Exercises for lab 4 of CS2101a

Instructor: Marc Moreno Maza

October 2, 2012

1 Exercise 1

What does the following program do?

```
#include <stdio.h>
#include <stdlib.h>
/* Transpose naively an n-by-n matrix */
void transpose_matrix(int* a, int n)
{
    int i,j, tmp;
    for(i=0;i<n;i++) {
        for( j=i+1; j<n; j++) {
            tmp = a[i*n + j];
            a[i*n + j] = a[j*n + i];
                a[j*n + i] = tmp;
                }
    }
}
/* Print an n-by-n matrix */
void print_matrix(int* a, int n)
{
    int i,j;
    for(i=0;i<n;i++) {
        for( j=0; j<n; j++) {
            printf("%d ", a[n*i+j]);
            if (j == n-1) printf("\n");
        }
    }
    printf("\n");
}
/* Create a random n-by-n matrix */
```

```
void random_matrix(int* a, int n)
{
    int i,j;
    for(i=0;i<n;i++) {
        for(j=0;j<n;j++) {
            a[i*n + j] = rand()%n;
        }
    }
}
int main() {
    int n, s;
    int* a;
    printf("n = ");
    scanf("%d", &n);
    printf("\n");
    s = n * n;
    if (s < 1000000000) {
        printf("s = %d\n", s);
        a = (int *) malloc(s * sizeof(int));
        random_matrix(a,n);
        if (n < 10) print_matrix(a,n);
        transpose_matrix(a,n);
        if (n < 10) print_matrix(a,n);
    }
    free(a);
    return 0;
}
```

Using the UNIX time command, measure the running time of this program when $n=2^{k}$ for $k=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14$.

2 Exercise 2

We investigate another approach for computing the transpose ${ }^{t} A$ of a square matrix A. This approach is based on a divide and conquer scheme. In the formula below, we assume that n is a power of 2 and that $A_{1,1}, A_{1,2}, A_{2,1}, A_{2,2}$ denote square blocks of order $n / 2$.

$$
{ }^{t} A=\left\{\begin{array}{ccc}
\left(\begin{array}{ll}
{ }^{t} A_{1,1} & { }^{t} A_{2,1} \\
{ }^{t} A_{1,2} & { }^{t} A_{2,2}
\end{array}\right) & \text { if } & A=\left(\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right) \tag{1}\\
A & \text { if } & n=1
\end{array}\right.
$$

Write a C program that successively

- reads a positive integer value n from the user,
- generate an $n \times n$ matrix a with random entries of type int with values in the range $0 \cdots n-1$.
- transpose the matrix in place using this divide-and-conquer approach.

Using the UNIX time command, measure the running time of this program when $n=2^{k}$ for $k=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14$.

3 Exercise 3

A drawback of the approach of Exercise 2 is the overhead due to the recursive calls. One way to reduce this negative impact is to modify the above formula as follows

$$
{ }^{t} A=\left\{\begin{array}{cc}
\text { naive_Transpose } A & \text { if } n \leq B \tag{2}\\
\left(\begin{array}{cc}
{ }^{t} A_{1,1} & { }^{t} A_{2,1} \\
{ }^{t} A_{1,2} & { }^{t} A_{2,2}
\end{array}\right) & \text { if }
\end{array} \quad A=\left(\begin{array}{cc}
A_{1,1} & A_{1,2} \\
{ }^{t} A_{2,1} & A_{2,2}
\end{array}\right) \quad\right. \text { else }
$$

where

- B is a base-case, which is typically a power of 2 in the range $16 \cdots 256$,
- naive_Transpose refers to the algorithm of Exercise 1.

1. Modify the program of Exercise 2 so as to use a base-case.
2. Determine what is the best base-case for your machine.
3. Using the UNIX time command, measure the running time of this program when $n=2^{k}$ for $k=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14$.
4. In principle, this new program should perform better than the one of Exercise 1. Explain why.

4 Exercise 4

Another way to implement the approach of Exercise 3 is to use a blocking strategy. Let b be a positive integer dividing n.

1. We decompose the matrix A into $b \times b$-blocks.

$$
\left(\begin{array}{ccc}
B_{1,1} & \cdots & B_{1, n / b} \tag{3}\\
\vdots & \vdots & \vdots \\
B_{n / b, 1} & \cdots & B_{n / b, n / b}
\end{array}\right)
$$

2. For each $i=1 \cdots n / b$ transpose the block $B_{i, i}$ in place.
3. For each $i=1 \cdots n / b$ for each $j=i+1 \cdots n / b$ exchange and transpose the blocks $B_{i, j}$ and $B_{j, i}$.
4. Modify the program of Exercise 1 so as to implement this blocking strategy.
5. Determine what is the best base-case b for your machine.
6. Using the UNIX time command, measure the running time of this program when $n=2^{k}$ for $k=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14$.
7. In principle, this new program should perform better than the one of Exercise 1. Explain why.
