
Cache Memories

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS2101 March 2012

(Moreno Maza) Cache Memories CS2101 March 2012 1 / 54

Plan

1 Hierarchical memories and their impact on our programs

2 Cache Analysis in Practice

(Moreno Maza) Cache Memories CS2101 March 2012 2 / 54

Hierarchical memories and their impact on our programs

Plan

1 Hierarchical memories and their impact on our programs

2 Cache Analysis in Practice

(Moreno Maza) Cache Memories CS2101 March 2012 3 / 54

Hierarchical memories and their impact on our programs

Capacity
Access Time
Cost

Staging
Xfer Unit

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 d L2 C h

Registers

L1 Cache
Instr. Operands prog./compiler

1-8 bytes

Upper Level

faster

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

L1 Cache
Blocks

cache cntl
32-64 bytes

L2 Cache
h tl

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Memory
OS

cache cntl
64-128 bytesBlocks

Disk
10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Disk

Pages OS
4K-8K bytes

user/operator $1 / GByte

Tape
infinite
sec-min

Tape

Files user/operator
Mbytes

Lower Level
Larger

sec min
~$1 / GByte

(Moreno Maza) Cache Memories CS2101 March 2012 4 / 54

Hierarchical memories and their impact on our programs

CPU Cache (1/7)

A CPU cache is an auxiliary memory which is smaller, faster memory
than the main memory and which stores copies of the main memory
locations that are expectedly frequently used.

Most modern desktop and server CPUs have at least three
independent caches: the data cache, the instruction cache and the
translation look-aside buffer.

(Moreno Maza) Cache Memories CS2101 March 2012 5 / 54

Hierarchical memories and their impact on our programs

CPU Cache (2/7)

Each location in each memory (main or cache) has

a datum (cache line) which ranges between 8 and 512 bytes in size,
while a datum requested by a CPU instruction ranges between 1 and
16.
a unique index (called address in the case of the main memory)

In the cache, each location has also a tag (storing the address of the
corresponding cached datum).

(Moreno Maza) Cache Memories CS2101 March 2012 6 / 54

Hierarchical memories and their impact on our programs

CPU Cache (3/7)

When the CPU needs to read or write a location, it checks the cache:

if it finds it there, we have a cache hit
if not, we have a cache miss and (in most cases) the processor needs to
create a new entry in the cache.

Making room for a new entry requires a replacement policy: the Least
Recently Used (LRU) discards the least recently used items first; this
requires to use age bits.

(Moreno Maza) Cache Memories CS2101 March 2012 7 / 54

Hierarchical memories and their impact on our programs

CPU Cache (4/7)

Read latency (time to read a datum from the main memory) requires
to keep the CPU busy with something else:

out-of-order execution: attempt to execute independent instructions
arising after the instruction that is waiting due to the
cache miss

hyper-threading (HT): allows an alternate thread to use the CPU

(Moreno Maza) Cache Memories CS2101 March 2012 8 / 54

Hierarchical memories and their impact on our programs

CPU Cache (5/7)

Modifying data in the cache requires a write policy for updating the
main memory

- write-through cache: writes are immediately mirrored to main
memory

- write-back cache: the main memory is mirrored when that data is
evicted from the cache

The cache copy may become out-of-date or stale, if other processors
modify the original entry in the main memory.

(Moreno Maza) Cache Memories CS2101 March 2012 9 / 54

Hierarchical memories and their impact on our programs

CPU Cache (6/7)

The replacement policy decides where in the cache a copy of a
particular entry of main memory will go:

- fully associative: any entry in the cache can hold it
- direct mapped: only one possible entry in the cache can hold it
- N-way set associative: N possible entries can hold it

(Moreno Maza) Cache Memories CS2101 March 2012 10 / 54

Hierarchical memories and their impact on our programs

Cache Performance for SPEC CPU2000 by J.F. Cantin and M.D. Hill.

The SPEC CPU2000 suite is a collection of 26 compute-intensive, non-trivial
programs used to evaluate the performance of a computer’s CPU, memory
system, and compilers (http://www.spec.org/osg/cpu2000).

(Moreno Maza) Cache Memories CS2101 March 2012 11 / 54

Hierarchical memories and their impact on our programs

Cache issues

Cold miss: The first time the data is available. Cure: Prefetching
may be able to reduce this type of cost.

Capacity miss: The previous access has been evicted because too
much data touched in between, since the working data set is too
large. Cure: Reorganize the data access such that reuse occurs before
eviction.

Conflict miss: Multiple data items mapped to the same location with
eviction before cache is full. Cure: Rearrange data and/or pad arrays.

True sharing miss: Occurs when a thread in another processor wants
the same data. Cure: Minimize sharing.

False sharing miss: Occurs when another processor uses different
data in the same cache line. Cure: Pad data.

(Moreno Maza) Cache Memories CS2101 March 2012 12 / 54

Hierarchical memories and their impact on our programs

A typical matrix multiplication C code

#define IND(A, x, y, d) A[(x)*(d)+(y)]

uint64_t testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended;

float timeTaken;

int i, j, k;

srand(getSeed());

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

// A[i][j] += B[i][k] + C[k][j];

IND(A,i,j,y) += IND(B,i,k,z) * IND(C,k,j,z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

} (Moreno Maza) Cache Memories CS2101 March 2012 13 / 54

Hierarchical memories and their impact on our programs

Issues with matrix representation

A

=

B

C
x

Contiguous accesses are better:

Data fetch as cache line (Core 2 Duo 64 byte L2 Cache line)
With contiguous data, a single cache fetch supports 8 reads of doubles.
Transposing the matrix C should reduce L1 cache misses!

(Moreno Maza) Cache Memories CS2101 March 2012 14 / 54

Hierarchical memories and their impact on our programs

Transposing for optimizing spatial locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended; float timeTaken; int i, j, k;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

Cx = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for(j =0; j < y; j++)

for(k=0; k < z; k++)

IND(Cx,j,k,z) = IND(C, k, j, y);

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

IND(A, i, j, y) += IND(B, i, k, z) *IND(Cx, j, k, z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

} (Moreno Maza) Cache Memories CS2101 March 2012 15 / 54

Hierarchical memories and their impact on our programs

Issues with data reuse

C

1024 1024384

4

A B

C= x

10
24

10
24

38
4

Naive calculation of a row of A, so computing 1024 coefficients: 1024
accesses in A, 384 in B and 1024× 384 = 393, 216 in C. Total
= 394, 524.

Computing a 32× 32-block of A, so computing again 1024
coefficients: 1024 accesses in A, 384× 32 in B and 32× 384 in C.
Total = 25, 600.

The iteration space is traversed so as to reduce memory accesses.

(Moreno Maza) Cache Memories CS2101 March 2012 16 / 54

Hierarchical memories and their impact on our programs

Blocking for optimizing temporal locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended; float timeTaken; int i, j, k, i0, j0, k0;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)

for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,k0,j0,z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}
(Moreno Maza) Cache Memories CS2101 March 2012 17 / 54

Hierarchical memories and their impact on our programs

Transposing and blocking for optimizing data locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended; float timeTaken; int i, j, k, i0, j0, k0;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)

for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,j0,k0,z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}
(Moreno Maza) Cache Memories CS2101 March 2012 18 / 54

Hierarchical memories and their impact on our programs

Experimental results

Computing the product of two n × n matrices on my laptop (Core2 Duo
CPU P8600 @ 2.40GHz, L1 cache of 3072 KB, 4 GBytes of RAM)

n naive transposed speedup 64× 64-tiled speedup t. & t. speedup
128 7 3 7 2
256 26 43 155 23
512 1805 265 6.81 1928 0.936 187 9.65
1024 24723 3730 6.62 14020 1.76 1490 16.59
2048 271446 29767 9.11 112298 2.41 11960 22.69
4096 2344594 238453 9.83 1009445 2.32 101264 23.15

Timings are in milliseconds.

The cache-oblivious multiplication (more on this later) runs within 12978
and 106758 for n = 2048 and n = 4096 respectively.

(Moreno Maza) Cache Memories CS2101 March 2012 19 / 54

Hierarchical memories and their impact on our programs

Other performance counters

Hardware count events

CPI Clock cycles Per Instruction: the number of clock cycles that
happen when an instruction is being executed. With pipelining we can
improve the CPI by exploiting instruction level parallelism

L1 and L2 Cache Miss Rate.

Instructions Retired: In the event of a misprediction, instructions that
were scheduled to execute along the mispredicted path must be
canceled.

(Moreno Maza) Cache Memories CS2101 March 2012 20 / 54

Hierarchical memories and their impact on our programs

Analyzing cache misses in the naive and transposed
multiplication

A

=

B

C
x

Let A, B and C have format (m, n), (m, p) and (p, n) respectively.
A is scanned one, so mn/L cache misses if L is the number of
coefficients per cache line.
B is scanned n times, so mnp/L cache misses if the cache cannot
hold a row.
C is accessed “nearly randomly” (for m large enough) leading to mnp
cache misses.
Since 2m n p arithmetic operations are performed, this means roughly
one cache miss per flop!
If C is transposed, then the ratio improves to 1 for L.

(Moreno Maza) Cache Memories CS2101 March 2012 21 / 54

Hierarchical memories and their impact on our programs

Analyzing cache misses in the tiled multiplication

C

1024 1024384

4

A B

C= x

10
24

10
24

38
4

Let A, B and C have format (m, n), (m, p) and (p, n) respectively.

Assume all tiles are square of order B and three fit in cache.

If C is transposed, then loading three blocks in cache cost 3B2/L.

This process happens n3/B3 times, leading to 3n3/(BL) cache misses.

Three blocks fit in cache for 3B2 < Z , if Z is the cache size.

So O(n3/(
√

Z L)) cache misses, if B is well chosen, which is optimal.

(Moreno Maza) Cache Memories CS2101 March 2012 22 / 54

Hierarchical memories and their impact on our programs

Counting sort: the algorithm

Counting sort takes as input a collection of n items, each of which
known by a key in the range 0 · · · k .

The algorithm computes a histogram of the number of times each key
occurs.

Then performs a prefix sum to compute positions in the output.

allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

(Moreno Maza) Cache Memories CS2101 March 2012 23 / 54

Hierarchical memories and their impact on our programs

Counting sort: cache complexity analysis

allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

1 n/L to compute k.
2 k/L cache misses to initialize Count.
3 n/L + n cache misses for the histogram (worst case).
4 k/L cache misses for the prefix sum.
5 n/L + n + n cache misses for building Output (worst case).

Total: 3n+3n/L + 2k/L cache misses (worst case).
(Moreno Maza) Cache Memories CS2101 March 2012 24 / 54

Hierarchical memories and their impact on our programs

How to fix the poor data locality of counting sort?

allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

Recall that our worst case is 3n+3n/L + 2k/L cache misses.

The troubles come from the irregular accesses to Count and Output

which experience capacity misses and conflict misses.

To solve this problem, we preprocess the input to make it feel like k is
smaller (A. S. Haque & M3, 2010).

(Moreno Maza) Cache Memories CS2101 March 2012 25 / 54

Hierarchical memories and their impact on our programs

Counting sort: bukecting the input

alloacate an array bucketsize[0..m-1]; initialize each array cell to zero

for each input item x:

bucketsize[floor(key(x) / m] := bucketsize[floor(key(x) / (k/ m)] + 1

total = 0

for i = 0, 1, ... m-1:

c = bucketsize[i];

bucketsize[i] = total; total = total + c

alloacate an array bucketedinput[0..n-1];

for each input item x:

q := floor(key(x) / (k/m))

bucketedinput[bucketsize[q]] := key(x)

bucketsize[q] := bucketsize[q] + 1

return bucketedinput

The goal of the above is to preprocess the input such that accessing
Count and Output imply cold misses only.
To this end we choose a parameter m (more on this later) such that

1 a key in the range [ih, (i + 1)h − 1] is always before a key in the range
[(i + 1)h, (i + 2)h − 1], for i = 0 · · ·m − 2, with h = k/m,

2 bucketsize and m array segments from bucketedinput together fit
in cache. That is: m + mL ≤ Z .

(Moreno Maza) Cache Memories CS2101 March 2012 26 / 54

Hierarchical memories and their impact on our programs

Counting sort: cache complexity with bukecting

alloacate an array bucketsize[0..m-1]; initialize each array cell to zero

for each input item x:

bucketsize[floor(key(x) / m] := bucketsize[floor(key(x) / (k/m)] + 1

total = 0

for i = 0, 1, ... m-1:

c = bucketsize[i]

bucketsize[i] = total

total = total + c

alloacate an array bucketedinput[0..n-1];

for each input item x:

q := floor(key(x) / (k/m))

bucketedinput[bucketsize[q]] := key(x)

bucketsize[q] := bucketsize[q] + 1

return bucketedinput

1 2m/L + n/L caches misses to compute bucketsize

2 Key observation: bucketedinput is traversed regularly by segment.
3 Hence, 2n/L + m + m/L caches misses to compute bucketedinput

Preprocessing: 3n/L + 3m/L + m cache misses.

(Moreno Maza) Cache Memories CS2101 March 2012 27 / 54

Hierarchical memories and their impact on our programs

Cache friendly counting sort

The preprocessing creates intermediate arrays of size m.

After preprocessing, counting sort to each segment whose values are
in a range [ih, (i + 1)h − 1], for i = 0 · · ·m − 1.

To be cache-friendly, this requires
h + |{key ∈ [ih, (i + 1)h − 1]}| < Z . and m < Z/(1 + L). These two
are very realistic assumption considering todays cache size.

and the total complexity becomes

3n/L + 3m/L + m (preprocessing) + 4n/L + 4k/L + 3m (sorting)

that is in total 7n/L + 4k/L + 3m/L + 4m cache misses

instead of 3n+3n/L + 2k/L.

(Moreno Maza) Cache Memories CS2101 March 2012 28 / 54

Hierarchical memories and their impact on our programs

Cache friendly counting sort: experimental results

Experimentation on an Intel(R) Core(TM) i7 CPU @ 2.93GHz. It has
L2 cache of 8MB.

CPU times in seconds for both classical and cache-friendly counting
sort algorithm.

The keys are random machine integers in the range [0, n].

n classical cache-oblivious
counting counting sort

sort (preprocessing + sorting)

100000000 13.74 4.66 (3.04 + 1.62)

200000000 30.20 9.93 (6.16 + 3.77)

300000000 50.19 16.02 (9.32 + 6.70)

400000000 71.55 22.13 (12.50 +9.63)

500000000 94.32 28.37 (15.71 + 12.66)

600000000 116.74 34.61 (18.95 + 15.66)

(Moreno Maza) Cache Memories CS2101 March 2012 29 / 54

Cache Analysis in Practice

Plan

1 Hierarchical memories and their impact on our programs

2 Cache Analysis in Practice

(Moreno Maza) Cache Memories CS2101 March 2012 30 / 54

Cache Analysis in Practice

Basic idea of a cache memory (review)

Cache

Memory……Cache Lines

A cache is a smaller memory, faster to access

Using smaller memory to cache contents of larger memory provides
the illusion of fast larger memory

Key reason why this works: temporal locality and spatial locality.

(Moreno Maza) Cache Memories CS2101 March 2012 31 / 54

Cache Analysis in Practice

A simple cache example

Cache

Memory……Cache Lines

Byte addressable memory
Size of 32Kbyte with direct mapping and 64 byte lines (512 lines) so
the cache can fit 29 × 24 = 213 int.
“Therefore” successive 32Kbyte memory blocks line up in cache
A cache access costs 1 cycle while a memory access costs 100 cycles.
How addresses map into cache

Bottom 6 bits are used as offset in a cache line,
Next 9 bits determine the cache line

(Moreno Maza) Cache Memories CS2101 March 2012 32 / 54

Cache Analysis in Practice

Exercise 1 (1/2)

// sizeof(int) = 4 and Array laid out sequentially in memory

#define S ((1<<20)*sizeof(int))

int A[S];

// Thus size of A is 2^(20) x 4 bytes

for (i = 0; i < S; i++) {

read A[i];

}

Memory

A

Total access time? What kind of locality? What kind of misses?
(Moreno Maza) Cache Memories CS2101 March 2012 33 / 54

Cache Analysis in Practice

Exercise 1 (2/2)

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[i];

}

S reads to A.

16 elements of A per cache line

15 of every 16 hit in cache.

Total access time: 15(S/16) + 100(S/16).

spatial locality, cold misses.

(Moreno Maza) Cache Memories CS2101 March 2012 34 / 54

Cache Analysis in Practice

Exercise 2 (1/2)

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[0];

}

Memory

A

Total access time? What kind of locality? What kind of misses?

(Moreno Maza) Cache Memories CS2101 March 2012 35 / 54

Cache Analysis in Practice

Exercise 2 (2/2)

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[0];

}

S reads to A

All except the first one hit in cache.

Total access time: 100 + (S − 1).

Temporal locality

Cold misses.

(Moreno Maza) Cache Memories CS2101 March 2012 36 / 54

Cache Analysis in Practice

Exercise 3 (1/2)

// Assume 4 <= N <= 13

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[i % (1<<N)];

}

Memory

A Cache

Total access time? What kind of locality? What kind of misses?
(Moreno Maza) Cache Memories CS2101 March 2012 37 / 54

Cache Analysis in Practice

Exercise 3 (2/2)

// Assume 4 <= N <= 13

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[i % (1<<N)];

}

S reads to A

One miss for each accessed line, rest hit in cache.

Number of accessed lines: 2N−4.

Total access time: 2N−4100 + (S − 2N−4).

Temporal and spatial locality

Cold misses.

(Moreno Maza) Cache Memories CS2101 March 2012 38 / 54

Cache Analysis in Practice

Exercise 4 (1/2)

// Assume 14 <= N

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[i % (1<<N)];

}

Memory

A Cache

Total access time? What kind of locality? What kind of misses?
(Moreno Maza) Cache Memories CS2101 March 2012 39 / 54

Cache Analysis in Practice

Exercise 4 (2/2)

// Assume 14 <= N

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[i % (1<<N)];

}

S reads to A.

First access to each line misses

Rest accesses to that line hit.

Total access time: 15(S/16) + 100(S/16).

Spatial locality

Cold and capacity misses.

(Moreno Maza) Cache Memories CS2101 March 2012 40 / 54

Cache Analysis in Practice

Exercise 5 (1/2)

// Assume 14 <= N

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[(i*16) % (1<<N)];

}

Memory

A Cache

Data Fetched
But Not AccessedBut Not Accessed

Total access time? What kind of locality? What kind of misses?
(Moreno Maza) Cache Memories CS2101 March 2012 41 / 54

Cache Analysis in Practice

Exercise 5 (2/2)

// Assume 14 <= N

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[(i*16) % (1<<N)];

}

S reads to A.

First access to each line misses

One access per line.

Total access time: 100S .

No locality!

Cold and conflict misses.

(Moreno Maza) Cache Memories CS2101 March 2012 42 / 54

Cache Analysis in Practice

Exercise 6 (1/2)

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[random()%S];

}

Memory

A Cache

Total access time? What kind of locality? What kind of misses?

(Moreno Maza) Cache Memories CS2101 March 2012 43 / 54

Cache Analysis in Practice

Exercise 6 (2/2)

#define S ((1<<20)*sizeof(int))

int A[S];

for (i = 0; i < S; i++) {

read A[random()%S];

}

S reads to A.

After N iterations, for some N, the cache is full.

Them the chance of hitting in cache is 32Kb/16Mb = 1/512

Estimated total access time: S(511/512)100 + S(1/512).

Almost no locality!

Cold, capacity conflict misses.

(Moreno Maza) Cache Memories CS2101 March 2012 44 / 54

Cache Analysis in Practice

Exercise 7 (1/2)

#define S ((1<<19)*sizeof(int))

int A[S];

int B[S];

for (i = 0; i < S; i++) {

read A[i], B[i];

}

Memory

A Cache

B

Total access time? What kind of locality? What kind of misses?
(Moreno Maza) Cache Memories CS2101 March 2012 45 / 54

Cache Analysis in Practice

Exercise 7 (2/2)

#define S ((1<<19)*sizeof(int))

int A[S];

int B[S];

for (i = 0; i < S; i++) {

read A[i], B[i];

}

S reads to A and B.

A and B interfere in cache: indeed two cache lines whose addresses
differ by a multiple of 29 have the same way to cache.

Total access time: 200S .

Spatial locality but the cache cannot exploit it.

Cold and conflict misses.

(Moreno Maza) Cache Memories CS2101 March 2012 46 / 54

Cache Analysis in Practice

Exercise 8 (1/2)

#define S ((1<<19+4)*sizeof(int))

int A[S];

int B[S];

for (i = 0; i < S; i++) {

read A[i], B[i];

}

Memory

A Cache

B

Total access time? What kind of locality? What kind of misses?
(Moreno Maza) Cache Memories CS2101 March 2012 47 / 54

Cache Analysis in Practice

Exercise 8 (2/2)

#define S ((1<<19+4)*sizeof(int))

int A[S];

int B[S];

for (i = 0; i < S; i++) {

read A[i], B[i];

}

S reads to A and B.

A and B almost do not interfere in cache.

Total access time: 2(15S/16 + 100S/16).

Spatial locality.

Cold misses.

(Moreno Maza) Cache Memories CS2101 March 2012 48 / 54

Cache Analysis in Practice

Set Associative Caches

Way 0 Way 1

…Sets

Set associative caches have sets with multiple lines per set.

Each line in a set is called a way

Each memory line maps to a specific set and can be put into any
cache line in its set

In our example, we assume a 32 Kbyte cache, with 64 byte lines,
2-way associative. Hence we have:

256 sets
Bottom six bits determine offset in cache line
Next 8 bits determine the set.

(Moreno Maza) Cache Memories CS2101 March 2012 49 / 54

Cache Analysis in Practice

Exercise 9 (1/2)

#define S ((1<<19)*sizeof(int))

int A[S];

int B[S];

for (i = 0; i < S; i++) {

read A[i], B[i];

}

A Cache

B

Total access time? What kind of locality? What kind of misses?
(Moreno Maza) Cache Memories CS2101 March 2012 50 / 54

Cache Analysis in Practice

Exercise 9 (2/2)

#define S ((1<<19)*sizeof(int))

int A[S];

int B[S];

for (i = 0; i < S; i++) {

read A[i], B[i];

}

S reads to A and B.

A and B lines hit same set, but enough lines in a set.

Total access time: 2(15S/16 + 100S/16).

Spatial locality.

Cold misses.

(Moreno Maza) Cache Memories CS2101 March 2012 51 / 54

Cache Analysis in Practice

Tuned cache-oblivious matrix transposition benchmarks

size Naive Cache-oblivious ratio

5000x5000 126 79 1.59
10000x10000 627 311 2.02
20000x20000 4373 1244 3.52
30000x30000 23603 2734 8.63
40000x40000 62432 4963 12.58

Intel(R) Xeon(R) CPU E7340 @ 2.40GHz

L1 data 32 KB, L2 4096 KB, cache line size 64bytes

Both codes run on 1 core

The ration comes simply from an optimal memory access pattern.

(Moreno Maza) Cache Memories CS2101 March 2012 52 / 54

Cache Analysis in Practice

Tuned cache-oblivious matrix multiplication

(Moreno Maza) Cache Memories CS2101 March 2012 53 / 54

Cache Analysis in Practice

Acknowledgements and references

Acknowledgements.

Charles E. Leiserson (MIT) and Matteo Frigo (Intel) for providing me
with the sources of their article Cache-Oblivious Algorithms.

Charles E. Leiserson (MIT) and Saman P. Amarasinghe (MIT) for
sharing with me the sources of their course notes and other
documents.

References.

Cache-Oblivious Algorithms by Matteo Frigo, Charles E. Leiserson,
Harald Prokop and Sridhar Ramachandran.

Cache-Oblivious Algorithms and Data Structures by Erik D. Demaine.

(Moreno Maza) Cache Memories CS2101 March 2012 54 / 54

	Hierarchical memories and their impact on our programs
	Cache Analysis in Practice

