
Structures

Structures (1)
uStructures are C’s way of grouping collections of

data into a single manageable unit.
– This is also the fundamental element of C upon

which most of C++ is built (i.e., classes).
– Similar to Java's classes.

uAn example:
– Defining a structure type:

struct coord {
int x ;
int y ;

};
– This defines a new type struct coord. No variable is

actually declared or generated.

Structures (2)
u Define struct variables:

struct coord {
int x,y ;

} first, second;
u Another Approach:

struct coord {
int x,y ;

};
...............
struct coord first, second; /* declare variables */
struct coord third;

Structures (3)

uYou can even use a typedef if your don't
like having to use the word “struct”

typedef struct coord coordinate;
coordinate first, second;

u In some compilers, and all C++ compilers,
you can usually simply say just:

coord first, second;

Structures (4)
u Access structure variables by the dot (.) operator
u Generic form:

structure_var.member_name

u For example:
first.x = 50 ;
second.y = 100;

u These member names are like the public data
members of a class in Java (or C++).
– No equivalent to function members/methods.

u struct_var.member_name can be used anywhere a
variable can be used:
– printf ("%d , %d", second.x , second.y);
– scanf("%d, %d", &first.x, &first.y);

Structures (5)
uYou can assign structures as a unit with =

first = second;
instead of writing:

first.x = second.x ;
first.y = second.y ;

uAlthough the saving here is not great
– It will reduce the likelihood of errors and
– Is more convenient with large structures

u This is different from Java where variables are
simply references to objects.

first = second;
makes first and second refer to the same object.

Structures Containing Structures
u Any “type” of thing can be a member of a structure.
u We can use the coord struct to define a rectangle

struct rectangle {
struct coord topleft;
struct coord bottomrt;

} ;

u This describes a rectangle by using the two points
necessary:

struct rectangle mybox ;

u Initializing the points:
mybox.topleft.x = 0 ;
mybox.topleft.y = 10 ;
mybox.bottomrt.x = 100 ;
mybox.bottomrt.y = 200 ;

An Example
#include <stdio.h>
struct coord {

int x;
int y;

};
struct rectangle {

struct coord topleft;
struct coord bottomrt;

};

int main () {
int length, width;
long area;
struct rectangle mybox;
mybox.topleft.x = 0;
mybox.topleft.y = 0;
mybox.bottomrt.x = 100;
mybox.bottomrt.y = 50;
width = mybox.bottomrt.x –

mybox.topleft.x;
length = mybox.bottomrt.y –

mybox.topleft.y;
area = width * length;
printf ("The area is %ld units.\n",
area);

}

Structures Containing Arrays
u Arrays within structures are the same as any other

member element.
u For example:

struct record {
float x;
char y [5] ;

} ;

u Logical organization:

float char[5]

record

An Example
#include <stdio.h>
struct data {

float amount;
char fname[30];
char lname[30];

} rec;
int main () {

struct data rec;
printf ("Enter the donor's first and last names, \n");
printf ("separated by a space: ");
scanf ("%s %s", rec.fname, rec.lname);
printf ("\nEnter the donation amount: ");
scanf ("%f", &rec.amount);
printf ("\nDonor %s %s gave $%.2f.\n",

rec.fname,rec.lname,rec.amount);
}

Arrays of Structures
u The converse of a structure with arrays:
u Example:

struct entry {
char fname [10] ;
char lname [12] ;
char phone [8] ;

} ;
struct entry list [1000];

u This creates a list of 1000 identical entry(s).
u Assignments:

list [1] = list [6];
strcpy (list[1].phone, list[6].phone);
list[6].phone[1] = list[3].phone[4] ;

An Example
#include <stdio.h>
struct entry {

char fname [20];
char lname [20];
char phone [10];

} ;

int main() {
struct entry list[4];
int i;
for (i=0; i < 4; i++) {

printf ("\nEnter first name: ");
scanf ("%s", list[i].fname);
printf ("Enter last name: ");
scanf ("%s", list[i].lname);
printf ("Enter phone in 123-4567 format: ");
scanf ("%s", list[i].phone);

}
printf ("\n\n");
for (i=0; i < 4; i++) {

printf ("Name: %s %s", list[i].fname, list[i].lname);
printf ("\t\tPhone: %s\n", list[i].phone);

}
}

Initializing Structures
u Simple example:

struct sale {
char customer [20] ;
char item [20] ;
int amount ;

};

struct sale mysale = { "Acme Industries",
"Zorgle blaster",
1000 } ;

Initializing Structures
u Structures within structures:

struct customer {
char firm [20] ;
char contact [25] ;

};
struct sale {

struct customer buyer ;
char item [20] ;
int amount ;

} mysale =
{ { "Acme Industries", "George Adams"} ,

"Zorgle Blaster", 1000
} ;

Initializing Structures
u Arrays of structures

struct customer {
char firm [20] ;
char contact [25] ;

} ;
struct sale {

struct customer buyer ;
char item [20] ;
int amount ;

} ;

struct sale y1990 [100] = {
{ { "Acme Industries",
"George Adams"} ,
"Left-handed Idiots" ,
1000
},
{ { "Wilson & Co.",

"Ed Wilson"} ,
"Thingamabob" , 290
}

} ;

Pointers to Structures
struct part {

float price ;
char name [10] ;

} ;
struct part *p , thing;
p = &thing;
/* The following three statements are equivalent */
thing.price = 50;
(*p).price = 50; /* () around *p is needed */
p -> price = 50;

Pointers to Structures

u p is set to point to the first byte of the struct
variable

thing.price thing.name []

p

Pointers to Structures
struct part * p, *q;
p = (struct part *) malloc(sizeof(struct part));
q = (struct part *) malloc(sizeof(struct part));
p -> price = 199.99 ;
strcpy(p -> name, "hard disk");
(*q) = (*p);
q = p;
free(p);
free(q); /* This statement causes a problem !!!

Why? */

Pointers to Structures
u You can allocate a structure array as well:
{

struct part *ptr;
ptr = (struct part *) malloc(10 * sizeof(struct part));
for(i=0; i< 10; i++)
{

ptr[i].price = 10.0 * i;
sprintf(ptr[i].name, "part %d", i);

}
……
free(ptr);

}

Pointers to Structures
u You can use pointer arithmetic to access the elements

of the array:
{

struct part *ptr, *p;
ptr = (struct part *) malloc(10 * sizeof(struct part));
for(i=0, p=ptr; i< 10; i++, p++)
{

p -> price = 10.0 * i;
sprintf(p -> name, "part %d", i);

}
……
free(ptr);

}

Pointer as Structure Member
struct node{

int data;
struct node *next;

};
struct node a,b,c;
a.next = &b;
b.next = &c;
c.next = NULL;

NULL

a b c

a.data = 1;
a.next->data = 2;
/* b.data =2 */
a.next->next->data = 3;
/* c.data = 3 */
c.next = (struct node *)

malloc(sizeof(struct
node));

……

Assignment Operator vs. memcpy
u This assign a

struct to another

{
struct part a,b;
b.price = 39.99;
b.name = "floppy";
a = b;

}

uEquivalently, you can use
memcpy

#include <string.h>
……
{

struct part a,b;
b.price = 39.99;
b.name = "floppy";
memcpy(&a,&b,sizeof(part));

}

Array Member vs. Pointer Member
struct book {

float price;
char name[50];

};

int main()
{

struct book a,b;
b.price = 19.99;
strcpy(b.name, "C handbook");
a = b;
strcpy(b.name, "Unix
handbook");
puts(a.name);
puts(b.name);

}

Array Member vs. Pointer Member
int main()
{

struct book a,b;
b.price = 19.99;
b.name = (char *) malloc(50);
strcpy(b.name, "C handbook");
a = b;
strcpy(b.name, "Unix handbook");
puts(a.name);
puts(b.name);
free(b.name);

}

struct book {
float price;
char *name;

};

A function called
strdup() will do the
malloc() and strcpy()
in one step for you!

Passing Structures to Functions (1)
uStructures are passed by value to functions

– The parameter variable is a local variable, which will
be assigned by the value of the argument passed.

– Unlike Java.

u This means that the structure is copied if it is
passed as a parameter.
– This can be inefficient if the structure is big.
vIn this case it may be more efficient to pass a

pointer to the struct.

uA struct can also be returned from a function.

Passing Structures to Functions (2)
struct book {

float price;
char abstract[5000];

};
void print_abstract(struct

book *p_book)
{

puts(p_book->abstract);
};

struct pairInt {
int min, max;

};
struct pairInt min_max(int x,int y)
{

struct pairInt pair;
pair.min = (x > y) ? y : x;
pair.max = (x > y) ? x : y;
return pairInt;

}
int main(){

struct pairInt result;
result = min_max(3, 5);
printf("%d<=%d", result.min,
result.max);

}

