
Abstract Data Types in C

Abstract Data Types (ADTs) in C (1)
u C is not object-oriented, but we can still manage

to inject some object-oriented principles into the
design of C code.

u For example, a data structure and its operations
can be packaged together into an entity called an
ADT.

u There’s a clean, simple interface between the
ADT and the program(s) that use it.

u The lower-level implementation details of the data
structure are hidden from view of the rest of the
program.

Abstract Data Types (ADTs) in C (2)

u The implementation details can be changed
without altering the ADT interface.

u We accomplish this by creating the ADT in three
different files:
– One to hold the type and constant definitions.
– One to hold the prototypes of the functions in the

ADT’s (public) interface.
– One to hold the implementations of the public and

private functions.

Example: A Priority Queue ADT (1)
u Priority Queue: A finite collection of items in

which each item has a priority. The highest
priority item X in a priority queue PQ is an item
such that (priority of X) >= (priority of Y) for all Y
in PQ.

u Operations:
– Initialize PQ to be empty.
– Determine whether or not PQ is empty.
– Determine whether or not PQ is full.
– Insert a new item X into PQ.
– If PQ is not empty, remove the highest priority item X

from PQ.

Example: A Priority Queue ADT (2)

u Type declarations and the public interface are
packaged separately from the implementation
details.

u Each operation is represented by a function.
u Type declarations are put in a file PQTypes.h
u Public and private function implementations are

put in a file PQImplementation.c
u Prototypes for functions in the public interface are

put in a file PQInterface.h
u (Sometimes we combine the two header files into

one file)

Example: A Priority Queue ADT (3)

The file PQInterface.h contains:

#include "PQTypes.h"
/* defines types PQItem, PQueue */

void Initialize (PQueue *);
int Empty (PQueue *);
int Full (PQueue *);
int Insert (PQItem, PQueue *);
PQItem Remove (PQueue *);

Example: A Priority Queue ADT (4)

u The statement #include "PQTypes.h" causes the
type definitions to be available to this file during
the compilation process.

u The statement #include "PQInterface.h" will be
put in the file PQImplementation.c so that the
compiler can check that prototypes in the .h file
match those in the .c file.

u The contents of PQTypes.h are available to
PQImplementation.c because of the statement
#include "PQTypes.h" found in PQInterface.h

Multiple Definitions with #include(1)

u If the same .h file is included in several places in
a program, it will cause multiple definition errors
at compile time.

u To circumvent this problem, use #ifndef (if not
defined), #define and #endif macros in the .h file:

#ifndef PQTypes_H
#define PQTypes_H

… <type definitions belong here>...
#endif

Multiple Definitions with #include(2)

u The compiler keeps track of all identifier names
defined in the program so far.

u The first time the compiler scans this file, it
recognizes that PQTypes_H has not been
defined, so it will scan all code between #ifndef
and the matching #endif.

u This causes PQTypes_H and any other identifier
found in the block to become defined.

Multiple Definitions with #include(3)

u The next time this file is scanned, the compiler
recognizes that PQTypes_H has been defined,
and it ignores all code between #ifndef and the
matching #endif.

u Note: use a different, unique identifier with #ifndef
in each .h file. If the identifier has already been
defined elsewhere, code that should be scanned
by the compiler will be ignored.

u (A good convention: use the prefix of the
filename, with an _H at the end, as above)

Linked List -- list.h, listapi.h
u list.h
struct nodestr {

int data;
struct nodestr *next;

};
typedef nodestr node;

u listapi.h
#include "list.h"
node * search(node * head, int d);
node * add(node * head, int d);
void free(node * head);

Linked List -- listapi.c
#include <stdio.h>
#include "listapi.h"
/* Search for a node by its key d */
node * search(node * head, int d)
{

for(; head != NULL; head = head->next)
if (head -> data == d) return head;

return NULL;
}

Linked List -- listapi.c
/* insert a node into list */
node * insert(node * head, int d) {

node * loc;
loc=search(*p_head, d);
if (loc != NULL) return head; /* No need to change */
else {

node * newhead;
newhead = malloc(sizeof(node));
newhead -> data = d;
newhead -> next= head;
return newhead;

}
}

Linked List -- listapi.c

void free_list(node *head)
{

node *p = head;
while (p != NULL) {

head = head ->next;
free(p);
p = head;

}

Linked List -- main.c
#include <stdio.h>
#include "listapi.h"
int main() {
int i;
node * loc, *list = NULL;
for (i=0; i<15; i++)

list = add(list, i);
loc = search(list, 10);
if(loc != NULL) printf("10 is found.\n");
free_list(list);

}

Trees
struct s_node {

int data;
struct s_node * left;
struct s_node * right;

};
typedef s_node node;
/* The following code illustrate how to expand the tree */
……
node * root;
root = (node *) malloc(sizeof(node));
root->left = (node *) malloc(sizeof(node));
root->left->left = root->left->right = NULL;
root->right = (node *) malloc(sizeof(node));
root->right->left = root->right->right = NULL;
……

Release All Nodes of a Tree
void release_tree(node ** p_root)
{

node * root = (*p_root);
if(root == NULL) return;
release_tree(&(root->left)); /* free the left subtree*/
release_tree(&(root->right)); /* free the right subtree */
free(root); /* free the root node */
p_root = NULL; / this subtree has been released,

so notify the calling function */
return;

}

