
Foundations of Programming for High Performance Computing: CS2101. UWO, November, 5,
2013.

Student name:
Student ID number:

Guidelines. The exam is closed book and all notes are forbidden. The duration is 1 hour 40 minutes.
There are 20 pages in the exam. The last four pages are blank: they can be used as scratch paper and

will not be marked. The exam consists of 4 exercises located from Page 2 to Page 16 . The mark
allotment and a suggested time allotment are provided in the table below. All answers should be written
in the answer boxes. No justifications for the answers are needed. You are expected to do this exam on
your own without assistance from anyone else in the class. If possible, please avoid pencils and use pens
with dark ink. Thank you.

Marks. Please, do not write anything in the table below.

Exercise Maximum Mark Expected Time
1 25 25 min .
2 25 25 min.
3 25 25 min.
4 25 25 min.

TOTAL 100 1h40

1

Exercise 1: multiple choice questions

In each case, zero, one or more answers may be correct; indicate all correct answers.

(1) Consider the following Julia function f:

function f(u,v)
n=length(u)
[u[i] + v[i] for i=1:n]

end

which assumes that u and v are vectors of equal length.

(a) the function f(u,v) prints “Hello World”
(b) the function f(u,v) does not return anything
(c) the function f(u,v) returns the sum of the vectors u and v
(d) the function f(u,v) returns the sum of the vectors u and v provided that their coefficients

are integer numbers.

(2) Consider the following Julia function B:

function B(n,precision)
x = n/2
while abs(xˆ2 - n) > precision

x = 0.5(x+n/x)
end
return x

end

(a) the function f(4,0.5) returns 2.5
(b) the function f(4,0.5) returns 2
(c) the function f(4,0.5) returns 4
(d) the function f(u,v) prints x

(3) A cache memory systematically stores the results of all recursive functions, such as Fibonacci,
Mergesort, Quicksort, etc.

(a) True
(b) False

2

(4) In a computer desktop or laptop, each memory location at each memory level (main memory, cache
memories) belongs to a cache line which size ranges between 8 and 512 bytes in size, while the
size of a datum requested by a CPU instruction ranges between 1 and 16 bytes.

(a) True

(b) False

(5) In a computer desktop or laptop, when the CPU needs to read or write a memory location, it first
checks the cache memories; if it finds that memory location there, then we have a:

(a) cache miss

(b) cache hit

(c) computer reboot

(6) Consider the following Julia function and commands

function producer()
produce("start")
for n=1:2

produce(2n)
end
produce("stop")

end

p = Task(producer);

consume(p)

After executing them, one sees the following output value

(a) ”Task”

3

(b)

”start”
2
4
”stop”

(c) ”start”

(d) “producer”

(e) “consumer”

(7) Making room for a new entry in a cache memory requires a replacement policy: the Least Recently
Used (LRU) discards

(a) the least recently used items first

(b) the most recently used items first

(8) Distributed memory systems require a communication network to connect inter-processor memory.

(a) True

(b) False

(9) Pipelining is a common way to organize work with the objective of resolving memory contention
in computer hardware.

(a) True

(b) False

(10) In data parallelism, tasks perform the same operation on their region of data, for example, multiply
every array element by some value.

(a) True

(b) False

4

(11) The Julia language provides a multiprocessing environment based on message passing to allow
programs to run on multiple processors in shared or distributed memory.

(a) True

(b) False

(12) Consider the following Julia session where two methods are proposed for computing the square
of a random matrix.

#method 1
A = rand(1000,1000)
Bref = @spawn Aˆ2
fetch(Bref)

method 2
Bref = @spawn rand(1000,1000)ˆ2
fetch(Bref)

(a) In the first method, a random matrix is constructed locally, then sent to another processor
where it is squared.

(b) In the first method, a random matrix is both constructed and squared on another processor.

(c) In the second method, a random matrix is constructed locally, then sent to another processor
where it is squared.

(d) In the second method, a random matrix is both constructed and squared on another processor.

(13) Consider the following Julia session:

n = @parallel (+) for i=1:10
i

end

After executing the above, the value of n is:

5

(a) 10

(b) 55

(c) the number of processors involved in this Julia session

(d) a remote reference

(14) Consider the following Julia session:

a = zeros(4);
@parallel for i=1:4

a[i] = i
end

After executing the above, the coefficients of the array a are:

(a) respectively equal to 1, 2, 3, 4.

(b) all equal to 4

(c) all equal to 0

(d) all remote references

(15) Consider the following Julia session:

M = [rand(1000,1000) for i=1:4];
R = [@spawnat i rank(M[i]) for i=1:4]

After executing the above, the coefficients of the array R are:

(a) all integer numbers in the range 0:100

(b) all random matrices of format 100x100

(c) all tasks (aka coroutines)

(d) all remote references

6

Exercise 2: Julia questions with short answers

(1) Write a Julia function that takes as input two vectors u and v (whose coefficients could be
integers, floats, etc.) of the same length and computes the square matrix A such that the element
A[i, j] is the product u[i] * v[j].

(2) Given a square matrix A, write a serial Julia function Trace computing the trace of A, that is,
the sum of the diagonal elements of A (i. e. the elements A[i, i]).

(3) Rewrite the above function Trace such that it takes advantage of a parallel construct.

7

(4) Consider the Julia’s function below for multiplying two square matrices A and B of order n. Us-
ing Julia’s construct @spawnat and fetch make a parallel version of that function that uses 4
processors.

function four_quadrant_mat_mul_serial(A, B, n)

C = zeros(n, n)
d = div(n,2)
e = d+1
C[1:d, 1:d] = A[1:d, 1:d] * B[1:d, 1:d] +

A[1:d, e:n] * B[e:n, 1:d]
C[1:d, e:n] = A[1:d, 1:d] * B[1:d, e:n] +

A[1:d, e:n] * B[e:n, e:n]
C[e:n, 1:d] = A[e:n, 1:d] * B[1:d, 1:d] +

A[e:n, e:n] * B[e:n, 1:d]
C[e:n, e:n] = A[e:n, 1:d] * B[1:d, e:n] +

A[e:n, e:n] * B[e:n, e:n]
C

end

8

9

Exercise 3: writing a parallel Julia function

The goal of this exercise is, given a square matrix A of order n and given a positive integer k, to
compute the sum

A+
A2

2
+

A3

3!
+ · · ·+ Ak

k!
(1)

Write a parallel Julia function matrixExponential computing the above sum given A and k,
using two processors and proceeding as follows:

1. the local processor, say Processor 1, accumulates the sum, thus computes successively A,A +
A2

2 , A+ A2

2 + A3

3! , . . . , A+ A2

2 + A3

3! + · · ·+ Ak

k!

2. the remote processor, say Processor 2, computes the successive powers of A, that is, A2, A3, . . . , Ak.

10

11

Exercise 4: analyzing cache misses

The following four questions are using this simple cache memory; the same as in class.

Cache

Memory……Cache Lines

• Byte addressable memory

• The Cache has size 32Kbyte with direct mapping and 64 byte lines (512 lines); so the cache can
fit 29 × 24 = 213 int.

• Therefore, successive 32Kbyte memory blocks can line up in cache.

• A cache access costs 1 cycle while. a memory access costs 100 cycles.

• How addresses map into cache

– Bottom 6 bits are used as offset in a cache line,

– Next 9 bits determine the cache line

12

Question 1.

// sizeof(int) = 4 and Array laid out sequentially in memory
#define S ((1<<20)*sizeof(int))
int A[S];
// Thus size of A is 2ˆ(20) x 16 bytes
for (i = 0; i < S; i++) {

read A[2];
}

What is the total access time of this program? What kind of locality does it have, if any? What kind
of misses?

13

Question 2.

// sizeof(int) = 4 and Array laid out sequentially in memory
#define S ((1<<20)*sizeof(int))
int A[S];
// Thus size of A is 2ˆ(20) x 16 bytes
for (i = 0; i < S; i++) {

read A[i];
}

What is the total access time of this program? What kind of locality does it have, if any? What kind
of misses?

14

Question 3.

// sizeof(int) = 4 and Array laid out sequentially in memory
#define S ((1<<20)*sizeof(int))
int A[S];
// Thus size of A is 2ˆ(20) x 16 bytes
for (i = 0; i < S; i++) {

read A[(16 * i) % S];
}

What is the total access time of this program? What kind of locality does it have, if any? What kind
of misses?

15

Question 4.

#define S ((1<<19)*sizeof(int))
int A[S];
int B[S];
// Thus, in the main memory, the cache lines of
// B are just after all the cache lines of A
for (i = 0; i < S; i++) {

read A[i], B[i];
}

What is the total access time of this program? What kind of locality does it have, if any? What kind
of misses?

16

17

18

19

20

