
CS2101 Due: Monday 3-rd of November 2014

Problem Set 2
CS2101 Submission instructions on last page

PROBBLEM 1. [20 points]
In this problem, we consider different ways of computing the dot product of two vectors.

Question 1. [5 points] Write first a Julia function dotproduct serial(U,V) computing
the dot product of the vectors of U and V in a serial fashion, that is, without using any
parallel constructs.

Question 2. [5 points] Next, write a Julia function dotproduct parallel reduction(U,V)

computing the dot product of the vectors of U and V using parallel reduction and thus Julia’s
construct @parallel.

Question 3. [5 points] Next, write a function dotproduct parallel dnc(U,V) computing
the dot product of the vectors of U and V using a divide-and-conquer approach (with a base
case to be optimized experimentally). For this function, we shall assume that U and V are
shared arrays.

Question 4. [5 points] Run the following tests and record the timings

N = 100000

U = [rand() for i=1:N]

V = [rand() for i=1:N]

@time dotproduct_parallel_reduction(U,V)

@time dotproduct_serial(U,V)

Us = convert(SharedArray, U)

Vs = convert(SharedArray, V)

@time dotproduct_dnc(Us, Vs)

N = 1000000

U = [rand() for i=1:N]

V = [rand() for i=1:N]

@time dotproduct_parallel_reduction(U,V)

@time dotproduct_serial(U,V)

Us = convert(SharedArray, U)

Vs = convert(SharedArray, V)

@time dotproduct_dnc(Us, Vs)

N = 10000000

1

U = [rand() for i=1:N]

V = [rand() for i=1:N]

@time dotproduct_parallel_reduction(U,V)

@time dotproduct_serial(U,V)

Us = convert(SharedArray, U)

Vs = convert(SharedArray, V)

@time dotproduct_dnc(Us, Vs)

Explain these experimental results.

PROBBLEM 2. [40 points] The goal of this exercise is to obtain a parallel Julia im-
plementation of the merge-sort algorithm. You can review this algorithm at http://en.

wikipedia.org/wiki/Merge_sort

You will find there several ways of presenting this algorithm. The one of the Top-down
implementation section is overwrites the input array. In other words, this sorting process
can be seen as in place 1 To learn more about this idea of working-in-place, read the page
http://en.wikipedia.org/wiki/In-place_algorithm

To learn more about performing merge-sort in-place, read the page http://stackoverflow.
com/questions/2571049/how-to-sort-in-place-using-the-merge-sort-algorithm or
the page http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Sorting/
mergeSort.htm

Merge-sort can also be done out-of-place, that is, without modifying the input array and
by returning a new and sorted array. To see an example, look at the first pseudo-code area
at the top of the page http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort

If the in-place solution seems more efficient (as it consumes less resources) the out-of-place
is less tricky to implement. For that reason, we want to consider both in this exercise.

Note that, in class, we presented Julia code for both the in-place and out-of-place (serial)
Merge-sort. We also show a parallel version of the out-of-place Merge-sort, with relatively
poor performance.

Question 1. [20 points] Adapt the serial in-place Merge-sort seen in class such that it
runs in a parallel fashion. Using a shared array would be necessary. Observe that using a
threshold (as in Fibonacci) for switching between the serial and parallel modes would be
needed

Question 2. [10 points] Collect experimental data (similarly to what we did with Fi-
bonacci) in order to optimize the threshold for switching between the serial and parallel
modes. Using plots (with the Winston package) is required.

1In fact, this is not completely true since an intermediate array, or work array, B is used.

2

http://en.wikipedia.org/wiki/Merge_sort
http://en.wikipedia.org/wiki/Merge_sort
http://en.wikipedia.org/wiki/In-place_algorithm
http://stackoverflow.com/questions/2571049/how-to-sort-in-place-using-the-merge-sort-algorithm
http://stackoverflow.com/questions/2571049/how-to-sort-in-place-using-the-merge-sort-algorithm
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Sorting/mergeSort.htm
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Sorting/mergeSort.htm
http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort

Question 3. [10 points] Compare experimentally this optimized version of parallel in-
place Merge-sort with the parallel out-of-place Merge-sort seen in class. Using plots (with
the Winston package) is required.

PROBBLEM 3. [40 points]
In this problem, we will realize a parallel implementation of a simulation based on a

4-point stencil, called Jacobi iteration. Note that this stencil is 2-D (whereas the example
seen in class is 1-D) but involves only two time steps at each iteration (whereas the example
seen in class uses three time steps, namely past, present and future).

In the chapter http://www.netlib.org/utk/papers/mpi-book/node44.html the ex-
ample called Jacobi iteration - sequential code explains how to obtain one time from the
previous one.

Question 1. [10 points] Write first a Julia function Jacobi serial(A, N, T) working on
a 2-D grid of order N and performing T time steps of the Jacobi iteration in a serial fashion.

Question 2. [20 points] Write first a Julia function Jacobi parallel(A, N, T) working
on a 2-D grid of order N and performing T time steps of the Jacobi iteration in a parallel
fashion using the 2-D (block,block) partition suggested in http://www.netlib.org/utk/

papers/mpi-book/node44.html. Clearly will use an inner function working in a divide-
and-conquer manner with a threshold and using a shared array for A.

Question 3. [10 points] Compare experimentally the functions Jacobi serial(A, N, T)

and Jacobi parallel(A, N, T).

Submission instructions.

Format: Problems 1, 2 and 3 involve programming with Julia: the corresponding programs
must be submitted as three input text files to be called Pb1.jl, Pb2.jl, Pb3.jl re-
spectively. Each of these three files must be a valid input file for Julia. In addition,
each user defined function must be documented, using comments. Moreover, the an-
swers to Questions 1 and 4 of Problem 1, and Question 4 of Problem 3 should be typed
and submitted as a PDF file called OtherAnswers.pdf. No format other than PDF
will be accepted. To summarize: each assignment submission consists of four files:
Pb1.jl, Pb2.jl, Pb3.jl and OtherAnswers.pdf.

Submission: The assignment should be returned to the instructor and the TA by email.

Collaboration. You are expected to do this assignment on your own without assistance
from anyone else in the class. However, you can use literature and if you do so, briefly
list your references in the assignment. Be careful! You might find on the web solutions

3

http://www.netlib.org/utk/papers/mpi-book/node44.html
http://www.netlib.org/utk/papers/mpi-book/node44.html
http://www.netlib.org/utk/papers/mpi-book/node44.html

to our problems that are not appropriate. So please, avoid those traps and work out
the solutions by yourself. You should not hesitate to contact the instructor or the TA
if you have any question regarding this assignment. We will be more than happy to
help.

Marking. This assignment will be marked out of 100. A 10 % bonus will be given if your
answers are clearly organized, precise and concise. Messy assignments (unclear state-
ments, lack of correctness in the reasoning, many typographical or language mistakes)
may give rise to a 10 % malus.

4

	Lecture – Problem Set 2

