Genetic Algorithms: A Tutorial

“Genetic Algorithms are good at taking large, potentially huge search spaces and navigating them, looking for optimal combinations of things, solutions you might not otherwise find in a lifetime.”

- Salvatore Mangano

Computer Design, May 1995
The Genetic Algorithm

- Directed search algorithms based on the mechanics of biological evolution
- Developed by John Holland, University of Michigan (1970’s)
 - To understand the adaptive processes of natural systems
 - To design artificial systems software that retains the robustness of natural systems
The Genetic Algorithm (cont.)

- Provide efficient, effective techniques for optimization and machine learning applications
- Widely-used today in business, scientific and engineering circles
Classes of Search Techniques

- Search techniques
 - Calculus-based techniques
 - Guided random search techniques
 - Enumerative techniques

- Direct methods
 - Fibonacci
 - Newton

- Indirect methods
 - Evolutionary algorithms
 - Simulated annealing
 - Dynamic programming

- Evolutionary strategies
 - Genetic algorithms
 - Parallel
 - Centralized
 - Sequential
 - Distributed
 - Steady-state
 - Generation
Components of a GA

A problem to solve, and ...
- Encoding technique (gene, chromosome)
- Initialization procedure (creation)
- Evaluation function (environment)
- Selection of parents (reproduction)
- Genetic operators (mutation, recombination)
- Parameter settings (practice and art)
Simple Genetic Algorithm

{
 initialize population;
evaluate population;
while TerminationCriteriaNotSatisfied
 {
 select parents for reproduction;
 perform recombination and mutation;
evaluate population;
 }
}
The GA Cycle of Reproduction

- **reproduction**
 - parents
 - children

- **population**
 - evaluated children
 - deleted members
 - discard

- **modification**
 - modified children

- **evaluation**
 -
Population

Chromosomes could be:

- Bit strings (0101 ... 1100)
- Real numbers (43.2 -33.1 ... 0.0 89.2)
- Permutations of element (E11 E3 E7 ... E1 E15)
- Lists of rules (R1 R2 R3 ... R22 R23)
- Program elements (genetic programming)
- ... any data structure ...
Reproduction

Parents are selected at random with selection chances biased in relation to chromosome evaluations.
Modifications are stochastically triggered

Operator types are:

- Mutation
- Crossover (recombination)
Mutation: Local Modification

Before: \[(1\ 0\ 1\ 1\ 0\ 1\ 1\ 0) \]
After: \[(0\ 1\ 1\ 0\ 0\ 1\ 1\ 0) \]

Before: \[(1.38\ -69.4\ 326.44\ 0.1) \]
After: \[(1.38\ -67.5\ 326.44\ 0.1) \]

- Causes movement in the search space (local or global)
- Restores lost information to the population
Crossover is a critical feature of genetic algorithms:

- It greatly accelerates search early in evolution of a population
- It leads to effective combination of schemata (subsolutions on different chromosomes)
Evaluation

- The evaluator decodes a chromosome and assigns it a fitness measure
- The evaluator is the only link between a classical GA and the problem it is solving
Deletion

- Generational GA: entire populations replaced with each iteration
- Steady-state GA: a few members replaced each generation

population

\[
\text{discard}
\]

\[
\text{discarded members}
\]
An Abstract Example

Distribution of Individuals in Generation 0

Distribution of Individuals in Generation N
A Simple Example

“The Gene is by far the most sophisticated program around.”

- Bill Gates, Business Week, June 27, 1994
A Simple Example

The Traveling Salesman Problem:

Find a tour of a given set of cities so that

♦ each city is visited only once
♦ the total distance traveled is minimized
Representation

Representation is an ordered list of city numbers known as an order-based GA.

1) London 3) Dunedin 5) Beijing 7) Tokyo
2) Venice 4) Singapore 6) Phoenix 8) Victoria

CityList1 (3 5 7 2 1 6 4 8)
CityList2 (2 5 7 6 8 1 3 4)
Crossover combines inversion and recombination:

\[
\begin{array}{cccccccc}
\ast & \ast \\
\end{array}
\]

Parent1: (3 5 7 2 1 6 4 8)
Parent2: (2 5 7 6 8 1 3 4)
Child: (5 8 7 2 1 6 3 4)

This operator is called the \textit{Order1} crossover.
Mutation

Mutation involves reordering of the list:

Before: (5 8 7 2 1 6 3 4)

After: (5 8 6 2 1 7 3 4)
TSP Example: 30 Cities
Solution \(i \) (Distance = 941)
Solution \(j \) (Distance = 800)

TSP30 (Performance = 800)
Solution \(k \) (Distance = 652)
Best Solution (Distance = 420)

TSP30 Solution (Performance = 420)
Overview of Performance

TSP30 - Overview of Performance

Distance

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Generations (1000)

Best

Worst

Average
“Almost eight years ago ... people at Microsoft wrote a program [that] uses some genetic things for finding short code sequences. Windows 2.0 and 3.2, NT, and almost all Microsoft applications products have shipped with pieces of code created by that system.”

- Nathan Myhrvold, Microsoft Advanced Technology Group, Wired, September 1995
Issues for GA Practitioners

- Choosing basic implementation issues:
 - representation
 - population size, mutation rate, ...
 - selection, deletion policies
 - crossover, mutation operators

- Termination Criteria

- Performance, scalability

- Solution is only as good as the evaluation function (often hardest part)
Benefits of Genetic Algorithms

- Concept is easy to understand
- Modular, separate from application
- Supports multi-objective optimization
- Good for “noisy” environments
- Always an answer; answer gets better with time
- Inherently parallel; easily distributed
Benefits of Genetic Algorithms (cont.)

- Many ways to speed up and improve a GA-based application as knowledge about problem domain is gained
- Easy to exploit previous or alternate solutions
- Flexible building blocks for hybrid applications
- Substantial history and range of use
When to Use a GA

- Alternate solutions are too slow or overly complicated
- Need an exploratory tool to examine new approaches
- Problem is similar to one that has already been successfully solved by using a GA
- Want to hybridize with an existing solution
- Benefits of the GA technology meet key problem requirements
Some GA Application Types

<table>
<thead>
<tr>
<th>Domain</th>
<th>Application Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>gas pipeline, pole balancing, missile evasion, pursuit</td>
</tr>
<tr>
<td>Design</td>
<td>semiconductor layout, aircraft design, keyboard configuration, communication networks</td>
</tr>
<tr>
<td>Scheduling</td>
<td>manufacturing, facility scheduling, resource allocation</td>
</tr>
<tr>
<td>Robotics</td>
<td>trajectory planning</td>
</tr>
<tr>
<td>Machine Learning</td>
<td>designing neural networks, improving classification algorithms, classifier systems</td>
</tr>
<tr>
<td>Signal Processing</td>
<td>filter design</td>
</tr>
<tr>
<td>Game Playing</td>
<td>poker, checkers, prisoner’s dilemma</td>
</tr>
<tr>
<td>Combinatorial Optimization</td>
<td>set covering, travelling salesman, routing, bin packing, graph colouring and partitioning</td>
</tr>
</tbody>
</table>
Conclusions

Question: ‘If GAs are so smart, why ain’t they rich?’

Answer: ‘Genetic algorithms are rich - rich in application across a large and growing number of disciplines.’

- David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning