Parallel Ccomputing with Julia

Marc Moreno Maza
University of Western Ontario, London, Ontario (Canada)

CS2101

Plan

@ Preliminaries: Coroutines

© Julia’s Prnciples for Parallel Computing

@ Tips on Moving Code and Data

@ Around the Parallel Julia Code for Fibonacci
@ Parallel Maps and Reductions

© Synchronization

@ Distributed Arrays

© A Simple Simulation Using Distributed Arrays

Plan

@ Preliminaries: Coroutines

Preliminaries: Coroutines

Tasks (aka Coroutines)

Tasks
@ Tasks are a control flow feature that allows computations to be
suspended and resumed in a flexible manner

@ This feature is sometimes called by other names, such as symmetric
coroutines, lightweight threads, cooperative multitasking, or one-shot
continuations.

e When a piece of computing work (in practice, executing a particular
function) is designated as a Task, it becomes possible to interrupt it
by switching to another Task.

@ The original Task can later be resumed, at which point it will pick up
right where it left off

Preliminar Coroutines

Producer-consumer scheme

The producer-consumer scheme

@ One complex procedure is generating values and another complex
procedure is consuming them.

@ The consumer cannot simply call a producer function to get a value,
because the producer may have more values to generate and so might
not yet be ready to return.

o With tasks, the producer and consumer can both run as long as they
need to, passing values back and forth as necessary.

@ Julia provides the functions produce and consume for implementing
this scheme.

Coroutines

Producer-consumer scheme example

function producer ()
produce ("start")
for n=1:2
produce(2n)
end
produce("stop")
end

To consume values, first the producer is wrapped in a Task, then consume is called
repeatedly on that object:

ulia> p = Task(producer)
Task

julia> consume(p)
"start"

julia> consume(p)
2

julia> consume(p)
4

julia> consume(p)
"stop"

Preliminaries: Coroutines

Tasks as iterators

A Task can be used as an iterable object in a for loop, in which case the
loop variable takes on all the produced values:

julia> for x in Task(producer)

println(x)
end
start
2
4

stop

Julia’s Prnciples for Parallel Computing

Plan

© Julia’s Prnciples for Parallel Computing

Julia’s Prnciples for Parallel Computing

Julia’s message passing principle

Julia’s message passing

o Julia provides a multiprocessing environment based on message
passing to allow programs to run on multiple processors in shared or
distributed memory.

e Julias implementation of message passing is one-sided:

e the programmer needs to explicitly manage only one processor in a
two-processor operation

e these operations typically do not look like message send and message
receive but rather resemble higher-level operations like calls to user
functions.

Julia’s Prnciples for Parallel Computing

Remote references and remote calls

Two key notions: remote references and remote calls
@ A remote reference is an object that can be used from any processor
to refer to an object stored on a particular processor.
@ A remote call is a request by one processor to call a certain function
on certain arguments on another (possibly the same) processor. A
remote call returns a remote reference.

How remote calls are handled in the program flow
@ Remote calls return immediately: the processor that made the call
can then proceeds to its next operation while the remote call happens
somewhere else.

@ You can wait for a remote call to finish by calling wait on its remote
reference, and you can obtain the full value of the result using fetch.

for Parallel Computi

Remote references and remote calls: example

$./julia -p 2

julia> r = remote_call(2, rand, 2, 2)
RemoteRef (2,1,5)

julia> fetch(r)

2x2 Float64 Array:
0.60401 0.501111
0.174572 0.157411

julia> s = @spawnat 2 1+fetch(r)
RemoteRef (2,1,7)

julia> fetch(s)

2x2 Float64 Array:
1.60401 1.50111
1.17457 1.15741

Commuets on the example

o Starting with julia -p n provides n processors on the local machine.

o The first argument to remote_call is the index of the processor that will do the
work.

o The first line we asked processor 2 to construct a 2-by-2 random matrix, and in the
third line we asked it to add 1 to it.

@ The @spawnat macro evaluates the expression in the second argument on the
processor specified by the first argument.

Julia’s Prnciples for Parallel Computing

More on remote references

julia> remote_call_fetch(2, ref, r, 1, 1)
0.10824216411304866

remote_call fetch
@ Occasionally you might want a remotely-computed value immediately.
@ The function remote_call _fetch exists for this purpose.
o It is equivalent to fetch(remote_call(...)) but is more efficient.

o Note that ref (r,1,1) is equivalent to r[1,1], so this call fetches
the first element of the remote reference r.

Julia’s Prnciples for Parallel Computing

The macro @spawn

The macro @spawn
@ The syntax of remote_call is not especially convenient.
o The macro @spawn makes things easier:

o |t operates on an expression rather than a function, and
e chooses the processor where to do the operation for you

julia> r = @spawn rand(2,2)
RemoteRef (1,1,0)

julia> s = @spawn 1+fetch(r)
RemoteRef (1,1,1)

julia> fetch(s)
1.10824216411304866 1.13798233877923116
1.12376292706355074 1.18750497916607167

Remarks on the example
o Note that we used 1+fetch(r) instead of 1+r. This is because we do not know
where the code will run, so in general a fetch might be required to move r to the
processor doing the addition.
o In this case, @spawn is smart enough to perform the computation on the processor
that owns r, so the fetch will be a no-op.

e and Data

Plan

© Tips on Moving Code and Data

Tips on Moving Code and Data

Availability of a function to processors (1/2)

One important point is that your code must be available on any processor that
runs it. For example, type the following into the julia prompt

julia> function rand2(dims...)
return 2*rand(dims...)
end

julia> rand2(2,2)

2x2 Float64 Array:
0.153756 0.368514
1.15119 0.918912

julia> @spawn rand2(2,2)
RemoteRef(1,1,1)

julia> @spawn rand2(2,2)
RemoteRef (2,1,2)

julia> exception on 2: in anonymous: rand2 not defined

Tips on Moving Code and Data

Availability of a function to processors (2/2)

In the previous example, Processor 1 knew about the function rand2, but
processor 2 did not. To make your code available to all processors, the
require function will automatically load a source file on all currently
available processors:

julia> require("myfile")

In a cluster, the contents of the file (and any files loaded recursively) will
be sent over the network.

Tips on Moving Code and Data

Data Movement (1/4)

Motivation
@ Sending messages and moving data constitute most of the overhead
in a parallel program.
@ Reducing the number of messages and the amount of data sent is
critical to achieving performance and scalability.
@ To this end, it is important to understand the data movement
performed by Julias various parallel programming constructs.

Data Movement (2/4)

fetch and @spawn

o fetch can be considered an explicit data movement operation, since it directly
asks that an object be moved to the local machine.

o @spawn (and a few related constructs) also moves data, but this is not as obvious,
hence it can be called an implicit data movement operation.

o Consider these two approaches to constructing and squaring a random matrix

@ Which one is the most efficient?

method 1

A = rand(1000,1000)
Bref = @spawn A2
fetch(Bref)

method 2
Bref = @spawn rand(1000,1000) "2

fetch(Bref)

Tips on Moving Code and Data

Data Movement (3/4)

method 1
A = rand(1000,1000)
Bref = @spawn A"2

fetch(Bref)

method 2
Bref = @spawn rand(1000,1000) "2

fetch(Bref)

Answer to the question

o The difference seems trivial, but in fact is quite significant due to the behavior
of @spawn.

@ In the first method, a random matrix is constructed locally, then sent to
another processor where it is squared.

@ In the second method, a random matrix is both constructed and squared on
another processor.

@ Therefore the second method sends much less data than the first.

Tips on Moving Code and Data

Data Movement (4/4)

Remarks on the previous example

In the previous toy example, the two methods are easy to distinguish
and choose from.

However, in a real program designing data movement might require
more thought and very likely some measurement.

For example, if the first processor needs matrix A then the first
method might be better.

Or, if processing A is expensive but only the current processor has it,
then moving it to another processor might be unavoidable.

Or, if the current processor has very little to do between the @spawn
and fetch(Bref) then it might be better to eliminate the parallelism
altogether.

Or imagine rand (1000, 1000) is replaced with a more expensive
operation. Then it might make sense to add another @spawn
statement just for this step.

Fibonacci

Plan

@ Around the Parallel Julia Code for Fibonacci

Around the Parallel Julia Code for Fibonacci

Fibonacci (1/4)

_ _ () | A fresh approach to technical computing

) I Q) O | Documentation: http://docs.julialang.org

__- _l 12 __ _ | Type "help()" to list help topics

T A I VL B

[L1111 (I | | Version 0.2.0-prerelease+3622
Z/INCZPZIZIZINCZ? 1 1 Commit c9bb96c 2013-09-04 15:34:41 UTC
l__/ | x86_64-redhat-linux

ulia> addprocs(3)
3-element Array{Any,1}:
2

3

4

julia> Qeverywhere function fib(n)
if (n < 2) then
return n
else return fib(n-1) + fib(n-2)
end
end

Around the Parallel Julia Code for Fibonacci

Fibonacci (2/4)

julia> z = @spawn fib(10)
RemoteRef (3,1,8)

julia> fetch(z)
55

julia> @time [fib(i) for i=1:45];
elapsed time: 32.241445075 seconds (416 bytes allocated)

Around the Parallel Julia Code for Fibonacci

Fibonacci (3/4)

julia> @everywhere function fib_parallel(n)
if (n < 40) then
return fib(n)

else
X = @spawn fib_parallel(n-1)
y = fib_parallel(n-2)
return fetch(x) + y
end
end

julia>

julia> @time [fib_parallel(i) for i=1:45];
elapsed time: 14.295663044 seconds (655820 bytes allocated)

Around the Parallel Julia Code for Fibonacci

Fibonacci (4/4)

julia> @time @parallel [fib(45+i) for i=1:4]
elapsed time: 21.654079705 seconds (26927736 bytes allocated)
4-element DArray{Int64,1,Array{Int64,1}}:

1836311903
2971215073
4807526976
7778742049

julia> @time [fib(45+i) for i=1:4];
elapsed time: 188.761594844 seconds (80 bytes allocated)

nd Reductions

Plan

@ Parallel Maps and Reductions

ductions

A first example of parallel reduction

julia> @everywhere function count_heads(n)

c::Int =0
for i=1:n
¢ += randbool()
end
c

end

julia> a = @spawn count_heads(100000000)
RemoteRef (7,1,31)

julia> b = @spawn count_heads(100000000)
RemoteRef (2,1,32)

julia> fetch(a)+fetch(b)
99993168

o This simple example demonstrates a powerful and often-used parallel
programming pattern: reductuon.

o Many iterations run independently over several processors, and then their
results are combined using some function.

nd Reductions

Parallel reduction using @parallel (1/4)

Usage of parallel for loops
@ In the previous example, we use two explicit @spawn statements, which limits
the parallelism to two processors.

@ To run on any number of processors, we can use a parallel for loop, which can
be written in Julia like this:

nheads = @parallel (+) for i=1:200000000
randbool ()
end

Comments

@ This construct implements the pattern of
e assigning iterations to multiple processors, and
e combining them with a specified reduction (in this case (+)).
@ Notice that the reduction operator can be omitted if it is not needed
@ However, the semantics of such a parallel for-loop can be dramatically different
from its serial elision. As we shall see on the example of the next slide.

Parallel Maps and Reductions

Parallel reduction using @parallel (2/4)

julia> a = zeros(4)
4-element Array{Float64,1}:
0.0

0.0

0.0

0.0

julia> @parallel for i=1:4

afi] =i
end
julia> a
4-element Array{Float64,1}:
0.0
0.0
0.0
0.0

julia> for i=1:4

alil =i
end
julia> a
4-element Array{Float64,1}:
1.0
2.0
3.0

4.0

Parallel Maps and Reductions

Parallel reduction using @parallel (3/4)

Evaluation of a @parallel for-loop

@ lterations run on different processors and do not happen in a specified order,

o Conseqnently, variables or arrays will not be globally visible.

@ Any variables used inside the parallel loop will be copied and broadcast to
each processor.

@ Processors produce results which are made visible to the lauching processor
via the reduction.

@ This explains why the following code will not work as intended:

julia> @parallel for i=1:4
alil = 1
end

Comments on the example

o Each processor will have a separate copy if it.
o Parallel for loops like these must be avoided

ductions

Parallel reduction using @parallel (4/4)

Use of “outside” variables in @parallel for-loops
@ Using outside variables in parallel loops is perfectly reasonable if the variables
are read-only. See the example on the next slide.
o In some cases no reduction operator is needed, and we merely wish to apply a
function to all elements in some collection.
@ This is another useful operation called parallel map, implemented in Julia as
the pmap function.

o For example, we could compute the rank of several large random matrices in
parallel as follows:

julia> M = [rand(1000,1000) for i=1:4];
julia>

julia> pmap(rank, M)
4-element Array{Any,1}:
1000
1000
1000
1000

Use of “outside” variables in @parallel for-loops

julia> toc()
elapsed time: 0.026080394 seconds
0.026080394

julia> M = [rand(1000,1000) for i=1:4];

julia> ticQ)
0x000a911d4bdfa458

julia> R = [@spawnat i rank(M[i]) for i=1:4]
4-element Array{Any,1}:

RemoteRef (1,1,180)

RemoteRef (2,1,181)

RemoteRef (3,1,182)

RemoteRef (4,1,183)

julia> S = 0
0

julia> for i=1:4
S = 8 + fetch(R[i])
end

julia> §
4000

julia> toc()
elapsed time: 1.436392165 seconds
1.436392165

julia> @time @parallel (+) for i=1:4
rank (M[i])
end
elapsed time: 1.018056042 seconds (235219708 bytes allocated)
4000

Synchronization

Plan

© Synchronization

chronization

How does Julia’s schedule computations?

Julia’s scheduling strategy is based on tasks
o Julias parallel programming platform uses Tasks (aka Coroutines) to switch
among multiple computations.
o Whenever code performs a communication operation like fetch or wait, the
current task is suspended and a scheduler picks another task to run.
o A task is restarted when the event it is waiting for completes.

Dynamic scheduling

o For many problems, it is not necessary to think about tasks directly.

o However, they can be used to wait for multiple events at the same time, which
provides for dynamic scheduling.

@ In dynamic scheduling, a program decides what to compute or where to
compute it based on when other jobs finish.

@ This is needed for unpredictable or unbalanced workloads, where we want to
assign more work to processes only when they finish their current tasks.

@ As an example, consider computing the ranks of matrices of different sizes

M = {rand(800,800), rand(600,600), rand(800,800), rand(600,600)}

pmap (rank, M)

Implementation of pmap

Main idea

In the implementation below, a local task feeds work to each processor when it
completes its current task.

function pmap(f, 1lst)
np = nprocs() # determine the number of processes available
n = length(lst)
results = cell(n)
i=1
function to produce the next work item from the queue.
in this case it’s just an index.
nextidx() = (idx=i; i+=1; idx)
Osync begin
for p=1:np
if p != myid() || np ==
Q@async begin
while true
idx = nextidx()
if idx > n
break
end
results[idx] = remotecall_fetch(p, f, lst[idx])
end
end
end
end
end
results
end

Synchronization

@spawnlocal, @sync and @everywhere

@spawnlocal (recently renamed @async)

@ @spawnlocal is similar to @spawn, but only runs tasks on the local processor.

@ In the pmap example above, we use it to create a feeder task for each
processor.

o Each task picks the next index that needs to be computed, then waits for its
processor to finish, then repeats until we run out of indexes.

@sync

@ A @sync block is used to wait for all the local tasks to complete, at which
point the whole operation is done.

o Notice that all the feeder tasks are able to share the state i via next_idx()
since they all run on the same processor.

o However, no locking is required, since the threads are scheduled cooperatively
and not preemptively.

@ This means context switches only occur at well-defined points (during the
fetch operation).

Q@everywhere
o It is often useful to execute a statement on all processors, particularly for
setup tasks such as loading source files and defining common variables. This
can be done with the @everywhere macro.

Synchronization

More on tasks

julia> #like @spawn, but runs taks on the local process

julia> x=@async println("hi")
Task

julia>

julia> a = Q@async 1+2
Task

julia>
julia> #get the calue

julia> fetch(a)
Task

chronization

More on remote calls (1/2)

julia> #make an uninitialized remote reference on the local machine

julia> r = RemoteRef ()
RemoteRef (1,1,117)

julia>

julia> @async (fetch(r);println("hi"))
Task

julia>

julia> #store a value to a remote reference
julia> put(r,0)

0

julia> hi

More on remote calls (2/2)

julia> nprocs()
5

julia> #get the id of the current processor

julia> myidQ)
1

julia> #execute on all the processors

julia> @everywhere println(myid())
1

From worker
From worker

w o N

2:
5:
From worker 4:
From worker 3:

julia> r = @spawn myid()
RemoteRef (3,1,127)

julia> fetch(r)
3

julia> fetch(@spawn myid())
4

julia> fetch(@spawnat 2 myid())
2

Plan

@ Distributed Arrays

Computing the maximum value of an array in parallel

julia> Qeverywhere function maxnum_serial(a,s,e)

if s==

als]
else

mid = ifloor((s+e)/2)
low = maxnum_serial(a,s,mid)
high = maxnum_serial(a,mid+1,e)
low >high? low:high

end

end

julia> Qeverywhere function maxnum_parallel(a,s,e)

if (e-s)<=10000000
maxnum_serial(a,s,e)

else
mid = ifloor((s+e)/2)
low_remote = @spawn maxnum_parallel(a,s,mid)
high = maxnum_parallel(a,mid+1,e)
low = fetch(low_remote)
low > high? low:high

end

end
julia> a=rand(20000000) ;

julia> @time maxnum_serial(a,1,20000000)
elapsed time: 0.458792535 seconds (61556 bytes allocated)
0.999999919794377

julia> @time maxnum_parallel(a,1,20000000) ## two recursive calls
elapsed time: 0.654630977 seconds (268541944 bytes allocated)
0.999999919794377

As we can see, the parallel version runs slower than its serial counterpart. Indeed,
the amount of work (number of comparisons) is in the same order of magnitude of
data transfer (number of integers to move from one processor than another). But
the latter costs much more clock-cycles.

Computing the minimum and maximum values of an array in parallel

julia> @everywhere function minimum_maximum_serial(a,s,e)
if s==e

[als], als]]

else
mid = ifloor((s+e)/2)
X = minimum_maximum_serial(a,s,mid)
Y = minimum_maximum_serial (a,mid+1,e)
[min(X[1],Y[1]), max(X[2],Y[2])]
end
end

julia> Qeverywhere function minimum_maximum_parallel(a,s,e)

if (e-s)<=10000000

minimum_maximum_serial(a,s,e)
else

mid = ifloor((s+e)/2)

R = @spawn minimum_maximum_parallel(a,s,mid)

Y = minimum_maximum_parallel(a,mid+1,e)

X = fetch(R)

[min(X[1],Y[1]), max(X[2],Y[2])]
end
end

julia> a=rand(20000000) ;

julia> Q@time minimum_maximum_serial(a,1,20000000)
elapsed time: 7.89881551 seconds (3840094852 bytes allocated)

julia> Q@time minimum_maximum_parallel(a,1,20000000)
elapsed time: 4.32320816 seconds (2188546996 bytes allocated)

In-place serial merge sort

julia> function mergesort(data, istart, iend)
if (istart < iend)
mid = (istart + iend) >>>1
mergesort(data, istart, mid)
mergesort(data, mid+1, iend)
merge(data, istart, mid, iend)
end
end
methods for genmeric function mergesort
mergesort(data,istart,iend) at none:2

julia> function merge(data, istart, mid, iend)
n = iend - istart + 1
temp = zeros(n)
s = istart
m = mid+1
for tem = 1:n
if s <= mid & (m > iend || data[s] <= data[m])
temp[tem] = datals]

s=s+1

else
temp[tem] = data[m]
m=m+1

end

end
datalistart:iend] = temp[1:n]
end
methods for generic function merge
merge(data,istart,mid,iend) at none:2

julia> n = 1000000

julia> A = [rem(rand(Int32),10) for i =

:nl;

julia> Ctime mergesort(A, 1, n);
elapsed time: 0.6119898 seconds (447195104 bytes allocated)

Out-of-place serial merge sort

julia> function mergesort(data, istart, iend)
if (istart < iend)
mid = ifloor((istart + iend)/2)
a = mergesort(data, istart, mid)
b = mergesort(data,mid+1, iend)
¢ = merge(a, b, istart, mid, iend)
else
[data[istart]]
end
end
methods for generic function mergesort

julia> function merge(a, b, istart, mid, iend)
n = iend - istart + 1
nb = iend - mid
na = mid - istart + 1
¢ = zeros(n)
1
m=1
for tem = 1:n
if s <=na & (m > nb || a[s] <= b[m])
cltem] = als]

w
"

s=s+1
else
cltem] = b(m]
m=m+1
end
end
c

end
methods for generic function merge

julia> n = 1000000;

julia> A = [rem(rand(Int32),10) for i =1:nl;

julia> @time mergesort(A, 1, m);

elapsed time: 0.60765198 seconds (348516200 bytes allocated)

Out-of-place parallel merge sort

..@everywhere function mergesort_serial(data, istart, iend)

if (istart < iend)
mid = ifloor((istart + iend)/2)
a = mergesort_serial(data, istart, mid)
b = mergesort_serial(data,mid+1, iend)
¢ = merge(a, b, istart, mid, iend)

else

[data[istart]]
end
end

Q@everywhere function mergesort_parallel(data, istart, iend)
if(iend - istart <= 250000)

then
mergesort_serial(data, istart, iend)
else
mid = ifloor((istart + iend)/2)
a = Ospawn mergesort_parallel(data, istart, mid)
b = mergesort_parallel(data,mid+1, iend)
c = merge(fetch(a), fetch(b), istart, mid, iend)
end

end
julia> n = 1000000;
julia> A = [rem(rand(Int32),10) for i =1:n];

julia> @time mergesort_serial(A, 1, n);
elapsed time: 0.646847581 seconds (347445544 bytes allocated)

julia> @time mergesort_parallel(A, 1, n);
elapsed time: 0.391781819 seconds (125981184 bytes allocated)

Distributed Arrays

Distributed Arrays (1/7)

Idea

Large computations are often organized around large arrays of data.

In these cases, a particularly natural way to obtain parallelism is

to distribute arrays among several processes.

This combines the memory resources of multiple machines, allowing use
of arrays too large to fit on one machine.

Each process operates on the part of the array it owns, providing a ready
answer to the question of how a program should be divided among
machines.

The

DArray type

Julia distributed arrays are implemented by the DArray type.

A DArray has an element type and dimensions just like an Array.

A DArray can also use arbitrary array-like types to represent the local
chunks that store actual data.

The data in a DArray is distributed by dividing the index space into some
number of blocks in each dimension.

Distributed Arrays (2/7)

Constructing distributed arrays

Common kinds of arrays can be constructed with functions beginning with d:

dzeros (100,100,10)
dones (100,100,10)
drand(100,100,10)
drandn(100,100,10)
dfill(x, 100,100,10)

In the last case, each element will be initialized to the specified value x. These
functions automatically pick a distribution for you.

Constructing distributed arrays with more control

For more control, you can specify which processors to use, and how the data
should be distributed:

dzeros((100,100), workers()[1:4]1, [1,4]1)

o The second argument specifies that the array should be created on the first
four workers. When dividing data among a large number of processes, one
often sees diminishing returns in performance. Placing DArrays on a subset of
processes allows multiple DArray computations to happen at once, with a
higher ratio of work to communication on each process.

The third argument specifies a distribution; the nth element of this array
specifies how many pieces dimension n should be divided into. In this example
the first dimension will not be divided, and the second dimension will be
divided into 4 pieces. Therefore each local chunk will be of size (100,25).
Note that the product of the distribution array must equal the number of
processors.

ibuted Arrays

Distributed Arrays (3/7)

Constructing distributed arrays with even more control

The primitive DArray constructor has the following somewhat elaborate signature:

DArray(init, dims[, procs, dist])

e init is a function that accepts a tuple of index ranges. This function should

allocate a local chunk of the distributed array and initialize it for the specified

indices.

dims is the overall size of the distributed array.

procs optionally specifies a vector of processor IDs to use.

e dist is an integer vector specifying how many chunks the distributed array
should be divided into in each dimension.

@ The last two arguments are optional, and defaults will be used if they are
omitted.

Example

As an example, here is how to turn the local array constructor fill into a distributed
array constructor:

dfill(v, args...) = DArray(I->fill(v, map(length,I)), args...)

In this case the init function only needs to call fill with the dimensions of the local
piece it is creating.

Distributed Arrays (4/7)

julia> @everywhere function par(I)
create our local patch
I 1is a tuple of intervals, each interval is
regarded as a 1D array with integer entries
size(I[1], 1) gives the number of entries in I[1]
size(I[2], 1) gives the number of entries in I[2]
d=(size(I[1], 1), size(I[2], 1))
m = £ill(myid(), d)
return m
end

julia>

julia> Qeverywhere h=8

julia> Qeverywhere w=8

julia> m = DArray(par, (h, w), [2:5])

8x8 DArray{Int64,2,Array{Int64,2}}:
2 2 2 2 4 4 4 4

W wwwN NN
W wwwN NN
WwwwN NN
WwwwN NN
(SN BN BN RV NENNENN
(SN BN BN RV NENENN
SIS IS RN RIS
(SIS IS RN RIS

Distributed Arrays (5/7)

julia> m.chunks

2x2 Array{RemoteRef,2}:
RemoteRef(2,1,28) RemoteRef (4,1,30)
RemoteRef (3,1,29) RemoteRef(5,1,31)

julia> m.indexes

2x2 Array{(Range1{Int64},Range1{Int64}),2}:
(1:4,1:4) (1:4,5:8)
(5:8,1:4) (5:8,5:8)

julia> @spawn rank(m)
RemoteRef (3,1,289)

julia> @spawn rank(m)
RemoteRef (4,1,290)

julia> @spawn rank(m)
RemoteRef (5,1,291)

julia> exception on 3: exception on 4: exception on ERROR: 5: ERROR: ERROR: no method svdvals (DA
in rank at linalg/generic.jl:87
in anonymous at multi.jl:1239
in anonymous at multi.jl:804
in run_work_thunk at multi.jl:563
in anonymous at task.jl:76

Distributed Arrays (6/7)

@spawnat 2 println(localpart(m)) ### VERSION 2.0
RemoteRef (2,1,292)

julia> mm = @spawnat 2 rank(localpart(m))
RemoteRef (2,1,293)

julia> fetch(mm)

From worker 2: 2 2 2 2
From worker 2: 2 2 2 2
From worker 2: 2 2 2 2
From worker 2: 2 2 2 2
From worker 2:

1

julia> ?DArray
Loading help data...
Base.DArray(init, dims[, procs, distl)

Construct a distributed array. "init" is a function that accepts
a tuple of index ranges. This function should allocate a local
chunk of the distributed array and initialize it for the specified
indices. "dims" is the overall size of the distributed array.
"procs" optionally specifies a vector of processor IDs to use.
"dist" is an integer vector specifying how many chunks the
distributed array should be divided into in each dimension.

For example, the "dfill" function that creates a distributed
array and fills it with a value "v" is implemented as:

"dfill(v, args...) = DArray(I->fill(v, map(length,I)), args...)"

Distributed Arrays

Distributed Arrays (7/7)

Operations on distributed arrays
o distribute(a::Array) converts a local array to a distributed array.

@ localpart(a: :DArray) obtains the locally-stored portion of a
DArray.

e myindexes(a: :DArray) gives a tuple of the index ranges owned by
the local process.

e convert(Array, a::DArray) brings all the data to the local
processor.

o Indexing a DArray (square brackets) with ranges of indexes always
creates a SubArray, not copying any data.

Distributed arrays and parallel reduction (1/4)

[moreno@compute-0-3 ~1$ julia -p 5

A fresh approach to technical computing
Documentation: http://docs.julialang.org
Type "help()" to list help topics

|
|
|
I/ _< 1 |
| Version 0.2.0-prerelease+3622
| Commit c9bb96c 2013-09-04 15:34:41 UTC
| x86_64-redhat-linux
julia> da = @parallel [2i for i = 1:10]
10-element DArray{Int64,1,Array{Int64,1}}:
2
4
6
8
10
12
14
16
18
20

Distributed arrays and parallel reduction (2/4)

julia> procs(da)
4-element Array{Int64,1}:
2

3
4
5

julia> da.chunks
4-element Array{RemoteRef,1}:
RemoteRef (2,1,1)
RemoteRef (3,1,2)
RemoteRef (4,1,3)
RemoteRef (5,1,4)

julia>

julia> da.indexes
4-element Array{(Rangel{Int64},),1}:
(1:3,)
(4:5,)
(6:8,)
(9:10,)

julia> da[3]
6

julia> da[3:5]

3-element SubArray{Int64,1,DArray{Int64,1,Array{Int64,1}}, (Rangel{Int64},)}:

6
8
10

Distributed Arr

Distributed arrays and parallel reduction (3/4)

julia> fetch(@spawnat 2 da[3])
6

julia>

julia> { (@spawnat p sum(localpart(da))) for p=procs(da) }
4-element Array{Any,1}:

RemoteRef (2,1,71)

RemoteRef (3,1,72)

RemoteRef (4,1,73)

RemoteRef (5,1,74)

julia>

julia> map(fetch, { (@spawnat p sum(localpart(da))) for p=procs(da) })
4-element Array{Any,1}:

12

18

42

38

julia>

julia> sum(da)
110

Distributed arrays and parallel reduction (4/4)

julia> reduce(+, map(fetch,
{ (@spawnat p sum(localpart(da))) for p=procs(da) }))
110

julia>
julia> preduce(f,d) = reduce(f,
map (fetch,
{ (@spawnat p f(localpart(d))) for p=procs(d) }))
methods for generic function preduce
preduce(f,d) at none:1

julia>

julia> preduce(min, da)
2

julia>

julia> preduce(max, da)
20

© A Simple Simulation Using Distributed Arrays

A Simple Simulation Using Distributed Arrays

Simulation 1/14

julia> Qeverywhere function SimulationSerial(A,N,T)
for t=0:(T-1)
past = rem(t,3) +1
present = rem(t+1,3) +1
future = rem(t+2,3) + 1

for x=1:N
Alfuture,x] = (A[present,x] + Alpast,x]) / 2
end
end
end
julia>
Comments

@ Consider a simple simulationserial with a stencil of the form
Alt +2,i) = (A[t + 1,4 + A[t,4]) /2
o We start a serial function realizing T time steps at N points.

A Simple Simulation Using Distributed Arrays

Simulation 2/14

julia> N = 16
16

]
~

julia> T
7

julia> A = ones(3,N)
3x16 Array{Float64,2}:

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

julia> SimulationSerial(A, N, T)

Comments

1.0
1
1

.0
.0

1.0
1
1

.0
.0

1.0
1
1

.0
.0

1.0
1.
1.

o We continue with a very simple input data for testing our serial code.

0
0

1.

1
1

0

.0
.0

mulation Using Dis

Simulation 3/14

julia> dA = dones(3,N)
3x16 DArray{Float64,2,Array{Float64,2}}:
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1 1 1. 1. 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1 1 1. 1. 1.0 1.0 1.0 1.0 1.0 1.0 1.0

o o

0 .0 .0 0 1.0
.0 .0 .0 0 1.0
julia> for p=procs(dA) @spawnat p println(localpart(dA)) end

julia> for p=procs(dA) @spawnat p println(((dA.indexes) [p-1])) end

julia> for p=procs(dA) @spawnat p println(size((dA.indexes) [p-11[2],1)) end

julia> From worker 9: 1 1

From worker 9: 1 1
From worker 9: 1 1
From worker 7: 1 1
From worker 7: 1 1

From worker 7: :3,11:12)
From worker 8: (21
From worker 8: :3,13:14)

Comments
o In preparation for a parallel implementation, we review how to manipulate
distributed arrays.

A Simple Simulation Using Distributed Arrays

Simulation 4/14

julia> function SimulationParallel(dA,N,T)

P = length(procs(dA))

Nlocal = [size((dA.indexes) [w][2],1) for w=1:P]

refs = [@spawnat (procs(dA)) [w]

SimulationSerial ((localpart(dA)),
Nlocal[w], T) for w=1:P]
pmap (fetch,refs)
end

methods for generic function SimulationParallel
SimulationParallel(dA,N,T) at none:2

Comments
@ In this code, each worker updates its local part without exchanging data with
the other workers
@ Remote calls get workers to start computing at essentially the same time
@ The last statement of the code forces the workers to complete before
returning from the function

Simulation 5/14

julia> N = 1000000

1000000

julia> T = 1000
1000

julia> A = ones(3,N)
3x1000000 Array{Float64,2}:
1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1,
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
julia> @time SimulationSerial(A, N, T)
elapsed time: 4.09132303 seconds (6896 bytes allocated)

Comments

o Now we consider a large example with 1,000,000 points and 1,000 time steps.
@ The serial code runs in 4 seconds.

Simulation 6/14

julia> dA = dones(3,N)
3x1000000 DArray{Float64,2,Array{Float64,2}}:

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

julia> @time SimulationParallel(dA,N,T)
elapsed time: 0.852344034 seconds (8973220 bytes allocated)
8-element Array{Any,1}:

nothing

nothing

nothing

nothing

nothing

nothing

nothing

nothing

Comments
@ Our first parallel function runs 5 times faster on 8 cores. J

e Simulation Using Distributed 4

Simulation 7/14

julia> function SimulationParallelWithSynchronization(dA,N,T)
Ps = procs(dA)
P = length(procs(dA))
Nlocal = [size((dA.indexes) [w][2],1) for w=1:P]
for t=0:(T-1)
for w=1:P
@spawnat Ps[w] SimulationSerial((localpart(dA)),Nlocallw], 1)
end
for w=1:P
@spawnat Ps[w] (localpart(dA) [1,1] = dA[1,N])
end
the above inner loop consumnes a lot of resources
end
end
methods for generic function SimulationParallelWithSynchronization
SimulationParallelWithSynchronization(dA,N,T) at none:2

Comments

o Now we consider a more challenging situation where synchronization (among
workers) and data communication are needed after time step.

Simulation 8/14

julia> N = 1000000
1000000

julia> T = 1000
1000

julia> A = ones(3,N)
3x1000000 Array{Float64,2}:

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

julia> @time SimulationSerial(A, N, T)
elapsed time: 4.064461911 seconds (48 bytes allocated)

julia> dA = dones(3,N)

3x1000000 DArray{Float64,2,Array{Float64,2}}:

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
julia> @time SimulationParallelWithSynchronization(dA,N,T)

elapsed time: 9.485898884 seconds (1616870028 bytes allocated)

Comments

@ This results in a severe slow-down: the new parallel code is twice slower than
the serial code.

Simulation 9/14

julia> function SimulationParallelWithLessSynchronization(dA,N,T,s)
Ps = procs(dA)
P = length(procs(dA))
Nlocal = [size((dA.indexes) [w][2],1) for w=1:P]
for t=0:(div(T-1,s))

for w=1:P
@spawnat Ps[w] SimulationSerial((localpart(dA)),Nlocallw], s)
end
for w=1:P
@spawnat Ps[w] (localpart(dA) [1,1] = dA[1,N])
end
end

end
methods for generic function SimulationParallelWithLessSynchronization
SimulationParallelWithLessSynchronization(dA,N,T,s) at none:2

Comments

@ Assume now that synchronization (among workers) and data communication
are needed after s time step, where s is an extra argument of the function.

A Simple Simulation Using Distributed Arrays

Simulation 10/14

julia> dA = dones(3,N)

3x1000000 DArray{Float64,2,Array{Float64,2}}:
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
julia> @time SimulationParallelWithLessSynchronization(dA,N,T,10)
elapsed time: 1.179147254 seconds (164115192 bytes allocated)

Comments

@ This new paralle code runs 4 times faster (than the serial code) on 8 cores.

Simulation 11/14

julia> N = 1000000
1000000

julia> T = 10000
10000

julia> A = ones(3,N)
3x1000000 Array{Float64,2}:
1.0 1.0 1.0 1.0 1
1.0 1.0 1.0

.0 1.0 1.
.0 1.0 1.
1.0 1.0 1.0 .0 1.0 1.

o O O

1.0
1.0 1.0
1.0 1.0

julia> @time SimulationSerial(A, N, T)

1.0

1.0

1.0 1.0

elapsed time: 40.770635487 seconds (48 bytes allocated)

Comments

@ From now on, T is multiplied by 10.
@ Which multiplies the serial time by 10.

1.0

A Simple Simulation Using Distributed Arrays

Simulation 12/14

julia> dA = dones(3,N)
3x1000000 DArray{Float64,2,Array{Float64,2}}:

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
julia> @time SimulationParallel(dA,N,T)
elapsed time: 7.98175345 seconds (893176 bytes allocated)
8-element Array{Any,1}:

nothing

nothing

nothing

nothing

nothing

nothing

nothing

nothing

Comments

@ The parallel time without communication is also multiplied by 10.

1.0 1.0 1.0

1.0 1.0 1.0
1.0 1.0 1.0

A Simple Simulation Using Distributed A

Simulation 14/14

julia> @time SimulationParallelWithSynchronization(dA,N,T)
elapsed time: 94.399175214 seconds (16163168632 bytes allocated)

julia> dA
3x1000000 DArray{Float64,2,Array{Float64,2}}:
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
julia>

julia> @time SimulationParallelWithLessSynchronization(dA,N,T,10)
elapsed time: 9.869345881 seconds (1635620080 bytes allocated)

Comments
@ The parallel time with lots of communication and synchronization is also
multiplied by 10.
@ The parallel time with few communication and synchronization is only
multiplied by 8.

	Preliminaries: Coroutines
	Julia's Prnciples for Parallel Computing
	Tips on Moving Code and Data
	Around the Parallel Julia Code for Fibonacci
	Parallel Maps and Reductions
	Synchronization
	Distributed Arrays
	A Simple Simulation Using Distributed Arrays

