Exercises for lab 5 of CS2101a

Instructor: Marc Moreno Maza, TA: Xiaohui Chen

Thursday 10 October 2013

1 Exercise 1

The goal of this exercise is, for an input array A of integer numbers, compute the
maximum value and the minimum value of an entry of A. To learn more about
this problem and an algorithmic solution, you should listen to the following
video lecture

http://www.youtube.com/watch?v=dEyR19Tj83g

1. Write a Julia function that computes the maximum element and mini-
mum element of an array A using the divide and conquer algorithm de-
scribed in this video lecture.

2. Write a parallel Julia function for the same problem of computing the
maximum and minimum value of an entry of A. You should use the Julia
parallel constructs presented in class.

2 Exercise 2

The goal of this exercise is to obtain a parallel Julia implementation of the
merge-sort algorithm. You can review this algorithm at

http://en.wikipedia.org/wiki/Merge_sort

You will find there several ways of presenting this algorithm. The one of the
Top-down implementation section is similar to that proposed as solution of Lab
3. They both overwritten the input array. In other words, their sorting process
can be seen as in place ! To learn more about this idea of working-in-place, read
the page

http://en.wikipedia.org/wiki/In-place_algorithm

And to learn more about performing merge-sort in-place, read the page

http://stackoverflow.com/questions/2571049/how-to-sort-in-place-using-the-merge-sort-alg

Hn fact, this is not completely true since an intermediate array, or work array, B is used.



or the page

http://www.personal.kent.edu/ rmuhamma/Algorithms/MyAlgorithms/Sorting/mergeSort.htm

Merge-sort can also be done out-of-place, that is, without modifying the
input array and by returning a new and sorted array. To see an example, look
at the first pseudo-code area at the top of the page

http://rosettacode.org/wiki/Sorting algorithms/Merge_sort

If the in-place solution seems more efficient (as it consumes less resources)
the out-of-place is less tricky to implement. For that reason, we want to consider
both in this exercise.

1. Write two Julia functions for serial merge-sort:

(a) one in-place version,

(b) one out-of-place version.

2. Write a parallel Julia function based on one of your serial merge-sort
functions.

3. It is likely that this parallel function run slower than its serial counterpart.
To fix this, one possible trick is to make use of a base-case as we did in
the solution of Exercise 3 in Lab 4. You are requested to experiment with
different base-cases and collect experimental results.



