
Shell Programming

Shell Scripts (1)

uBasically, a shell script is a text file with Unix
commands in it.

uShell scripts usually begin with a #! and a shell
name
– For example: #!/bin/sh
– If they do not, the user's current shell will be used

uAny Unix command can go in a shell script
– Commands are executed in order or in the flow

determined by control statements.
uDifferent shells have different control structures

– The #! line is very important
– We will write shell scripts with the Bourne shell (sh)

Shell Scripts (2)

uWhy write shell scripts?

– To avoid repetition:
vIf you do a sequence of steps with

standard Unix commands over and over,
why not do it all with just one command?

– To automate difficult tasks:
vMany commands have subtle and difficult

options that you don’t want to figure out or
remember every time.

A Simple Example (1)
u tr abcdefghijklmnopqrstuvwxyz \

thequickbrownfxjmpsvalzydg < file1 > file2
– “encrypts” file1 into file2

uRecord this command into shell script files:
– myencrypt
#!/bin/sh
tr abcdefghijklmnopqrstuvwxyz \

thequickbrownfxjmpsvalzydg
– mydecrypt
#!/bin/sh
tr thequickbrownfxjmpsvalzydg \

abcdefghijklmnopqrstuvwxyz

A Simple Example (2)

uchmod the files to be executable;
otherwise, you couldn’t run the scripts

obelix[3] > chmod u+x myencrypt mydecrypt

uRun them as normal commands:
obelix[4] > ./myencrypt < file1 > file2
obelix[5] > ./mydecrypt < file2 > file3
obelix[6] > diff file1 file3

Remember: This is needed
when “.” is not in the path

Bourne Shell Variables

uRemember: Bourne shell variables are
different from variables in csh and tcsh!
– Examples in sh:

PATH=$PATH:$HOME/bin
HA=$1
PHRASE="House on the hill"
export PHRASE

Note: no space
around =

Make PHRASE an
environment variable

Assigning Command Output to a Variable

uUsing backquotes, we can assign the
output of a command to a variable:
#!/bin/sh
files=`ls`
echo $files

uVery useful in numerical computation:
#!/bin/sh
value=`expr 12345 + 54321`
echo $value

Using expr for Calculations

uVariables as arguments:
% count=5
% count=`expr $count + 1`
% echo $count
6

– Variables are replaced with their values by the shell!

u expr supports the following operators:
– arithmetic operators: +,-,*,/,%
– comparison operators: <, <=, ==, !=, >=, >
– boolean/logical operators: &, |
– parentheses: (,)
– precedence is the same as C, Java

Control Statements
uWithout control statements, execution

within a shell scripts flows from one
statement to the next in succession.

uControl statements control the flow of
execution in a programming language

uThe three most common types of control
statements:
– conditionals: if/then/else, case, ...
– loop statements: while, for, until, do, ...
– branch statements: subroutine calls (good),

goto (bad)

for Loops

u for loops allow the repetition of a command
for a specific set of values

uSyntax:
for var in value1 value2 ...
do

command_set
done

– command_set is executed with each value of
var (value1, value2, ...) in sequence

for Loop Example (1)
#!/bin/sh
timestable – print out a multiplication table
for i in 1 2 3
do

for j in 1 2 3
do

value=`expr $i * $j`
echo -n "$value "

done
echo

done

for Loop Example (2)

#!/bin/sh
file-poke – tell us stuff about files
files=`ls`
for i in $files
do

echo -n "$i "
grep $i $i

done

– Find filenames in files in current directory

for Loop Example (3)

#!/bin/sh
file-poke – tell us stuff about files
for i in *; do

echo -n "$i "
grep $i $i

done

– Same as previous slide, only a little
more condensed.

Conditionals
uConditionals are used to “test” something.

– In Java or C, they test whether a Boolean variable is
true or false.

– In a Bourne shell script, the only thing you can test
is whether or not a command is “successful”

uEvery well behaved command returns back a
return code.
– 0 if it was successful
– Non-zero if it was unsuccessful (actually 1..255)
– We will see later that this is different from true/false

conditions in C.

The if Statement
uSimple form:

if decision_command_1
then

command_set_1
fi

uExample:
if grep unix myfile >/dev/null
then

echo "It's there"
fi

grep returns 0 if it finds something
returns non-zero otherwise

redirect to /dev/null so that
"intermediate" results do not get
printed

if and else

if grep "UNIX" myfile >/dev/null
then
echo UNIX occurs in myfile

else
echo No!
echo UNIX does not occur in myfile

fi

if and elif

if grep "UNIX" myfile >/dev/null
then

echo "UNIX occurs in file"
elif grep "DOS" myfile >/dev/null
then

echo "Unix does not occur, but DOS does"
else

echo "Nobody is there"
fi

Use of Semicolons

u Instead of being on separate lines,
statements can be separated by a
semicolon (;)
– For example:

if grep "UNIX" myfile; then echo "Got it"; fi
– This actually works anywhere in the shell.

% cwd=`pwd`; cd $HOME; ls; cd $cwd

Use of Colon
uSometimes it is useful to have a command

which does “nothing”.
u The : (colon) command in Unix does nothing

#!/bin/sh
if grep unix myfile
then

:
else

echo "Sorry, unix was not found"
fi

The test Command – File Tests
u test –f file does file exist and is not a directory?
u test -d file does file exist and is a directory?
u test –x file does file exist and is executable?
u test –s file does file exist and is longer than 0 bytes?

#!/bin/sh
count=0
for i in *; do

if test –x $i; then
count=`expr $count + 1`

fi
done
echo Total of $count files executable.

The test Command – String Tests

u test –z string is string of length 0?
u test string1 = string2 does string1 equal string2?
u test string1 != string2 not equal?
uExample:

if test -z $REMOTEHOST
then

:
else

DISPLAY="$REMOTEHOST:0"
export DISPLAY

fi

The test Command – Integer Tests
u Integers can also be compared:

– Use -eq, -ne, -lt, -le, -gt, -ge
uFor example:

#!/bin/sh
smallest=10000
for i in 5 8 19 8 7 3; do

if test $i -lt $smallest; then
smallest=$i

fi
done
echo $smallest

Use of []
u The test program has an alias as []

– Each bracket must be surrounded by spaces!
– This is supposed to be a bit easier to read.

u For example:
#!/bin/sh
smallest=10000
for i in 5 8 19 8 7 3; do

if [$i -lt $smallest] ; then
smallest=$i

fi
done
echo $smallest

The while Loop
uWhile loops repeat statements as long as

the next Unix command is successful.
u For example:

#!/bin/sh
i=1
sum=0
while [$i -le 100]; do

sum=`expr $sum + $i`
i=`expr $i + 1`

done
echo The sum is $sum.

The until Loop
uUntil loops repeat statements until the next

Unix command is successful.
u For example:

#!/bin/sh
x=1
until [$x -gt 3]; do

echo x = $x
x=`expr $x + 1`

done

Command Line Arguments (1)
uShell scripts would not be very useful if we could

not pass arguments to them on the command
line

uShell script arguments are “numbered” from left
to right
– $1 - first argument after command
– $2 - second argument after command
– ... up to $9
– They are called “positional parameters”.

Command Line Arguments (2)

uExample: get a particular line of a file
– Write a command with the format:

getlineno linenumber filename
#!/bin/sh
head -$1 $2 | tail -1

uOther variables related to arguments:
v$0 name of the command running
v$* All the arguments (even if there are

more than 9)
v$# the number of arguments

Command Line Arguments (3)
u Example: print the oldest files in a directory

#! /bin/sh
oldest -- examine the oldest parts of a directory
HOWMANY=$1
shift
ls -lt $* | tail +2 | tail $HOWMANY

u The shift command shifts all the arguments to the left
– $1 = $2, $2 =$3, $3 = $4, ...
– $1 is lost (but we have saved it in $HOWMANY)
– The value of $# is changed ($# - 1)
– useful when there are more than 9 arguments

u The “tail +2” command removes the first line.

More on Bourne Shell Variables (1)

uThere are three basic types of variables in
a shell script:
– Positional variables ...
v$1, $2, $3, ..., $9

– Keyword variables ...
vLike $PATH, $HOWMANY, and anything

else we may define.
– Special variables ...

More on Bourne Shell Variables (2)

uSpecial variables:
– $*, $# -- all the arguments, the number of

the arguments
– $$ -- the process id of the current shell
– $? -- return value of last foreground

process to finish
-- more on this one later

– There are others you can find out about with
man sh

Reading Variables From Standard Input (1)

u The read command reads one line of input from
the terminal and assigns it to variables give as
arguments

uSyntax: read var1 var2 var3 ...
vAction: reads a line of input from standard input
vAssign first word to var1, second word to var2, ...
vThe last variable gets any excess words on the

line.

Reading Variables from Standard Input (2)
uExample:

% read X Y Z
Here are some words as input
% echo $X
Here
% echo $Y
are
% echo $Z
some words as input

The case Statement
u The case statement supports multiway

branching based on the value of a single string.
uGeneral form:

case string in
pattern1)
command_set_11
;;

pattern2)
command_set_2
;;

…
esac

case Example
#!/bin/sh
echo -n 'Choose command [1-4] > '
read reply
echo
case $reply in
"1")
date
;;

"2"|"3")
pwd
;;

"4")
ls
;;

*)
echo Illegal choice!
;;

esac

Use the pipe symbol “|” as a logical
or between several choices.

Provide a default case when no
other cases are matched.

Redirection in Bourne Shell Scripts (1)
uStandard input is redirected the same (<).
uStandard output can be redirected the same (>).

– Can also be directed using the notation 1>
– For example: cat x 1> ls.txt (only stdout)

uStandard error is redirected using the notation 2>
– For example: cat x y 1> stdout.txt 2> stderr.txt

uStandard output and standard error can be
redirected to the same file using the notation 2>&1
– For example: cat x y > xy.txt 2>&1

uStandard output and standard error can be piped
to the same command using similar notation
– For example: cat x y 2>&1 | grep text

Redirection in Bourne Shell Scripts (2)
uShell scripts can also supply standard input to

commands from text embedded in the script itself.
uGeneral form: command << word

– Standard input for command follows this line up to, but
not including, the line beginning with word.

uExample:
#!/bin/sh
grep 'hello' << EOF
This is some sample text.
Here is a line with hello in it.
Here is another line with hello.
No more lines with that word.
EOF

Only these two lines will be
matched and displayed.

A Shell Script Example (1)

uSuppose we have a file called marks.txt
containing the following student grades:

091286899 90 H. White
197920499 80 J. Brown
899268899 75 A. Green
……

uWe want to calculate some statistics on
the grades in this file.

A Shell Script Example (2)
#!/bin/sh
sum=0; countfail=0; count=0;
while read studentnum grade name; do

sum=`expr $sum + $grade`
count=`expr $count + 1`
if [$grade -lt 50]; then

countfail=`expr $countfail + 1`
fi

done
echo The average is `expr $sum / $count`.
echo $countfail students failed.

A Shell Script Example (3)

uSuppose the previous shell script was
saved in a file called statistics.

uHow could we execute it?
uAs usual, in several ways ...

– % cat marks.txt | statistics
– % statistics < marks.txt

uWe could also just execute statistics and
provide marks through standard input.

