Cache Memories J

Marc Moreno Maza
University of Western Ontario, London, Ontario (Canada)

CS2101 March 2012

(Moreno Maza) Cache Memories CS2101 March 2012 1/54

Plan

@ Hierarchical memories and their impact on our programs

@ Cache Analysis in Practice

(Moreno Maza) Cache Memories CS2101 March 2012 2 /54

Hierarchical memories and their impact on our programs

@ Hierarchical memories and their impact on our programs

(Moreno Maza) Cache Memories CS2101 March 2012 3 /54

Hierarchical memories and their impact on our programs

Capacity .
Access Time Staging
Cost Xfer Unit
CPU Registers ; Upper Level
100s Bytes Registers prog./compiler PP
300 - 500 ps (0.3-0.5ns) Instr. Operands 1-8 bytes faster
L1and L2 Cache L1 Cache
10s-100s K Bytes cache cntl
~1ns-~10ns Blocks 32-64 bytes
1 B
$1000s/ GByte L2 Cache
cache cntl
Main Memory I Blocks 64-128 bytes
G Bytes
80ns- 200ns Memory
~ $100/ GByte os
Pages 4K-8K bytes
Disk
10s T Bytes, 10 ms ;
(10,000,000 ns) Disk
~$1/GByte . user/operator
Files Mbytes
Larger
Tape
infinite Tape Lower Level
sec-min
~$1/ GByte

(Moreno Maza)

Cache Memories

CS2101 March 2012 4 /54

CPU Cache (1/7)

Main Cache
Memory Memory
Index Data Index &g Data

0 xyz 0 2 abc

1 pdq >< 1 0 xyz

2 abc

3 rgf

@ A CPU cache is an auxiliary memory which is smaller, faster memory
than the main memory and which stores copies of the main memory
locations that are expectedly frequently used.

@ Most modern desktop and server CPUs have at least three
independent caches: the data cache, the instruction cache and the
translation look-aside buffer.

(Moreno Maza) Cache Memories CS2101 March 2012 5 /54

CPU Cache (2/7)

Main Cache
Memory Memory
Index Data Index &g Data

0 xyz 0 2 abc

1 pdq >< 1 0 xyz

2 abc

3 rof

@ Each location in each memory (main or cache) has
e a datum (cache line) which ranges between 8 and 512 bytes in size,
while a datum requested by a CPU instruction ranges between 1 and
16.
e a unique index (called address in the case of the main memory)
@ In the cache, each location has also a tag (storing the address of the
corresponding cached datum).

(Moreno Maza) Cache Memories CS2101 March 2012 6 /54

CPU Cache (3/7)

Main Cache
Memory Memory
Index Data Index &g Data

0 xyz 0 2 abc

1 pdq >< 1 0 xyz

2 abc

3 rgf

@ When the CPU needs to read or write a location, it checks the cache:
e if it finds it there, we have a cache hit
o if not, we have a cache miss and (in most cases) the processor needs to
create a new entry in the cache.
@ Making room for a new entry requires a replacement policy: the Least
Recently Used (LRU) discards the least recently used items first; this
requires to use age bits.

(Moreno Maza) Cache Memories CS2101 March 2012 7 /54

Hierarchical memories and their impact on our programs

CPU Cache (4/7)

Main Cache
Memory Memory
Index Data Index &g Data

0 xyz 0 2 abc

1 pdq >< 1 0 xyz

2 abc

3 rgf

@ Read latency (time to read a datum from the main memory) requires
to keep the CPU busy with something else:
out-of-order execution: attempt to execute independent instructions

arising after the instruction that is waiting due to the

cache miss

hyper-threading (HT): allows an alternate thread to use the CPU

(Moreno Maza)

Cache Memories

CS2101 March 2012

8 /54

CPU Cache (5/7)

Main Cache
Memory Memory
Index Data Index &g Data

0 xyz 0 2 abc

1 pdq >< 1 0 xyz

2 abc

3 rgf

@ Modifying data in the cache requires a write policy for updating the
main memory
- write-through cache: writes are immediately mirrored to main
memory
- write-back cache: the main memory is mirrored when that data is
evicted from the cache
@ The cache copy may become out-of-date or stale, if other processors
modify the original entry in the main memory.

(Moreno Maza) Cache Memories CS2101 March 2012 9 /54

CPU Cache (6/7)

Direct Mapped 2-Way Associative
Cache Fill Cache Fill
Main Main
Memory Cache Memory Cache
Index Memory Index Memory
0 Index 0 0 Index 0, Way 0
1 Index 1 1 Index 0, Way 1
2 Index 2 2 Index 1, Way 0
3 Index 3 3 Index 1, Way 1
4 4
5 5
Ea(h locatian in main memory can be Ea(h location in main memory can be
cached by justane cache beation. cached by one of two cache bcations.

@ The replacement policy decides where in the cache a copy of a
particular entry of main memory will go:
- fully associative: any entry in the cache can hold it
- direct mapped: only one possible entry in the cache can hold it
- N-way set associative: N possible entries can hold it

(Moreno Maza) Cache Memories CS2101 March 2012 10 / 54

Hierarchical memories and their impact on our programs

01 T T T T T
Direct ———
2-way ——
4-way ———
001 |- Y -
8-way
Full ——
0.001 | -
o)
& L
8 00001 | —
E
1e-005 | -
1e-006 —
I I I I |
1K K 16K 64K 256K Y] nf

cache size

@ Cache Performance for SPEC CPU2000 by J.F. Cantin and M.D. Hill.

@ The SPEC CPU2000 suite is a collection of 26 compute-intensive, non-trivial
programs used to evaluate the performance of a computer’'s CPU, memory
system, and compilers (http://www.spec.org/osg/cpu2000).

(Moreno Maza) Cache Memories CS2101 March 2012 11 / 54

Cache issues

@ Cold miss: The first time the data is available. Cure: Prefetching
may be able to reduce this type of cost.

@ Capacity miss: The previous access has been evicted because too
much data touched in between, since the working data set is too
large. Cure: Reorganize the data access such that reuse occurs before
eviction.

o Conflict miss: Multiple data items mapped to the same location with
eviction before cache is full. Cure: Rearrange data and/or pad arrays.

@ True sharing miss: Occurs when a thread in another processor wants
the same data. Cure: Minimize sharing.

o False sharing miss: Occurs when another processor uses different
data in the same cache line. Cure: Pad data.

(Moreno Maza) Cache Memories CS2101 March 2012 12 / 54

Hierarchical memories and their impact on our programs

A typical matrix multiplication C code

#define IND(A, x, y, d) AL(x)*(d)+(y)]

uint64_t testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;
long started, ended;
float timeTaken;
int i, j, k;
srand(getSeed()) ;
A = (double *)malloc(sizeof (double)*x*y) ;
B = (double *)malloc(sizeof (double)*x*z);
C = (double #*)malloc(sizeof (double)*y*z);
for (i = 0; i < x*z; i++) B[i] = (double) rand() ;
for (i = 0; i < y*z; i++) C[il (double) rand() ;
for (i = 0; i < x*y; i++) A[i] 0 ;
started = example_get_time();
for (i = 0; i < x; i++)
for (j = 0; j < y; j++)
for (k = 0; k < z; k++)
// A[i1[3j1 += BLil[k] + C[k1[j1;
IND(A,i,j,y) += IND(B,i,k,z) * IND(C,k,j,z);
ended = example_get_time();
timeTaken = (ended - started)/1.f;
return timeTaken;

(Moreno Maza) Cache Memories CS2101 March 2012

13 / 54

Issues with matrix representation

o Contiguous accesses are better:

o Data fetch as cache line (Core 2 Duo 64 byte L2 Cache line)
e With contiguous data, a single cache fetch supports 8 reads of doubles.
e Transposing the matrix C should reduce L1 cache misses!

(Moreno Maza) Cache Memories CS2101 March 2012 14 / 54

Hierarchical memories and their impact on our programs

Transposing for optimizing spatial locality

float testMM(const int x, const int y, const int z)

double *A; double *B; double *C; double *Cx;

long started, ended; float timeTaken; int i, j, k;

A = (double *)malloc(sizeof (double)*x*y);
B = (double *)malloc(sizeof (double)*x*z) ;
C = (double *)malloc(sizeof (double)*y*z);

Cx = (double *)malloc(sizeof (double)*y*z) ;
srand(getSeed()) ;
for (i = 0; i < x*z; i++) B[i] = (double) rand() ;
for (i = 0; i < y*z; i++) C[i] (double) rand() ;
for (i = 0; i < xxy; i++) A[i] 0 ;
started = example_get_time();
for(j =0; j < y; j++)
for(k=0; k < z; k++)
IND(Cx,j,k,z) = IND(C, k, j, y);
for (i = 0; i < x; i++)
for (j = 0; j <y; j++)
for (k = 0; k < z; k++)
IND(A, i, j, y) += IND(B, i, k, z) *IND(Cx, j, k, z);
ended = example_get_time();
timeTaken = (ended - started)/1.f;

return timeTaken;

(Moreno Maza) Cache Memories CS2101 March 2012

15 / 54

Issues with data reuse

1024 384 1024

1024
>
1024

@ Naive calculation of a row of A, so computing 1024 coefficients: 1024
accesses in A, 384 in B and 1024 x 384 = 393,216 in C. Total
= 394,524,

e Computing a 32 x 32-block of A, so computing again 1024
coefficients: 1024 accesses in A, 384 x 32 in B and 32 x 384 in C.
Total = 25, 600.

@ The iteration space is traversed so as to reduce memory accesses.

(Moreno Maza) Cache Memories CS2101 March 2012 16 / 54

Hierarchical memories and their impact on our programs

Blocking for optimizing temporal locality

float testMM(const int x, const int y, const int z)
{
double *A; double *B; double *C; double *Cx;
long started, ended; float timeTaken; int i, j, k, i0, jO, kO;
A = (double *)malloc(sizeof (double)*x*y) ;
B (double *)malloc(sizeof (double)*x*z) ;
C = (double *)malloc(sizeof (double)*y*z) ;
srand(getSeed()) ;
for (i = 0; i < x*z; i++) B[i]
for (i = 0; i < y*z; i++) C[i]
for (i = 0; i < x*y; i++) A[i]
started = example_get_time();
for (i = 0; i < x; i += BLOCK_X)
for (j = 0; j < y; j += BLOCK_Y)
for (k = 0; k < z; k += BLOCK_Z)
for (i0 = i; i0 < min(i + BLOCK_X, x); iO++)
for (jO = j; jO < min(j + BLOCK_Y, y); jO++)
for (k0 = k; kO < min(k + BLOCK_Z, z); kO++)
IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,k0,j0,z);
ended = example_get_time();
timeTaken = (ended - started)/1.f;
return timeTaken;

(double) rand() ;
(double) rand() ;
0 ;

}

(Moreno Maza) Cache Memories CS2101 March 2012

17 / 54

Hierarchical memories and their impact on our programs

Transposing and blocking for optimizing data locality

float testMM(const int x, const int y, const int z)

{

}

double *A; double *B; double *C; double *Cx;
long started, ended; float timeTaken; int i, j, k, i0, jO, kO;

A = (double *)malloc(sizeof (double)*x*y);
B = (double *)malloc(sizeof (double)*x*z) ;
C = (double *)malloc(sizeof (double)*y*z) ;

srand(getSeed()) ;
for (i = 0; i < x*z; i++) B[i]
for (i = 0; i < y*z; i++) C[i]
for (i = 0; i < x*y; i++) A[i]
started = example_get_time();
for (i = 0; i < x; i += BLOCK_X)
for (j = 0; j < y; j += BLOCK_Y)
for (k = 0; k < z; k += BLOCK_Z)
for (i0 = i; i0 < min(i + BLOCK_X, x); iO++)
for (jO = j; jO < min(j + BLOCK_Y, y); jO++)
for (k0 = k; kO < min(k + BLOCK_Z, z); kO++)
IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,j0,k0,z);
ended = example_get_time();
timeTaken = (ended - started)/1.f;
return timeTaken;

(double) rand() ;
(double) rand() ;
0 ;

(Moreno Maza) Cache Memories CS2101 March 2012

18 / 54

Hierarchical memories and their impact on our programs

Experimental results

Computing the product of two n x n matrices on my laptop (Core2 Duo
CPU P8600 @ 2.40GHz, L1 cache of 3072 KB, 4 GBytes of RAM)

n naive transposed | speedup | 64 X 64-tiled | speedup | t. & t. | speedup
128 7 3 7 2
256 26 43 155 23
512 1805 265 6.81 1928 0.936 187 9.65
1024 24723 3730 6.62 14020 1.76 1490 16.59
2048 | 271446 29767 9.11 112298 2.41 11960 22.69
4096 | 2344594 238453 9.83 1009445 2.32 101264 23.15

Timings are in milliseconds.

The cache-oblivious multiplication (more on this later) runs within 12978
and 106758 for n = 2048 and n = 4096 respectively.

(Moreno Maza)

Cache Memories

CS2101 March 2012 19 / 54

Other performance counters

Hardware count events

o CPI Clock cycles Per Instruction: the number of clock cycles that
happen when an instruction is being executed. With pipelining we can

improve the CPI by exploiting instruction level parallelism
@ L1 and L2 Cache Miss Rate.

@ Instructions Retired: In the event of a misprediction, instructions that

were scheduled to execute along the mispredicted path must be

canceled.
L1 L2
Miss Miss Percent SSE Instructions
CPI Rate Rate Instructions Retired

InC 478 024 0.02 43% 13,137,280,000

~5x o2 X
Transposed 113~ 015 - 002 50% 13,001,486,336 -

-3 - 8x ~0.8x
Tiled 049 - 002~ 0 39% 18,044 611,264

(Moreno Maza)

Cache Memories

CS2101 March 2012

20 / 54

Analyzing cache misses in the naive and transposed
multiplication

Let A, B and C have format (m, n), (m, p) and (p, n) respectively.

A is scanned one, so mn/L cache misses if L is the number of

coefficients per cache line.

@ B is scanned n times, so mnp/L cache misses if the cache cannot
hold a row.

o C is accessed “nearly randomly” (for m large enough) leading to mnp

cache misses.

@ Since 2m n p arithmetic operations are performed,-this means roughly
(Moreno Maza) Cache Memories CS2101 March 2012 21 / 54

Analyzing cache misses in the tiled multiplication

1024 384 1024

<
[e}
Xm-

1024
>
1024

Let A, B and C have format (m, n), (m, p) and (p, n) respectively.
Assume all tiles are square of order B and three fit in cache.

If C is transposed, then loading three blocks in cache cost 3BZ/L.
This process happens n3/B3 times, leading to 3n°/(BL) cache misses.
Three blocks fit in cache for 3B2 < Z, if Z is the cache size.

So O(n®/(v/ZL)) cache misses, if B is well chosen, which is optimal.

(Moreno Maza) Cache Memories CS2101 March 2012 22 / 54

e 6 6 6 o o

Hierarchical memories and their impact on our programs

Counting sort: the algorithm

o Counting sort takes as input a collection of n items, each of which
known by a key in the range 0--- k.
@ The algorithm computes a histogram of the number of times each key
occurs.
@ Then performs a prefix sum to compute positions in the output.
allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:
Count [key(x)] = Count[key(x)] + 1

total = 0
for i =0, 1, ... k:
c = Count[i]

Count[i] = total

total = total + c
allocate an output array Output[0..n-1]
for each input item x:

store x in Output [Count [key(x)]1]

Count [key(x)] = Count[key(x)] + 1
return Output

(Moreno Maza) Cache Memories CS2101 March 2012 23 / 54

Hierarchical memories and their impact on our programs

Counting sort: cache complexity analysis

allocate an array Count[0..k]; initialize each array cell to zero
for each input item x:
Count [key(x)] = Count[key(x)] + 1

total = 0
for i =0, 1, ... k:
c = Count[i]

Count[i] = total

total = total + ¢
allocate an output array Output[0..n-1]
for each input item x:

store x in Output[Count [key(x)]]

Count [key(x)] = Count[key(x)] + 1
return Output

n/L to compute k.

k/L cache misses to initialize Count.

n/L + n cache misses for the histogram (worst case).

k/L cache misses for the prefix sum.

n/L+ n+ n cache misses for building Output (worst case).

Total: 3n+3n/L 4 2k/L cache misses (worst case),

Cache Memories CS2101 March 2012 24 / 54

00000

Hierarchical memories and their impact on our programs

How to fix the poor data locality of counting sort?

allocate an array Count[0..k]; initialize each array cell to zero
for each input item x:
Count [key(x)] = Count[key(x)] + 1

total = 0
for i =0, 1, ... k:
c = Count[i]

Count[i] = total

total = total + ¢
allocate an output array Output[0..n-1]
for each input item x:

store x in Output [Count [key(x)]]

Count [key(x)] = Count[key(x)] + 1
return Output

@ Recall that our worst case is 3n+3n/L 4 2k/L cache misses.

@ The troubles come from the irregular accesses to Count and Output

which experience capacity misses and conflict misses.

@ To solve this problem, we preprocess the input to make it feel like k is

smaller (A. S. Haque & M3, 2010).

(Moreno Maza) Cache Memories CS2101 March 2012

25 / 54

Counting sort: bukecting the input

alloacate an array bucketsize[0..m-1]; initialize each array cell to zero
for each input item x:

bucketsize[floor(key(x) / m] := bucketsize[floor(key(x) / (k/ m)] + 1
total = 0
for i =0, 1, ... m-1:

c = bucketsizel[i];

bucketsize[i] = total; total = total + c
alloacate an array bucketedinput[0..n-1];
for each input item x:

q := floor(key(x) / (k/m))

bucketedinput [bucketsize[q]] := key(x)

bucketsize[q] := bucketsize[q] + 1
return bucketedinput

@ The goal of the above is to preprocess the input such that accessing
Count and Output imply cold misses only.
@ To this end we choose a parameter m (more on this later) such that
@ a key in the range [ih, (i + 1)h — 1] is always before a key in the range
[(i+1)h,(i+2)h—1], for i=0---m—2, with h=k/m,
© bucketsize and m array segments from bucketedinput together fit

in cache_Thatis: m+mL < Z.
(Moreno Maza) Cache Memories CS2101 March 2012 26 / 54

Hierarchical memories and their impact on our programs

Counting sort: cache complexity with bukecting

alloacate an array bucketsize[0..m-1]; initialize each array cell to zero
for each input item x:
bucketsize[floor(key(x) / m] := bucketsize[floor(key(x) / (k/m)] + 1
total = 0
for i =0, 1, ... m-1:
c = bucketsize[il
bucketsize[i] = total
total = total + c
alloacate an array bucketedinput[0..n-1];
for each input item x:
q := floor(key(x) / (k/m))
bucketedinput [bucketsize[q]] := key(x)
bucketsize[q] := bucketsizel[q] + 1
return bucketedinput

© 2m/L + n/L caches misses to compute bucketsize

@ Key observation: bucketedinput is traversed regularly by segment.

@ Hence, 2n/L + m+ m/L caches misses to compute bucketedinput
Preprocessing: 3n/L 4 3m/L + m cache misses.

(Moreno Maza) Cache Memories CS2101 March 2012 27 / 54

Hierarchical memories and their impact on our programs

Cache friendly counting sort

@ The preprocessing creates intermediate arrays of size m.

@ After preprocessing, counting sort to each segment whose values are
in a range [ih,(i+1)h—1],fori=0---m— 1.

@ To be cache-friendly, this requires
h+|{key € [ih,(i+1)h—1]}| < Z. and m < Z/(1 + L). These two
are very realistic assumption considering todays cache size.

@ and the total complexity becomes
3n/L+3m/L+ m (preprocessing) +4n/L+4k/L+3m (sorting)

e that is in total 7n/L + 4k/L 4 3m/L 4+ 4m cache misses
e instead of 3n+3n/L + 2k/L.

(Moreno Maza) Cache Memories CS2101 March 2012 28 / 54

Cache friendly counting sort: experimental results

e Experimentation on an Intel(R) Core(TM) i7 CPU © 2.93GHz. It has
L2 cache of 8MB.
@ CPU times in seconds for both classical and cache-friendly counting
sort algorithm.

@ The keys are random machine integers in the range [0, n].

n classical cache-oblivious
counting counting sort
sort (preprocessing + sorting)
100000000 | 13.74 4.66 (3.04 + 1.62)
200000000 | 30.20 9.93 (6.16 + 3.77)
300000000 | 50.19 16.02 (9.32 + 6.70)
400000000 | 7155 22.13 (12.50 +9.63)
500000000 | 94.32 28.37 (15.71 + 12.66)
600000000 | 116.74 | 34.61 (18.95 + 15.66)

(Moreno Maza)

Cache Memories

CS2101 March 2012 29 / 54

Plan

@ Cache Analysis in Practice

(Moreno Maza) Cache Memories CS2101 March 2012 30 / 54

Cache Analysis in Practice

Basic idea of a cache memory (review)

Cache

Cache Lines

Memory

@ A cache is a smaller memory, faster to access

@ Using smaller memory to cache contents of larger memory provides
the illusion of fast larger memory

@ Key reason why this works: temporal locality and spatial locality.

(Moreno Maza) Cache Memories CS2101 March 2012 31 /54

A simple cache example

Cache

Cache Lines Memory

Byte addressable memory
@ Size of 32Kbyte with direct mapping and 64 byte lines (512 lines) so
the cache can fit 29 x 24 = 213 int.
“Therefore” successive 32Kbyte memory blocks line up in cache
A cache access costs 1 cycle while a memory access costs 100 cycles.
How addresses map into cache

o Bottom 6 bits are used as offset in a cache line,

o Next 9 bits determine the cache line
(Moreno Maza) Cache Memories CS2101 March 2012 32 /54

Exercise 1 (1/2)

// sizeof(int) = 4 and Array laid out sequentially in memory
#define S ((1<<20)*sizeof (int))
int A[S];
// Thus size of A is 27(20) x 4 bytes
for (1 = 0; 1 < 8; i++) {
read A[i];

Memory

o

Total access time? What kind of locality? What kind of misses?

(Moreno Maza) Cache Memories CS2101 March 2012 33 /54

Exercise 1 (2/2)

#define S ((1<<20)*sizeof (int))
int A[S];
for (i = 0; 1 < 8; i++) {

read A[i];

S reads to A.

16 elements of A per cache line

15 of every 16 hit in cache.

Total access time: 15(5/16) + 100(S/16).

spatial locality, cold misses.

(Moreno Maza) Cache Memories CS2101 March 2012 34 / 54

Cache Analysis in Practice

Exercise 2 (1/2)

#define S ((1<<20)#*sizeof (int))

int A[S];

for (i = 0; i < 8; i++) {
read A[0];

+

Memory

Total access time? What kind of locality? What kind of misses?

(Moreno Maza) Cache Memories CS2101 March 2012 35/ 54

Exercise 2 (2/2)

#define S ((1<<20)#*sizeof (int))
int A[S];
for (i = 0; i < 8; i++) {

read A[0];

S reads to A

All except the first one hit in cache.
Total access time: 100 + (S — 1).
Temporal locality

Cold misses.

(Moreno Maza) Cache Memories CS2101 March 2012 36 / 54

Exercise 3 (1/2)

// Assume 4 <= N <= 13
#define S ((1<<20)*sizeof (int))
int A[S];
for (i = 0; i < 8S; i++) {
read A[i % (1<<N)];

Memory

A /M Cache

—>\—)

Total access time? What kind of locality? What kind of misses?

(Moreno Maza) Cache Memories CS2101 March 2012 37 / 54

Exercise 3 (2/2)

// Assume 4 <= N <= 13
#define S ((1<<20)*sizeof (int))
int A[S];
for (i = 0; i < S; i++) {
read A[i % (1<<N)];

@ Sreads to A

@ One miss for each accessed line, rest hit in cache.
o Number of accessed lines: 2V—4.

o Total access time: 2N=4100 4 (S — 2N—%).
@ Temporal and spatial locality

°

Cold misses.

(Moreno Maza) Cache Memories CS2101 March 2012 38 / 54

Exercise 4 (1/2)

// Assume 14 <= N

#define S ((1<<20)*sizeof (int))
int A[S];

for (i = 0; i < 8S; i++) {

read A[i % (1<<N)];

}

Cache

<
©
3
<]
S
<
VVIVIVVIVIY

I

Total access time? What kind of locality? What kind of misses?

(Moreno Maza) Cache Memories CS2101 March 2012 39 / 54

Exercise 4 (2/2)

// Assume 14 <= N

#define S ((1<<20)*sizeof (int))
int A[S];

for (i = 0; i < 8S; i++) {

read A[i % (1<<N)];

}
@ S reads to A.
@ First access to each line misses
@ Rest accesses to that line hit.
e Total access time: 15(5/16) + 100(S/16).
@ Spatial locality
@ Cold and capacity misses.

(Moreno Maza) Cache Memories CS2101 March 2012 40 / 54

Exercise 5 (1/2)

// Assume 14 <= N

#define S ((1<<20)*sizeof (int))
int A[S];

for (i = 0; i < 8S; i++) {

read A[(i*16) % (1<<N)];

}

Memory

Cache

)
1
I

A4

—

Data Fetched
But Not Accessed

W/

Total access time? What kind of locality? What kind of misses?
(Moreno Maza) Cache Memories CS2101 March 2012 41 / 54

Exercise 5 (2/2)

// Assume 14 <= N

#define S ((1<<20)*sizeof (int))
int A[S];

for (i = 0; i < S; i++) {

read A[(i*16) % (1<<N)];

}
@ S reads to A.
@ First access to each line misses
@ One access per line.
@ Total access time: 100S.
@ No locality!
@ Cold and conflict misses.

(Moreno Maza) Cache Memories CS2101 March 2012 42 / 54

Cache Analysis in Practice

Exercise 6 (1/2)

#define S ((1<<20)*sizeof (int))
int A[S];
for (i = 0; i < S; i++) {

read Al[random()%S];

Memory

Total access time? What kind of locality? What kind of misses?

(Moreno Maza) Cache Memories CS2101 March 2012 43 / 54

Exercise 6 (2/2)

#define S ((1<<20)*sizeof (int))
int A[S];
for (i = 0; i < 8; i++) {

read A[random()%S];

+
@ S reads to A.
o After N iterations, for some N, the cache is full.
@ Them the chance of hitting in cache is 32Kb/16Mb = 1/512
o Estimated total access time: 5(511/512)100 + S(1/512).
@ Almost no locality!

o Cold, capacity conflict misses.

(Moreno Maza) Cache Memories CS2101 March 2012 44 / 54

Exercise 7 (1/2)

#define S ((1<<19)*sizeof (int))
int A[S];

int B[S];

for (i = 0; 1 < 8; i++) {

read A[i], B[il;

}

Memory

v

v

v

Tiiil iiiiii ilmi? Whit kind of localitv? What kind of misses?
(Moreno Maza) Cache Memories CS2101 March 2012

45 / 54

Exercise 7 (2/2)

#define S ((1<<19)*sizeof (int))
int A[S];

int B[S];

for (i = 0; i < S; i++) {

read A[i], B[il;

}
@ S reads to A and B.
@ A and B interfere in cache: indeed two cache lines whose addresses
differ by a multiple of 2° have the same way to cache.
@ Total access time: 200S.
@ Spatial locality but the cache cannot exploit it.
@ Cold and conflict misses.

(Moreno Maza) Cache Memories CS2101 March 2012 46 / 54

Exercise 8 (1/2)

#define S ((1<<19+4)*sizeof (int))
int A[S];

int B[S];

for (i = 0; 1 < 8; i++) {

read A[i], B[il;

}

Memory

Cache

/

Tiiil iiiiii ilmi? Whit kind of localitv? What kind of misses?
(Moreno Maza) CS2101 March 2012

Cache Memories

47 / 54

Exercise 8 (2/2)

#define S ((1<<19+4)*sizeof (int))
int A[S];

int B[S];

for (i = 0; i < 8; i++) {

read A[i], BI[il;

}

S reads to A and B.

A and B almost do not interfere in cache.
Total access time: 2(155/16 + 1005/16).
Spatial locality.

Cold misses.

(Moreno Maza) Cache Memories CS2101 March 2012 48 / 54

Set Associative Caches

Way 0 Way 1

Sets

Set associative caches have sets with multiple lines per set.

Each line in a set is called a way

Each memory line maps to a specific set and can be put into any
cache line in its set

@ In our example, we assume a 32 Kbyte cache, with 64 byte lines,
2-way associative. Hence we have:
o 256 sets
e Bottom six bits determine offset in cache line
o Next 8 bits determine the set.

(Moreno Maza) Cache Memories CS2101 March 2012 49 / 54

Exercise 9 (1/2)

#define S ((1<<19)*sizeof (int))
int A[S];

int B[S];

for (i = 0; i < 8; i++) {

read A[i], B[il;

}

Cache

v

Total access time? What kind of locality? What kind of misses?

(Moreno Maza) Cache Memories

CS2101 March 2012

50 / 54

Exercise 9 (2/2)

#define S ((1<<19)*sizeof (int))
int A[S];

int B[S];

for (i = 0; i < 8; i++) {

read A[i], BI[il;

}

S reads to A and B.

A and B lines hit same set, but enough lines in a set.
Total access time: 2(155/16 + 1005/16).
Spatial locality.

Cold misses.

(Moreno Maza) Cache Memories CS2101 March 2012 51 / 54

Tuned cache-oblivious matrix transposition benchmarks

size Naive

Cache-oblivious

ratio

5000x5000 126
10000x10000 627
20000x20000 4373
30000x30000 23603
40000x40000 62432

79
311
1244
2734
4963

1.59
2.02
3.52
8.63
12.58

Intel(R) Xeon(R) CPU E7340 @ 2.40GHz
L1 data 32 KB, L2 4096 KB, cache line size 64bytes

o
o
@ Both codes run on 1 core
o

The ration comes simply from an optimal memory access pattern.

(Moreno Maza)

Cache Memories

CS2101 March 2012

52 / 54

Tuned cache-oblivious matrix multiplication

Speedup for “nultiply 580018008 natrix by 1888845088 natrix”

parallelisn
burdened speedup
8 trials + 7
+
25 - A
+
+
28 - ++ A
+
s +
H +
g
& 15 + q
+
+
18 A
5L i
® ! ! ! ! ! !
[] 5 10 15 20 25 30

Horker Count

(Moreno Maza) Cache Memories CS2101 March 2012 53 / 54

Acknowledgements and references

Acknowledgements.

@ Charles E. Leiserson (MIT) and Matteo Frigo (Intel) for providing me
with the sources of their article Cache-Oblivious Algorithms.

@ Charles E. Leiserson (MIT) and Saman P. Amarasinghe (MIT) for
sharing with me the sources of their course notes and other
documents.

References.

@ Cache-Oblivious Algorithms by Matteo Frigo, Charles E. Leiserson,
Harald Prokop and Sridhar Ramachandran.

o Cache-Oblivious Algorithms and Data Structures by Erik D. Demaine.

(Moreno Maza) Cache Memories CS2101 March 2012 54 / 54

	Hierarchical memories and their impact on our programs
	Cache Analysis in Practice

