
I/O and Redirection

Standard I/O
uStandard Output (stdout)

– default place to which programs write

uStandard Input (stdin)
– default place from which programs read

uStandard Error (stderr)
– default place where errors are reported

u To demonstrate -- cat
– Echoes everything you typed in with an <enter>
– Quits when you press Ctrl-d at a new line -- (EOF)

Redirecting Standard Output
u cat file1 file2 > file3

– concatenates file1 and file2 into file3
– file3 is created if not there

u cat file1 file2 >! file3
– file3 is clobbered if there

u cat file1 file2 >> file3
– file3 is created if not there
– file3 is appended to if it is there

u cat > file3
– file3 is created from whatever user provides from

standard input

Redirecting Standard Error
u Generally direct standard output and standard error to

the same place:
obelix[1] > cat myfile >& yourfile
v If myfile exists, it is copied into yourfile
v If myfile does not exist, an error message

cat: myfile: No such file or directory
is copied in yourfile

u In tcsh, to write standard output and standard error into
different files:

obelix[2] > (cat myfile > yourfile) >& yourerrorfile

u In sh (for shell scripts), standard error is redirected
differently
– cat myfile > yourfile 2> yourerrorfile

Redirecting Standard Input

u obelix[1] > cat < oldfile > newfile
uA more useful example:

– obelix[2] > tr string1 string2
vRead from standard input.
vCharacter n of string1 translated to

character n of string2.
vResults written to standard output.

– Example of use:
obelix[3] > tr aeoiu eoiua
obelix[4] > tr a-z A-Z < file1 > file2

/dev/null

u /dev/null
– A virtual file that is always empty.
– Copy things to here and they disappear.
vcp myfile /dev/null
vmv myfile /dev/null

– Copy from here and get an empty file.
vcp /dev/null myfile

– Redirect error messages to this file
v(ls -l > recordfile) >& /dev/null
vBasically, all error messages are discarded.

Filters (1)
u Filters are programs that:

– Read stdin.
– Modify it.
– Write the results to stdout.

u Filters typically do not need user input.
uExample:

– tr (translate):
vRead stdin
vEcho to stdout, translating some specified

characters

uMany filters can also take file names as
operands for input, instead of using stdin.

Filters (2)
u grep patternstr:

– Read stdin and write lines containing patternstr to
stdout

obelix[1] > grep "unix is easy" < myfile1 > myfile2
– Write all lines of myfile1 containing phrase unix is easy

to myfile2

uwc:
– Count the number of chars/words/lines on stdin
– Write the resulting statistics to stdout

u sort:
– Sort all the input lines in alphabetical order and write to

the standard output.

Pipes
u The pipe:

– Connects stdout of one program with stdin of another

– General form:
command1 | command2

– stdout of command1 used as stdin for command2
– Example:

obelix[1] > cat readme.txt | grep unix | wc -l

uAn alternative way (not efficient) is to:
obelix[2] > grep unix < readme.txt > tmp
obelix[3] > wc -l < tmp

uCan also pipe stderr: command1 |& command2

Redirecting and Pipes (1)

Redirecting and Pipes (2)
uNote: The name of a command always comes

first on the line.
u There may be a tendency to say:

obelix[1] > readme.txt > grep unix | wc -l
– This is WRONG!!!
– Your shell will go looking for a program named

readme.txt

u To do it correctly, many alternatives!
obelix[1] > cat readme.txt | grep unix | wc -l
obelix[2] > grep unix < readme.txt | wc -l
obelix[3] > grep unix readme.txt | wc -l
obelix[4] > grep -c unix readme.txt

The tee Command

u tee - replicate the standard output
– cat readme.txt | tee myfile

tee

stdin

stdout myfile

