
Solution for the Exercise 3 of Lab 4

We provide below a Julia code for a function dacmm which

• computes the product of two square matrices A and B of order s and,

• writes the result in a matrix C (which is also square of order s).

This Julia’s function follows the principle given in the statement of Exercise 3
of Lab 4. To implement this principle, one needs parameters recording which
block is currently being considered in either A, B or C:

• (i0,i1) are the coordinates of the top-left corner in the current block of
A,

• (j0,j1) are the coordinates of the top-left corner in the current block of
B,

• (k0,k1) are the coordinates of the top-left corner in the current block of
C.

In addition, to make the code efficient, we have added an extra parameter X
for the base-case. In the description of Exercise 3 of Lab 4, this value is 2. The
base-case X is defined as the maximum order for which matrices are multiplied
using the naive matrix multiplication method. In practice, the base-case is often
a number like 8, 16, 32 or 64. In fact, the theory that we developed in class
suggests that the base-case should be the largest (power of 2) X such that three
square matrices of order X fit in L1 cache.

In the experimental results reported below, you can see that with X = 8
and s = 1024, the divide-and-conquer matrix multiplication method (as imple-
mented in dacmm) is clearly faster than the naive matrix multiplication method.

This observation is coherent with what we discussed in the chapter about
cache memories. In fact, the divide-and-conquer matrix multiplication method
implemented in dacmm is similar to the matrix multiplication method based on
a blocking strategy: they both partition A, B, C into blocks and compute the
product matrix C block-wise.

===========================================================

divide and conquer version:

C = A*B

(i0,i1): coordinates of the top-left corner of the current

block from Matrix A

(j0,j1): coordinates of the top-left corner of the current

block from Matrix B

(k0,k1): coordinates of the top-left corner of the current

block from Matrix C

1



s: order of the matrices A, B, C (note that this

parameter is divided by 2, 4, 8, in the subsequent

recursive calls)

X: the size of basecase (can be taken equal to 2 in order

to make the story simple, but in practice X should

be a bit larger for various optimization reasons

that we shall discuss in class).

==========================================================

function dacmm(i0, i1, j0, j1, k0, k1, A, B, C, s, X)

if s > X

s = s/2

dacmm(i0, i1, j0, j1, k0, k1, A, B, C, s,X)

dacmm(i0, i1, j0, j1+s, k0, k1+s, A, B, C, s,X)

dacmm(i0+s, i1, j0, j1, k0+s, k1, A, B, C, s,X)

dacmm(i0+s, i1, j0, j1+s, k0+s, k1+s, A, B, C, s,X)

dacmm(i0, i1+s, j0+s, j1, k0, k1, A, B, C, s,X)

dacmm(i0, i1+s, j0+s, j1+s, k0, k1+s, A, B, C, s,X)

dacmm(i0+s, i1+s, j0+s, j1, k0+s, k1, A, B, C, s,X)

dacmm(i0+s, i1+s, j0+s, j1+s, k0+s, k1+s, A, B, C, s,X)

else

for i= 1:s, j=1:s, k=1:s

C[i+k0,k1+j] += A[i+i0,i1+k] * B[k+j0,j1+j]

end

end

end

=============================================================

n=1024

base=8

A = [rem(rand(Int32),5) for i =1:n, j = 1:n];

B = [rem(rand(Int32),5) for i =1:n, j = 1:n];

C = zeros(n,n);

@time dacmm(0, 0, 0, 0, 0, 0, A, B, C, n, base)

============================================================

naive version:

function mmult(A,B)

(M,N) = size(A)

C = zeros(M,M)

for i=1:M

for j=1:M

2



for k=1:M

C[i,j] += A[i,k]*B[k,j]

end

end

end

C

end

==============================================================

@time mmult(A,B)

==============================================================

@time dacmm(0, 0, 0, 0, 0, 0, A, B, C, n, base, n)

elapsed time: 8.579287052154541 seconds

@time mmult(A,B)

elapsed time: 12.142310857772827 seconds

3


