
Strings

Strings are Character Arrays
uStrings in C are simply arrays of characters.

– Example: char s [10];
u This is a ten (10) element array that can hold a

character string consisting of ≤ 9 characters.
u This is because C does not know where the end

of an array is at run time.
– By convention, C uses a NULL character '\0' to

terminate all strings in its library functions
u For example:

char str [10] = {'u', 'n', 'I', 'x', '\0'};
u It’s the string terminator (not the size of the

array) that determines the length of the string.

Accessing Individual Characters
u The first element of any array in C is at index 0. The

second is at index 1, and so on ...
char s[10];
s[0] = 'h';
s[1] = 'i’;
s[2] = '!';
s[3] = '\0';

u This notation can be used in all kinds of statements
and expressions in C:

u For example:
c = s[1];
if (s[0] == '-') …
switch (s[1]) ...

h i ! \0 ? ? ? ? ? ?
s [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

String Literals

uString literals are given as a string quoted
by double quotes.
– printf("Long long ago.");

u Initializing char array ...
– char s[10]="unix"; /* s[4] is '\0'; */
– char s[]="unix"; /* s has five elements */

Printing with printf ()
uExample:

char str[] = "A message to display";
printf ("%s\n", str);

u printf expects to receive a string as an additional
parameter when it sees %s in the format string
– Can be from a character array.
– Can be another literal string.
– Can be from a character pointer (more on this later).

u printf knows how much to print out because of
the NULL character at the end of all strings.
– When it finds a \0, it knows to stop.

Example
char str[10]="unix and c";

printf("%s", str);
printf("\n");
str[6]='\0';
printf("%s", str);
printf("\n");

printf("\n");
printf(str);
printf("\n");
str[2]='%';
printf(str);
printf("\n");

Printing with puts()
u The puts function is a much simpler output

function than printf for string printing.
uPrototype of puts is defined in stdio.h

int puts(const char * str)
– This is more efficient than printf

vBecause your program doesn't need to analyze
the format string at run-time.

u For example:
char sentence[] = "The quick brown fox\n";
puts(sentence);

uPrints out:
The quick brown fox

Inputting Strings with gets()
u gets() gets a line from the standard input.
u The prototype is defined in stdio.h

char *gets(char *str)
– str is a pointer to the space where gets will store the

line to, or a character array.
– Returns NULL upon failure. Otherwise, it returns str.

char your_line[100];
printf("Enter a line:\n");
gets(your_line);
puts("Your input follows:\n");
puts(your_line);

– You can overflow your string buffer, so be careful!

Inputting Strings with scanf ()
u To read a string include:

– %s scans up to but not including the “next” white
space character

– %ns scans the next n characters or up to the next
white space character, whichever comes first

uExample:
scanf ("%s%s%s", s1, s2, s3);
scanf ("%2s%2s%2s", s1, s2, s3);

– Note: No ampersand(&) when inputting strings into
character arrays! (We’ll explain why later …)

uDifference between gets
– gets() read a line
– scanf("%s",…) read up to the next space

An Example
#include <stdio.h>
int main () {

char lname[81], fname[81];
int count, id_num;
puts ("Enter the last name, firstname, ID number
separated");
puts ("by spaces, then press Enter \n");
count = scanf ("%s%s%d", lname, fname,&id_num);
printf ("%d items entered: %s %s %d\n",

count,fname,lname,id_num);
return 0;

}

The C String Library

uString functions are provided in an ANSI
standard string library.
– Access this through the include file:

#include <string.h>
– Includes functions such as:
vComputing length of string
vCopying strings
vConcatenating strings

– This library is guaranteed to be there in any
ANSI standard implementation of C.

strlen
u strlen returns the length of a NULL terminated

character string:
size_t strlen (char * str) ;

uDefined in string.h
u size_t

– A type defined in string.h that is equivalent to an
unsigned int

u char *str
– Points to a series of characters or is a character

array ending with '\0'
– The following code has a problem!
char a[5]={‘a’, ’b’, ’c’, ’d’, ’e’};
strlen(a);

strcpy

uCopying a string comes in the form:
char *strcpy (char * destination, char * source);

u A copy of source is made at destination
– source should be NULL terminated
– destination should have enough room

(its length should be at least the size of
source)

uThe return value also points at the
destination.

strcat

u Included in string.h and comes in the form:
char * strcat (char * str1, char * str2);
vAppends a copy of str2 to the end of str1
vA pointer equal to str1 is returned

uEnsure that str1 has sufficient space for
the concatenated string!
– Array index out of range will be the most

popular bug in your C programming career.

Example
#include <string.h>
#include <stdio.h>
int main() {

char str1[27] = "abc";
char str2[100];
printf("%d\n",strlen(str1));
strcpy(str2,str1);
puts(str2);
puts("\n");
strcat(str2,str1);
puts(str2);

}

Comparing Strings

uC strings can be compared for equality or
inequality

u If they are equal - they are ASCII identical
u If they are unequal the comparison

function will return an int that is interpreted
as:

< 0 : str1 is less than str2
0 : str1 is equal to str2

> 0 : str1 is greater than str2

strcmp
u Four basic comparison functions:

int strcmp (char *str1, char *str2) ;
vDoes an ASCII comparison one char at a time

until a difference is found between two chars
– Return value is as stated before

vIf both strings reach a '\0' at the same time, they
are considered equal.

int strncmp (char *str1, char * str2, size_t n);
vCompares n chars of str1 and str2

– Continues until n chars are compared or
– The end of str1or str2 is encountered

– Also have strcasecmp() and strncasecmp() which do
the same as above, but ignore case in letters.

Example
u An Example - strncmp

int main() {
char str1[] = "The first string.";
char str2[] = "The second string.";
size_t n, x;
printf("%d\n", strncmp(str1,str2,4));
printf("%d\n", strncmp(str1,str2,5));

}

Searching Strings (1)

uThere are a number of searching functions:
– char * strchr (char * str, int ch) ;
vstrchr search str until ch is found or NULL

character is found instead.
vIf found, a (non-NULL) pointer to ch is returned.

–Otherwise, NULL is returned instead.
– You can determine its location (index) in the string

by:
vSubtracting the value returned from the

address of the start of the string
–More pointer arithmetic … more on this later!

Example
Example use of strchr:

#include<stdio.h>
#include<string.h>
int main() {

char ch='b', buf[80];
strcpy(buf, "The quick brown fox");
if (strchr(buf,ch) == NULL)

printf ("The character %c was not found.\n",ch);
else

printf ("The character %c was found at position
%d\n", ch, strchr(buf,ch)-buf+1);

}

Searching Strings (2)

uAnother string searching function:
char * strstr (char * str, char * query) ;
vstrstr searches str until query is found or a

NULL character is found instead.
vIf found, a (non-NULL) pointer to str is

returned.
–Otherwise, NULL is returned instead.

sprintf

#include <stdio.h>
int sprintf(char *s, const char *format, …);

u Instead of printing to the stdin with
printf(…), sprintf prints to a string.

uVery useful for formatting a string, or when
one needs to convert integers or floating
point numbers to strings.

uThere is also a sscanf for formatted input
from a string in the same way scanf works.

Example:
#include <stdio.h>
#include <string.h>
int main()
{

char result[100];
sprintf(result, "%f", (float)17/37);
if (strstr(result, "45") != NULL)
printf("The digit sequence 45 is in 17

divided by 37. \n");
return 0;

}

Converting Strings to Numbers (1)
u Contained in <stdlib.h> and are often used

int atoi (char *ptr);
– Takes a character string and converts it to an integer.
– White space and + or - are OK.
– Starts at beginning and continues until something

non-convertible is encountered.
u Some examples:

String Value returned
"157" 157
"-1.6" -1
"+50x" 50
"twelve" 0
"x506" 0

Converting Strings to Numbers (2)
long atol (char *ptr) ;

– Same as atoi except it returns a long.

double atof (char * str);
– Handles digits 0-9.
– A decimal point.
– An exponent indicator (e or E).
– If no characters are convertible a 0 is returned.

uExamples:
– String Value returned

"12" 12.000000
"-0.123" -0.123000
"123E+3" 123000.000000
"123.1e-5" 0.001231

