vExample: SHELL indicates what kind of

shell you are using.
– You can define new variables and change the

values of the variables.

Shell Variables (1)
uShell variables are used by putting a $ in

front of their names
– e.g. echo $HOME

uMany are defined in .cshrc and .login
uTwo kinds of shell variables:

– Environment variables
v available in the current shell and the

programs invoked from the shell
– Regular shell variables
v not available in programs invoked from

this
shell

Shell Variables (2)
uSetting regular variables:

– set varname=varvalue
uExample:

obelix[1] > set myvar=“unix is easy”
obelix[2] > echo myvar
myvar
obelix[3] > echo $myvar
unix is easy

uClearing out regular variables:
obelix[4] > unset myvar
obelix[5] > echo $myvar
myvar: undefined variable

Shell Variables (3)
uSetting environment variables:

obelix[1] > setenv MYENVVAR "env var "
obelix[2] > unsetenv MYENVVAR
vNo “=“ sign here!

u Example:
obelix[3] > setenv MYENVVAR "Unix is easy"
obelix[4] > set myregvar = "Windows is easy"
obelix[5] > tcsh
obelix[1] > echo $MYENVVAR
Unix is easy
obelix[2] > echo $myregvar
myregvar: undefined variable

Here we enter
A new shell…

Shell Variables (4)

u In sh, ksh, bash, regular variables are
defined in the following way:

% varname=varvalue

u In sh, ksh, bash, environment variables are
called “exported variables” and are defined
in the following way:

% MYENVVAR="env var"
% export MYENVVAR

Shell Vairables (5)
uCommon shell variables:

– SHELL: the name of the shell being used
– PATH: where to find executables to execute
– MANPATH: where man looks for man pages
– LD_LIBRARY_PATH: where libraries for executables

are found at run time
– USER: the user name of the user logged in
– HOME: the user’s home directory
– TERM: the kind of terminal the user is using
– DISPLAY: where X program windows are shown
– HOST: the name of the host logged on to
– REMOTEHOST: the name of the host logged in

from

More on Unix Quoting
uSingle Quotes '...'

vStop variable expansion ($HOME, etc.)
obelix[16] > echo “Welcome $HOME”
Welcome /gaul/s1/student/1999/csnow
obelix[17] > echo ‘Welcome $HOME’
Welcome $HOME

uBack Quotes `…`
vReplace the quotes with the results of the

execution of the command.
vE.g.

obelix[18] > set prompt = `hostname`

The Search Path

uHow does Unix find commands to execute?
– If you specify a pathname, the shell looks into that path

for the executable.
– If you specify a filename, (without / in the name), the

shell looks for it in the search path.
– There is a variable PATH or path

obelix[1] > echo $PATH
/gaul/s1/student/1999/csnow/bin:/bin:/usr/local/bin:.

u The shell does not look for executables in your
current directory unless:
– You specify it explicitly, e.g. ./a.out
– . is specified in the path variable

Selecting Different Versions of a Command

uThere may be multiple versions of the
same command in your search path.
obelix[1] > whereis ps
ps: /usr/bin/ps /usr/ucb/ps

uThe shell searches in each directory of the
$PATH in left to right order and executes
the first version.
obelix[2]> which ps
/usr/bin/ps
obelix[3]> /usr/ucb/ps

Shell Startup

uWhen csh and tcsh are executed, they run
certain configuration files:
– .login run once when you log in
v Contains one-time things like terminal setup.

– .cshrc run each time another [t]csh process runs
v Sets lots of variables, like PATH.

uOther shells such as sh use a different file, like
.profile to do similar things.

uOnly modify the lines that you fully understand!
uTo reset your shell files, in case of an

“accident”, execute the command script:
/usr/local/bin/reset.login.env

The alias Command
u alias format:

– alias alias-name real-command
valias-name is one word
vreal-command can have spaces in it

uAny reference to alias-name invokes real-command.
uExamples:

– alias rm rm –i
– alias cp cp –i
– alias mv mv –i
– alias ls /usr/bin/ls –CF
vThis shows us the /, *, @ after file names using ls.

uPut aliases in your .cshrc file to set them up
whenever you log in to the system!

Command History (1)
u obelix[9] > history

1 10:57 emacs
2 10:57 ls -l .cshrc
3 10:57 cp .cshrc .cshrc2
4 10:57 emacs .cshrc
5 11:01 ps
6 13:46 pwd
7 13:46 cd ..
8 13:46 pine
9 13:46 history

Command History (2)
uYou can rerun a command line in the history

– !! reruns last shell command
– !str rerun the latest command beginning with str
– !n (where n is a number) rerun command number n

in the history list
u tcsh allows you to use arrow keys to wander the

history list easily.
u The length of the history list is determined by the

variable history, likely set in your .cshrc file.
set history = 40

u The variable savehist determines how much history
to save in the file named in histfile for your next
session; these are also likely set in your .cshrc file.

Command and Filename Completion
u In tcsh and bash, you can let the shell

complete a long command name by:
– Typing a prefix of the command.
– Hitting the TAB key.
– The shell will fill in the rest for you, if possible.

u tcsh and bash also complete file names:
– Type first part of file name.
– Hit the TAB key.
– The shell will complete the rest, if possible.

uDifference:
– First word: command completion.
– Other words: file name completion.

