Genetic Algorithms: A Tutorial

"Genetic Algorithms are good at taking large, potentially huge search spaces and navigating them, looking for optimal combinations of things, solutions you might not otherwise find in a lifetime."

- Salvatore Mangano *Computer Design*, May 1995

Wendy Williams Metaheuristic Algorithms

The Genetic Algorithm

- Directed search algorithms based on the mechanics of biological evolution
- Developed by John Holland, University of Michigan (1970's)
 - To understand the adaptive processes of natural systems
 - To design artificial systems software that retains the robustness of natural systems

The Genetic Algorithm (cont.)

- Provide efficient, effective techniques for optimization and machine learning applications
- Widely-used today in business, scientific and engineering circles

Classes of Search Techniques

Components of a GA

- A problem to solve, and ...
- Encoding technique (gene, chromosome)
- Initialization procedure
- Evaluation function
- Selection of parents
- Genetic operators (mutation, recombination)
- Parameter settings

- (creation)
- (environment)
- (reproduction)
- - (practice and art)

Simple Genetic Algorithm

initialize population; evaluate population; while TerminationCriteriaNotSatisfied { select parents for reproduction; perform recombination and mutation; evaluate population;

{

}

The GA Cycle of Reproduction

Wendy Williams Metaheuristic Algorithms

Chromosomes could be:

- Bit strings
- Real numbers
- Permutations of element
- Lists of rules
- Program elements
- ... any data structure ...

(0101 ... 1100)

- (43.2 33.1 ... 0.0 89.2)
- (E11 E3 E7 ... E1 E15)
- (R1 R2 R3 ... R22 R23)

(genetic programming)

Reproduction

Parents are selected at random with selection chances biased in relation to chromosome evaluations.

Chromosome Modification

- Modifications are stochastically triggered
- Operator types are:
 - Mutation
 - Crossover (recombination)

Mutation: Local Modification				
Before:	(1 0 2	1 1 0	1 1 0)	
After:	(0 1 2	1 0 0	1 1 0)	
Before:	(1.38	-69.4	326.44	0.1)
After:	(1.38	-67.5	326.44	0.1)

- Causes movement in the search space (local or global)
- Restores lost information to the population

Crossover: Recombination

Crossover is a critical feature of genetic algorithms:

- It greatly accelerates search early in evolution of a population
- It leads to effective combination of schemata (subsolutions on different chromosomes)

- The evaluator decodes a chromosome and assigns it a fitness measure
- The evaluator is the only link between a classical GA and the problem it is solving

- Generational GA: entire populations replaced with each iteration
- Steady-state GA:
 a few members replaced each generation

Distribution of Individuals in Generation 0

Distribution of Individuals in Generation N

Wendy Williams Metaheuristic Algorithms

A Simple Example

"The Gene is by far the most sophisticated program around."

- Bill Gates, Business Week, June 27, 1994

Wendy Williams Metaheuristic Algorithms

A Simple Example

The Traveling Salesman Problem:

Find a tour of a given set of cities so that

- each city is visited only once
- the total distance traveled is minimized

Representation

Representation is an ordered list of city numbers known as an *order-based* GA.

1) London3) Dunedin5) Beijing7) Tokyo2) Venice4) Singapore6) Phoenix8) Victoria

CityList1 (3 5 7 2 1 6 4 8) CityList2 (2 5 7 6 8 1 3 4)

Wendy Williams Metaheuristic Algorithms

Crossover

Crossover combines inversion and recombination:

This operator is called the Order1 crossover.

Wendy Williams Metaheuristic Algorithms

Mutation

Mutation involves reordering of the list:

TSP Example: 30 Cities

Wendy Williams Metaheuristic Algorithms

21

Solution _i (Distance = 941)

Wendy Williams Metaheuristic Algorithms

22

Solution _j(Distance = 800)

Wendy Williams Metaheuristic Algorithms

23

Solution _k(Distance = 652)

Wendy Williams Metaheuristic Algorithms

24

Best Solution (Distance = 420)

Wendy Williams Metaheuristic Algorithms

25

Overview of Performance

TSP30 - Overview of Performance

Wendy Williams Metaheuristic Algorithms

Considering the GA Technology

"Almost eight years ago ... people at Microsoft wrote a program [that] uses some genetic things for finding short code sequences. Windows 2.0 and 3.2, NT, and almost all Microsoft applications products have shipped with pieces of code created by that system."

- Nathan Myhrvold, Microsoft Advanced Technology Group, *Wired*, September 1995

Wendy Williams Metaheuristic Algorithms

Issues for GA Practitioners

- Choosing basic implementation issues:
 - representation
 - population size, mutation rate, ...
 - selection, deletion policies
 - crossover, mutation operators
- I Termination Criteria
- Performance, scalability
- Solution is only as good as the evaluation function (often hardest part)

Benefits of Genetic Algorithms

- Concept is easy to understand
- Modular, separate from application
- Supports multi-objective optimization
- Good for "noisy" environments
- Always an answer; answer gets better with time
- Inherently parallel; easily distributed

Benefits of Genetic Algorithms (cont.)

- Many ways to speed up and improve a GA-based application as knowledge about problem domain is gained
- Easy to exploit previous or alternate solutions
- Flexible building blocks for hybrid applications
- Substantial history and range of use

When to Use a GA

- Alternate solutions are too slow or overly complicated
- Need an exploratory tool to examine new approaches
- Problem is similar to one that has already been successfully solved by using a GA
- Want to hybridize with an existing solution
- Benefits of the GA technology meet key problem requirements

Some GA Application Types

Domain	Application Types	
Control	gas pipeline, pole balancing, missile evasion, pursuit	
Design	semiconductor layout, aircraft design, keyboard configuration, communication networks	
Scheduling	manufacturing, facility scheduling, resource allocation	
Robotics	trajectory planning	
Machine Learning	designing neural networks, improving classification algorithms, classifier systems	
Signal Processing	filter design	
Game Playing	poker, checkers, prisoner's dilemma	
Combinatorial Optimization	set covering, travelling salesman, routing, bin packing, graph colouring and partitioning	

Conclusions

Question: 'If GAs are so smart, why ain't they rich?'

Answer: 'Genetic algorithms **are** rich - rich in application across a large and growing number of disciplines.'

- David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning

Wendy Williams Metaheuristic Algorithms

Genetic Algorithms: A

Tutorial